
EasyChair Preprint
№ 8566

How to Requirements Gathering/Effect on
Software Development

Haseeb Munir, Babar Ali and Hammad Saeed

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 3, 2022



How to requirement Engineering/Gathering effect on Software 

                                                         development 
      Haseeb Munir        Babar Ali      Hammad Saeed 

(Faculty of computing (Faculty of computing (Faculty of computing 

          and IT)            and IT )             and IT) 
19101001-079@uskt.edu.pk 19101001-087@uskt.edu.pk 19101001-169@uskt.edu.pk 

 

ABSTRACT: 

Requirements engineering / Gathering is one of the main parts of software development because it 

defines the user requirements and specification what user want and also define what has to be 

developed. In requirements Gathering we analysis the user requirements and verifying the 

requirements. If you not get requirements properly your software cannot work perfectly and the user 

cannot satisfy with your products. In this paper show why requirements Engineering / Gathering 

important for software development and focused on requirements Gathering Techniques and find out 

which techniques is best for requirements engineering and gathering process. We aimed at 

investigating which evidence helps to strengthen the process of requirements gathering management, 

planning including identification and measurement. We identified some causes related to 

requirements gathering in software development process, existing strategies to helping the 

identification and measurement, and metrics to support the development process.  

 

INTRODUCTION: 

Requirements gathering is one of the most essential parts of any project and adds value to a project on 

multiple levels. When it comes to smaller budgets, tighter timelines and limited scopes, exact 

documentation of all the project requirements become crucial. Requirements gathering is easier said 

than done, it is generally an area that is given far less attention than it needs. Many projects start with 

basic lists of requirements only to find out down the line that many of the customers’ needs may not 

have been fully understood and implemented. Requirements gathering is an exploratory process that 

involves researching and documenting the project’s exact requirements from start to finish. Effective 

requirements gathering and requirements management start at the beginning of the project. And after 

Requirements gathering, we have requirements engineering process that’s is exactly use for 

requirements gathering faces and the Requirements engineering (RE) is one of the most difficult areas 

within the software development process because it decides and defines what has to be developed. 

Thus, RE is one of the branches of software engineering that arose from the need to solve the difficult 

tasks of collecting, analyzing, and verifying the software requirements. According to Christel and 

Kang Katona and Sommerville, and Birnbach et al. the RE process is frequently described by the 

following activities: elicitation, analysis, specification, validation and verification, and management. 

This study is focused in the first stage of RE, requirements elicitation, where almost all the RE's time 

is occupied by diverse problems when stakeholders interact to obtain quality requirements. Moreover, 

within the requirements elicitation process, there is a set of necessary activities: the stakeholder 

identification and the negotiation and selection of techniques to elicit the wishes and needs of the 

various stakeholders. In this context, there are diverse techniques for discovering and obtaining the 

software requirements, but it is necessary to have the knowledge to identify which ones are the most 

suitable for a specific project. Thus, considering that in order to improve software quality, it is 

necessary to improve the quality of the obtained requirements, it is crucial to improve the selection of 

the techniques used by the requirements engineer to discover the stakeholders’ needs. From this 

perspective, it is important to consider that requirements elicitation does not just happen by itself. 

This process is strongly related to the context in which it is carried out, the specific characteristics of 

mailto:19101001-079@uskt.edu.pk
mailto:19101001-087@uskt.edu.pk
mailto:19101001-169@uskt.edu.pk
https://reqtest.com/features/requirement-management/


the project, the organization, the environment, the experience, and knowledge of the analyst, as well 

as the characteristics of the elicitation technique employed. Software engineering, especially during 

the early phases, is a human-centric activity. Software engineers must gather customer needs, 

translate those needs into requirements, and validate the correctness, completeness, and feasibility of 

those requirements. Because of the involvement of various people in this process, there is the 

potential for human errors to occur. Cognitive Psychology researchers have studied how people make 

errors when performing different types of tasks. This line of research is called human error research. 

In this paper, we apply the findings from human error research to analyze and classify the types of 

human errors people make during the requirements engineering process. The remainder of this paper 

is organized as follows. Literature Review is discussed in section 2. In section 3 we analysis and 

discuss the results of different requirements gathering Process on the basis of different parameters.in 

section 4 We discuss conclusion. 

 

LITERATURE REVIEW: 

The main objective of requirements engineering (RE) is to identify the demands of stakeholders, 

which are people or organizations that will be affected by the system and possess influence, direct or 

indirect, over the system requirements. Consequently, it is essential to understand the issue and its 

context, elicit the requirements for the system, analyze, document, and validate them. The research 

question in this study is based on the following gap: "What are the main techniques, characteristics, 

and challenges of employing agile methods in the collection and specification of requirements?". We 

described the employment of the collection and specification of agile requirements adopted by 

software development companies, focusing on techniques, characteristics, and challenges of the 

technique practitioners. A survey was carried out, where forty-six (46) participants and practitioners 

from thirty-one (31) Brazilian companies (public and private) answered about the numerous 

collection and specification techniques of agile requirements. The results exhibited an overview of 

the employment of these techniques in private and public organizations. 

