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Abstract—In this article, we prove an existence result
of entropy solutions for anisotropic elliptic obstacle
problem associated to the equations of the type :

(P)
{
Au = −divφ(u) = f in Ω
u = 0 on ∂Ω,

where Ω is a bounded open subset of RN , N ≥ 2,

A = −
N∑

i=1

∂i ai(x, u, ∇u) is a Leray-Lions anisotropic

operator acting from W
1,−→p (·)
0 (Ω, −→ω ) into its dual

W
−1,−→p ′(·)
0 (Ω, −→ω ∗) and φi ∈ C0(R,R), the right hand side

f belongs to and L1(Ω).

I. Introduction

The study of the obstacle problem originated in the
context of elasticity as the equations that models the shape
of an elastic membrane which is pushed by an obstacle
from one side affecting its shape. The resulting equation
for the function whose graph represents the shape of the
membrane involves two distinctive regions: in the part
of the domain where the membrane does not touch the
obstacle, the function will satisfy an elliptic PDE. In the
part of the domain where the function touches the obstacle
(contact set), the function will be a supersolution of the
elliptic PDE. Everywhere, the function is constrained to
stay above the obstacle. Obstacle problem is deeply related
to the study of minimal surfaces and the capacity of a set
in potential theory as well. Applications include the study
of fluid filtration in porous media, constrained heating,
elastoplasticity, optimal control and financial mathemat-
ics...

Let Ω be a bounded open subset of RN (N ≥ 2)
with smooth boundary and let pi( . ) ∈ C+(Ω) for
i = 0, 1, . . . , N , and consider the exponent vector −→p (·) =
{p1(·), . . . , pN (·)}, the vector −→ω denoting a vector of mea-
surable positive functions, i.e., −→ω = {ω1, . . . , ωN}, with
ωi are weight measurable functions for all i = 1, · · · , N .

Let us consider the weighted anisotropic Sobolev space
W 1,−→p (·)(Ω, −→ω ) , and A is the Leray-Lions operator acting
from W

1,−→p (·)
0 (Ω, −→ω ) into its dual W

−1,−→p ′(·)
0 (Ω, −→ω ∗)

defined by Au = −div a(x, u, ∇u).

We consider the obstacle problem associated with the
following elliptic equations:−

N∑
i=1

∂i ai(x, u,∇u)−
N∑
i=1

∂i φi(u) = f in Ω,

u = 0 on ∂Ω,
(1)

where φ = (φ1 , · · · , φN ) belongs to C0(R,R)N . As
regards the second member, we assume that the datum
f belongs to L1 .

The problem (1) does not admit weak solution, because
the function φi does not belongs to L1

loc(Ω) in general.
To defeat this difficulty we use the entropy solutions in
this study, the notion of a entropy solution was intro-
duced by P. Benilan et al [7]. The anisotropic elliptic
obstacle problem associated elliptic problems the weighted
anisotropic Sobolev space (we refer to [1], [2], [5], [8], [12]
for more details), and P.-L. Lions [15] in their study of
the Boltzmann equation. We mention some works in the
direction of the anisotropic space such as [8], [16].

The purpose of this paper is to analyze the existence of
entropy solutions for obstacle anisotropic problem (1), in
the convex class

Kψ :=
{
u ∈W 1,−→p (x)

0 (Ω, −→ω (x)), u ≥ ψ a.e in Ω
}
,

where ψ is a measurable function on Ω such that

ψ+ ∈W 1,−→p (·)
0 (Ω, −→ω ) ∩ L∞(Ω). (2)

In recent years this kind of problems still attracting the
interest of the researchers, we mention some works in this
direction [11], [12], [16]. Moreover the non weighted case
ω i ≡ 1 for any i ∈ {1, ..., N}treated by Y. Akdim,
C. Allalou and A. Salmani (see. [4]) have proved the
existence of entropy solutions for anisotropic elliptic ob-
stacle problem like (1). Boccardo et al. in [10] studied the
existence of weak solutions for nonlinear elliptic problem

(1) with Au = −
N∑
i=1

∂

∂xi

(
| ∂u
∂xi
|pi−2 ∂u

∂xi

)
, φi(u) = 0 for

i = 1, · · · , N and the right-hand side is a bounded Radon
measure on Ω.



II. Preliminaries
Let Ω be a bounded open subset of RN (N ≥ 2) , we

assume that the variable exponent p(·) : Ω → [1,∞[ is
log-Hölder continuous on Ω, that is there is a real constant
c > 0 such that for all x, y ∈ Ω, x 6= y with |x−y| < 1

2 one
has: |p(x)− p(y)| ≤ c

−log |x−y| and satisfying p− ≤ p(x) ≤
p+ <∞ where p− := ess inf

x∈Ω
p(x); p+ := ess sup

x∈Ω
p(x).

