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INTRODUCTION 

Tendon actuation is the most common method for 

producing flexure in continuum medical devices. 

Examples include catheters, ureteroscopes, 

bronchoscopes and colonoscopes. These devices are 

comprised of an elongated tube with a short steerable tip 

portion and a long passively flexible proximal portion. 

The shape of the proximal portion conforms to the shape 

of the body lumen as it is advanced into the body while 

the tendon-actuated tip portion provides for tip 

positioning and steering.  

While many of these devices are comprised of a 

single elongated tube, there are important clinical 

examples for which a single steerable tip section is 

insufficient and the increased steerability provided by 

additional telescoping steerable sections is needed (Fig. 

1). For example, the delivery systems used for heart valve 

repair and replacement employ 2-3 tendon-actuated 

telescoping sections [1]. Additional examples include 

Hansen Medical’s robotic electrophysiology catheter [2] 

and Auris Health’s robotic endoscope for peripheral lung 

biopsies [3] each of which possess two telescoping 

steerable sections. 
 

 
 

Fig. 1. Example tendon-actuated catheter comprised of two 

telescoping tubes. 
 

While a variety of models mapping tendon actuation 

to robot shape have been developed, they are all limited 

to consideration of a single tube [4-6]. They cannot 

accurately predict the shape of multi-tube robots because 

they do not model the twisting that occurs between the 

tubes. The contribution of this paper is to produce a 

model that includes tube twisting and to illustrate it 

experimentally using the system of Fig. 1. 

MECHANICS-BASED MODEL 

Each tube is modeled as a Cosserat rod and tendons are 

modeled as Cosserat strings similar to [6]. The rod model 

expresses static equilibrium using differential equations 

for bending moment, 𝑚 ∈ ℝ3, and shear force, 𝑛 ∈ ℝ3, 

as functions of arc length, 𝑠. Kinematic inputs are given 

as tendon tension forces, f. Each tendon generates 

distributed forces along the length of the rod as well as 

concentrated forces and moments at their distal ends 

where they attach to the rod. Tendon equilibrium is 

described by a differential equation in shear force. 

Assuming no tendon friction, the tendon tension is 

constant along its length and shear force is tangent to the 

tendon.  

Using constitutive laws relating bending moment 

and shear force to curvature and shear strain, 

respectively, Rucker and Webster show that these models 

result in a set of decoupled linear differential equations 

in curvature and shear strain [6]. To extend this model to 

multiple telescoping tubes, additional constraints and 

derivational techniques must be applied to arrive at a 

comparable set of linear differential equations. 

Owing to the length of the derivation, only a 

summary of the approach and model are presented. For a 

set of telescoping tubes, each with its own tendons, the 

nominal set of state variables to be integrated for tube i is 

comprised of curvature, 𝑢𝑖 ∈ ℝ3, and shear strain, 𝑣𝑖 ∈
ℝ3 . In the overlapping portions, however, the tubes 

conform to the same (body-frame) centerline, 𝑝𝑏 ∈ ℝ3. 

Using body-frame coordinates with the 𝑧 axis directed 

tangentially, this constrains the 𝑥  and 𝑦  (bending) 

components of curvature to be equal for all overlapping 

tubes. Similarly, the cross-sectional ( 𝑥  and 𝑦 ) shear 

strain components  must be equal in the overlapping 

portion.  

Imposing these constraints reduces the number of 

independent state variable for q fully overlapping tubes 

from 6𝑞  (3 curvature components and 3 shear strain 

components for each tube) to 6 + 2(𝑞 − 1). Here, the 

first 6 state variables are the curvature and strain 

components of the first tube ( 𝑢1 and 𝑣1 ) while the 

additional state variables correspond to the 𝑧 components 

of curvature and shear strain for tubes 2, ⋯,q.  

Defining the torsional twist between tubes as 

𝛼𝑖(𝑠) = θ𝑖(𝑠) − θ1(𝑠), in the body frame of tube 1, we 

have �̇�𝑖(𝑠) = 𝑢𝑖,𝑧(𝑠)– 𝑢1,𝑧(𝑠) where α̇(𝑠) = 𝑑𝛼(𝑠) 𝑑𝑠⁄ . 

For all functions of arc length, such as 𝛼(𝑠), the s term is 

dropped in the remainder of this paper. The relationship 

between overlapping tube curvatures is given by 

                  𝑢𝑖 = 𝑅𝑧
𝑇(𝛼𝑖)𝑢1 + α̇𝑖𝑒3                         (1) 

Here, 𝑅𝑧(𝛼)  is rotation matrix about the 𝑧 -axis. 