TD refers to problems caused when software development tasks are pending or inefficiently executed 

(Kruchtenet al., 2012). While these actions can provide benefits in the short term, such as increased 

productivity, there are risks to the project, hindering its evolution (Guo et al., 2016; Rio set al., 

2018b). With this, TD includes items usually con-trolled in a software project, such as 

unimplemented features. Also, it covers less visible aspects such as code smells and outdated 

documentation (Brown et al., 2010). Initially, TD had the focus on coding activities (Cunningham, 

1992), but in the advancement of investigations, the concept was expanded to cover the other phases 

of soft-ware development, for example, in requirements engineering (Li et al., 2015a). According to 

Ernst (2012), an inappropriate-ate elicitation or analysis of requirements causes errors that increase 

the incidence of TD in software projects. In this context, the technical debt of requirements may 

occur intentionally, for example, in the case of consciously choosing not to execute the elicitation 

process strictly; or unintentionally, in cases where the requirements engineers are inexperience and 

may not have the skills needed to perform technical and long-term procedures (Rios et al., 2019). 

 One of the most important issues that software businesses have to address is the dynamic change in 

process requirements. Therefore, Requirement Change Management (RCM) in software development 

is essential for success of a software project. RCM is a collaboration driven process and successful 

RCM requires communication and co-ordination between stakeholders. Unsuccessful RCM can lead 

to high software cost, delayed schedules, volatile requirements, and end-less testing, ultimately cause 

project failure and harm the business. Global software development (GSD) is a software development 

paradigm in which development activities are carried out by experts who are based in different 



locations around the world in order to develop successful products for a corporation. To achieve 

financial benefits, there is growing interest among international software industries in applying GSD. 

Outsourcing development to supplier firms in low-cost countries has become increasingly important 

owing to the significantly lower development costs. However, GSD causes several issues for 

practitioners that do not exist in software projects that are developed at the same physical location 

(collocated projects). Because development teams are based in several different physical locations, 

differences in ethnicities and time zones have an adverse impact on communication and coordination 

thereby resulting in insufficient communication, skills, abilities, and trust among development teams. 

Most of the time root cause of failures of software development projects are the poor qualities. As per 

the commonly used method of the software quality measurement is the empirical method, and few 

researchers adopted an AHP and Fuzzy technique in determining the software quality.  

There are many challenges associated, that it must be clear, correct, consistent, unambiguous, 

modifiable, verifiable and traceable, with a good quality SRS. Ambiguity is one of the major 

problems in the requirements specification. Ambiguity rarely surfaces during the development of a 

requirements model. Software Projects have low achievement ratios yet nowadays because of lack of 

user interests, delay in delivery, complex requirements or due to unnecessary requirements. 

Requirement prioritization increased user interest as it allows them to choose their preferred 

requirements which benefit them. Requirement prioritization helps us to get rid of dissimilarity 

among the distinct stakeholders. [Karl & Ryan] says that requirement prioritization allows 

shareholders to allot their assets on their priority requirements. Whereas [Hatton] view Software 

Requirement prioritization as compulsory now a day for the successful development of software 

projects.  

However, software quality is elusive it is not easy to define or measure. In this context, quality 

requirements (QRs)play a crucial role in dealing with quality. QRs are the desired qualities of a 

system to be developed, such as maintainability, reliability, availability, usability, and integrity. 

Although QRs have some similarities to their functional counterpart—namely, functional 

requirements—they are unique in other respects, including their meaning, how they are expressed, 

and how they are measured. While these challenges exist regardless of the approach used to develop 

software, they are particularly prominent in agile software development (ASD) which entail 

incremental and iterative software development methods guided by agile manifesto and rapid 

software development (RSD)1. AS methods (e.g., Scrum, and XP), and RSD approaches (e.g., 

continuous deployment, continuous delivery, and Devashish extend ASD’ capability by shortening 

the time to delivery of software), are widely adopted throughout the industry because they place focus 

on continuous delivery of valuable software and customer satisfaction. In such approaches, functional 

requirements tend to be favored over QRs leading QRs to be improperly documented. 

 

RESULTS AND DISCUSSION: 

We analyze and discuss different requirements gathering process by choosing different parameters 

through which we analyze which Processes is give better performance for requirements management 

in software development process. 