For almost everywhere strictly positive and measurable
function w : Ω→ R will be called a weight. We shall denote
by Lp( . )(Ω, w) the set of all measurable functions u on Ω
such that the norm

‖u‖p(x),w(x) = inf
{
µ > 0 :

∫
Ω
w(x)

∣∣∣∣uµ
∣∣∣∣p(x)

dx ≤ 1
}
,

is finite. Lp( . )(Ω, w) is also called weighted Lebesgue
space.

Proposition 1. [1] the space
(
Lp(x)(Ω, w), ‖.‖p(x),w

)
is

of Banach.

Throughout the paper, we assume that wi a weight
function for any i = 1, . . . , N , satisfying the conditions:

( A1 ) wi ∈ L1
loc(Ω); w

−1
pi(x)−1
i ∈ L1

loc(Ω).

The reasons why we assume ( A1 ) can be found in [14].

Proposition 2. [1] Let Ω be a bounded open subset of
RN , and wi be a weight function on Ω, for any i =
1, . . . , N , If (A1 ) is verified, then for all i = 1, . . . , N
we have Lpi(x)(Ω, wi) ↪→ L1

loc(Ω).

Lets pi( . ) ∈ C+(Ω) and x in Ω, and wi are weight
measurable functions for all i = 1, · · · , N .

We define the following vectors −→p (.) =
{p1(·), . . . , pN (.)} and −→w (.) = {w1(·), . . . , wN (.)}. We
denote ∂0 u = u and ∂iu = ∂u

∂xi
for i = 1, . . . , N, and

p = min{ p−1 , . . . , p
−
N} then p > 1. (3)

At present, let us consider the weighted anisotropic vari-
able exponent Sobolev space W 1,−→p (.)(Ω, −→w (.)) is defined
as follow W 1,−→p (.)(Ω,−→w (.)) =

{
u ∈ L1(Ω) and ∂i u ∈

Lpi(x)(Ω, wi), i = 1, ..., N
}
, is a Banach space with

respect to norm (see [12])

‖u‖1,−→p ( . ),−→w (.) = ‖u‖L1(Ω) +
N∑
i=1
‖∂i u‖pi(.),wi(.). (4)

We denote by C∞0 (Ω) the space of all functions with com-
pact support in Ω with continuous derivatives of arbitrary
order.

We define the functional space W
1,−→p (.)
0 (Ω, −→w (.)) as

the closure of C∞0 (Ω) in W 1,−→p (.)(Ω, −→w (.)) with re-
spect to the norm (4). Note that C∞0 (Ω) is dense in

W
1,−→p (.)
0 (Ω, −→w (.)). By an adapted method of that of

Adams [2], and by constructing an isometric isomor-

phism from W 1,−→p (.)(Ω, −→w ( . )) into
N∏
i=1

Lpi(.)(Ω, wi(.)),

we can show that if 1 ≤ pi(.) < ∞, the space(
W 1,−→p

0 (Ω, −→w (.)) , ‖ . ‖1,−→p ( . ),−→w (.)

)
is separable and reflex-

ive if 1 < pi(.) <∞, for all i = 1, . . . , N .
For pi(.) > 1, W−1,

−→
p′ (.)(Ω, −→w∗(.)) designs its dual where

−→
p′ (.) is the conjugate of −→p (.), i.e., p′i(.) = pi(.)

pi(.)− 1 and
−→
w∗(.) =

{
w∗i (.) = w

1−p′i(.)
i (.) , i = 1, . . . , N

}
. We denote

ps the function defined by

ps(x) =
p(x)s(x)
s(x) + 1 ,

we have ps(x) < p(x) a.e. in Ω, and{
p∗s(x) = Nps(x)

N−ps(x) if p(x)s(x) < N(s(x) + 1),
p∗s(x) arbitrary, else if,

Lemma 1. Let Ω be a smooth bounded open subset of
RN , and suppose that inf wi(.) > 0 a.e. in Ω for all
i = 1, . . . , N . Let (A1 ) be satisfied, we have the following
continuous and compact embedding

1) If p(.) < N , then W 1,−→p (.)
0 (Ω, −→w (.)) ↪→↪→ Lq(.)(Ω)

for all q(.) ∈
[
p(.), p∗s(.)

[
,

2) If p(.) = N , then W
1,−→p (.)
0 (Ω, −→w (.)) ↪→↪→ Lq(.)(Ω)

for all q(.) ∈ [p(.),∞[,
3) If p(.) > N , then W

1,−→p (.)
0 (Ω, −→w (.)) ↪→↪→ L∞(Ω) ∩

C0(Ω).

The proof of this lemma follows from the fact that the
embedding

W
1,−→p (.)
0 (Ω, −→w (.)) ⊂W 1,−→ps(.)

0 (Ω) ⊂W 1,p
0 (Ω)

is continuous, and in view of the compact embedding
theorem W

1,−→p (.)
0 (Ω, −→w (.)) for Sobolev spaces. Moreover,

we consider the set

T 1,−→p (.)
0 (Ω,−→w (.)) :=

{
u : Ω 7→ R, measurable, such

that Tk(u) ∈W 1,−→p (.)
0 (Ω,−→w (.)), for any k > 0

}
,

where Tk(s) =
{

s if |s| ≤ k,
k
s

|s|
if |s| > k.