Differentiation with respect to arc length, 

            u̇𝑖 = 𝑅𝑧
𝑇(𝛼𝑖)𝑢1 + 𝛼𝑖̇ [𝑒3]𝑇𝑅𝑧

𝑇(𝛼𝑖)𝑢1 + �̈�𝑖𝑒3       (2)   

Similarly, the constraint on shear deformation of the 

overlapping tube cross sections is given by  

                               𝑣𝑖|𝑥,𝑦 = 𝑅𝑧
𝑇(𝛼𝑖)𝑣1|𝑥,𝑦                       (3) 

Assuming that the untensioned tubes are straight, the 

constitutive model for each tube is given as 

          [
𝑚𝑖

𝑛𝑖
] =  [

𝐾𝑏𝑡 0
0 𝐾𝑠𝑒

] [
𝑢𝑖

𝑣𝑖 − 𝑣𝑖
0 

] ,     𝑣𝑖
0 = 𝑒3,        (4) 



We write the overall moment-curvature equilibrium 

equation by summing over all the overlapping tubes. For 

compactness, the expression below is written for two 

tubes and [𝑥] represents the skew symmetric form of 𝑥 ∈
ℝ3: 

 𝑚1̇ + [𝑢1]𝑚1 + {[𝑢1]𝑅𝑧(𝛼) +
𝑑𝑅𝑧(𝛼)

𝑑𝛼
�̇�} 𝑚2 +

𝑅𝑧(𝛼)�̇�2 + [𝑣1]𝑛1 + 𝑅𝑧(𝛼)[𝑣2]𝑛2 + 𝜏1 + 𝑅𝑧(𝛼)𝜏2 = 0 

(5) 

Here, τ𝑖 represent the sum of moments applied to a tube 

by its tendons together with any external moments. Since, 

the tubes can be independently twisted, an additional 

equation is needed for the torsional moment of the second 

tube: 

       �̇�2,𝑧 + ([𝑢2]𝑚2 + [𝑣2]𝑛2 + 𝜏2)|𝑧 =  0          (6) 

The shear strain equilibrium equation is obtained 

similarly. Here, summing for total shear strain 

equilibrium is done to cancel the distributed shear forces 

that each tube applies to the others. For two tubes, this 

yields: 

 𝑛1̇ + [𝑢1]𝑛1 + {[𝑢1]𝑅𝑧(𝛼) +
𝑑𝑅𝑧(𝛼)

𝑑𝛼
�̇�} 𝑛2 + 𝑅𝑧(𝛼)�̇�2 +

𝑓1 + 𝑅𝑧(𝛼)𝑓2 =  0                 (7) 

Distributed forces, 𝑓𝑖 , are due to tendons and external 

loads. Since the tubes can stretch independently, an 

additional equation is needed for axial elongation of the 

second tube: 

                    �̇�2,𝑧 + ([𝑢2]𝑛2 + 𝑓2)|𝑧 =  0                      (8)       

Using (1)-(4), the equilibrium equations can be written 

purely in terms of the state variables, namely, 

 𝑥 = [𝑢1,𝑥 , 𝑢1,𝑦, 𝑢1,𝑧, 𝑣1,𝑥, 𝑣1,𝑦, 𝑣1,𝑧, 𝑢2,𝑧, 𝑣2,𝑧 ]𝑇 . Tendon 

forces and moments can be formulated as in [6] resulting 

in a set of linear differential equations of the form  

       𝐴�̇� = 𝐵𝑥 + 𝑐                                  (9) 

While expressions for 𝐴, 𝐵, 𝑐 are too lengthy to include 

here, this equation can be integrated by inverting 𝐴 at 

every time step. Kinematic inputs are the tendon tensions 

along with the relative tube translations and rotations at 

the base. Since tendon tensions produce point loads and 

moments at their distal ends [6], the equations are solved 

as a two-point boundary value problem. 

EXPERIMENTAL MODEL COMPARISON 

To demonstrate the twisting predicted by the multi-tube 

model, Fig. 2 provides a comparison with the single tube 

model for the catheter of Fig. 1. For comparison, the tips 

of the two tubes are aligned axially and the same overall 

cross section is used (two tubes: OD1 = 8mm, ID1 = 

7.4mm; OD2 = 7.4mm, ID2 = 6.4mm versus one tube: 

OD = 8mm, ID = 6.4mm). Elastic moduli were 

experimentally estimated for the tubes and actual tendon 

radii were 3.9mm (outer tube) and 3.6mm (inner tube). 

The outer tube tendon is in the x-z plane and the inner 

tube tendon is in the y-z plane. Tendons were loaded 

individually and simultaneously to 14.7 N (1.5 kgf). 

Fig. 2a shows that when a single tendon is loaded, 

both the single- and two-tube systems experience only 

bending and the two models overlap. When both tendons 

are loaded at 90° to each other, however, the two tubes 

twist along their length and more accurately predict the 

experimental tip position. Model-predicted twisting 

between the tendons that accounts for the difference in 

tip is plotted in Fig. 2b.  

DISCUSSION 

Initial experimental validation of the multi-tube model 

suggests its usefulness for real-time control of robotic 

catheters and endoscopes. Future work will investigate its 

use for controlling a robotic catheter for interventional 

cardiology. 
 

 
Fig. 2. Experimental comparison of single- and multi-tube 

models. (a) Catheter shape with tendons tensioned individually 

and simultaneously. (b) Relative tendon angle versus arc length.  
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