 

Identification: 

the process of visualizing the technical debt, identifying its causes and other attributes present in 

software development that led to its existence. This activity is crucial for the proper management of 

TD. 

Measurement:  



Analyzes and quantifies the costs and efforts required to assist in decision making regarding technical 

debt reimbursement. 

Prioritization:  

Organize the payment of technical debts in relation to importance, analyzing factors such as technical 

issues and financial impacts. 

stakeholder: 

analyzes a company stakeholder and can either affect or be affected by the business. The primary 

stakeholders in a typical corporation are its investors, employees, customers, and suppliers. 

Low client availability: 

 

Client Availability:  

shows the days and times when a client is available to be scheduled for an appointment low client 

availability effect the software development process. 

Sr no Author parameters Percentage% and 

responds 

1 Roberta Fagundes et.al Identification 86% 

2 Woubshet Behutiye 

et.al 

Measurement 71% 

3 Muhammad Azeem 

Akbar et.al 

Prioritization 60% 

4 Diego Lisboa et.al Interview with 

stakeholders 

 

56.6% 

5 Juan Carlos Barata et.al Low client availability: 

 
39.5% 

 

 

CONCLUSION: 

In this review paper introduced how to different types of requirements effect on software 

development.  The requirements make it easier to develop the question list as well as to identify gaps 

in knowledge. The objective is to ensure that the product to be developed is fully understood from all 

angles. In software engineering terms, the focus includes both functional and nonfunctional 

requirement. he results of this systematic review show different contexts that can lead to the 

emergence of the of requirements, involving causes for intentional or unintentional requirements, a 

collaboration of clients and stakeholders, elicitation and documentation of requirements and pressure 

of schedule, for example. Along with this evidence, other strategies that help identify and measure the 

requirements of were mapped, emphasizing manual management, with different application 

proposals. However, the results highlight the lack of automated resources focused on this type of 

specific requirements. 

As future proposals, research will be invested based on the gaps identified in this work, adjusting 

with the evidence already placed and new empirical studies. Also, the development of a guide to 

support the requirements’ identification and measurement is currently at early stage. The guide will 

consist of evidence from the literature and information gathered through survey in the software 

industry. Its objective is to help professionals identify and measure the existing requirements in their 

projects, knowing instructions and metrics to measure the data necessary for its resolution. 

 



 

 

 

 

REFRENCES: 

1. https://www.sciencedirect.com/science/article/abs/pii/S1045926X18301411 

2. https://www.researchgate.net/publication/272863222_A_Review_of_Requireme

nt_Engineering_Issues_and_Challenges_in_Various_Software_Development_M

ethods 

3. https://ieeexplore.ieee.org/document/9325916 

4. https://www.academia.edu/43750611/A_framework_for_software_requirement_

ambiguity_avoidance 

5. https://www.academia.edu/43750611/A_framework_for_software_requirement_

ambiguity_avoidance 

6. https://www.researchgate.net/publication/352016931_Identification_and_Measu

rement_of_Technical_Debt_Requirements_in_Software_Development_a_Syste

matic_Literature_Review 

7. https://onlinelibrary.wiley.com/doi/abs/10.1002/sys.21572 

 

 

 

 

 

 

https://www.sciencedirect.com/science/article/abs/pii/S1045926X18301411
https://www.researchgate.net/publication/272863222_A_Review_of_Requirement_Engineering_Issues_and_Challenges_in_Various_Software_Development_Methods
https://www.researchgate.net/publication/272863222_A_Review_of_Requirement_Engineering_Issues_and_Challenges_in_Various_Software_Development_Methods
https://www.researchgate.net/publication/272863222_A_Review_of_Requirement_Engineering_Issues_and_Challenges_in_Various_Software_Development_Methods
https://ieeexplore.ieee.org/document/9325916
https://www.academia.edu/43750611/A_framework_for_software_requirement_ambiguity_avoidance
https://www.academia.edu/43750611/A_framework_for_software_requirement_ambiguity_avoidance
https://www.academia.edu/43750611/A_framework_for_software_requirement_ambiguity_avoidance
https://www.academia.edu/43750611/A_framework_for_software_requirement_ambiguity_avoidance
https://www.researchgate.net/publication/352016931_Identification_and_Measurement_of_Technical_Debt_Requirements_in_Software_Development_a_Systematic_Literature_Review
https://www.researchgate.net/publication/352016931_Identification_and_Measurement_of_Technical_Debt_Requirements_in_Software_Development_a_Systematic_Literature_Review
https://www.researchgate.net/publication/352016931_Identification_and_Measurement_of_Technical_Debt_Requirements_in_Software_Development_a_Systematic_Literature_Review
https://onlinelibrary.wiley.com/doi/abs/10.1002/sys.21572