III. Basic assumptions and notion of solutions
We assume that ai : Ω × R × RN 7→ R are

Carathéodory functions for i = 1, 2, . . . , N , which satisfies
the following conditions, for all s ∈ R, ξ, ξ′ ∈ RN and a.
e. in x ∈ Ω, and for i = 1, . . . , N,

ai(x, s, ξ) ξi ≥ αω i |ξi|pi , (5)

|ai(x, s, ξ)| ≤ βω
1

pi(·)
i (Ri(x)+ω

1
p′

i
(·)

i |s|
pi(·)
p′

i
(·) +ω

1
p′

i
(·)

i |ξi|pi(·)−1),
(6)



(ai(x, s, ξ)−ai(x, s, ξ′))(ξi−ξ′i) > 0 for ξi 6= ξ′i, (7)

where Ri( . ) is a nonnegative function lying in Lp
′
i( . )(Ω)

and α, β > 0. Moreover, we suppose that

φi ∈ C0(R,R) for i = 1, . . . , N, and (8)

f ∈ L1(Ω). (9)

Lemma 2. [3] Assume that (5) - (7) hold, let (un)n a se-
quence in W

1,−→p (.)
0 (Ω, −→w (.)) and u ∈W 1,−→p (.)

0 (Ω, −→w (.)),
if un ⇀ u weakly in W

1,−→p (.)
0 (Ω, −→w (.)), and

N∑
i=1

∫
Ω

(ai(x, un,∇un)−ai(x, un,∇u))(Diun−Diu)dx→ 0,

then un −→ u strongly in W
1,−→p (.)
0 (Ω, −→w (.)) .

Lemma 3. [5] Let (un)n a sequence from
W

1,−→p (.)
0 (Ω, −→w (.)) such that un ⇀ u weakly in

W
1,−→p (.)
0 (Ω, −→w (.)). Then Tk(un) ⇀ Tk(u) weakly in

W
1,−→p (.)
0 (Ω, −→w (.)).

Lemma 4. [3] If u ∈W 1,−→p (·)
0 (Ω,−→ω ) then

N∑
i=1

∫
Ω
∂iudx =

0.

Definition 1. A measurable function u is said to be
an entropy solution for the obstacle problem (1), if u ∈
T 1,−→p (·)

0 (Ω,−→ω ) such that u ≥ ψ a.e. in Ω and

N∑
i=1

∫
Ω

[ ai(x, u,∇u) ∂iTk(u− ϕ) + φi(u) ∂iTk(u− ϕ)] dx

≤
∫

Ω
fTk(u− ϕ)dx

for all ϕ ∈ Kψ ∩ L∞(Ω).

IV. Main results
Theorem 1. Assuming that (5)− (9) hold, there exists at
least one entropy solution u of the problem (1).

Proof : Step l : Approximate problems
We consider the following approximate problems

un ∈ Kψ
N∑
i=1

∫
Ω
ai(x, un,∇un)∂i(un − v)dx

+
N∑
i=1

∫
Ω
φni ( un)∂i(un − v)dx ≤

∫
Ω
fn (un − v)dx

∀ v ∈ Kψ and ∀ k > 0,
(10)

where fn = Tn(f) and φni (s) = φi(Tn(s)).
We define the operators Φn of Kψ to W−1,−→p ′(·)

0 (Ω,−→ω ∗)

by : 〈Φn u, v〉 =
N∑
i=1

∫
Ω
φi(Tn(u))∂ivdx for all u ∈ Kψ

and v ∈W 1,−→p (·)
0 (Ω,−→ω ).

Lemma 5. [4] The operator Bn = A + Φn is pseudo-
monotone and coercive in the following sense, there exists
v0 ∈ Kψ such that 〈Bnv, v − v0〉

‖v‖1,−→p (·),−→ω
−→ ∞ if ‖v‖1,−→p (·),−→ω →

∞ for v ∈ Kψ.

According to Lemma 5 and Theorem 8.2 chapter 2 in
[15], the problem (10) admit a least one solutions.

Step 2 : A priori estimate

Proposition 3. Suppose that (5)− (9) are hold, and if un
is a solution of the approximate problem (10). Then the
following assertion is valid: there exists a constant C such

that
N∑
i=1

∫
Ω
|∂iTk(un)|pi(x)ωi(x)dx ≤ C(k + 1) ∀k > 0.

Proof. Let v = un − ηTk(u+
n − ψ+) where η ≥ 0. Since

v ∈ W
1,−→p (·)
0 (Ω,−→ω ) and for all η small enough, we get

v ∈ Kψ. We take v as test function in problem (10), we
obtain

N∑
i=1

∫
Ω
ai(x, un , ∇un)∂ iTk(u+

n − ψ+)dx

≤
∫

Ω
fnTk(u+

n−ψ+)dx+
N∑
i=1

∫
Ω
|φni (un)||∂iTk(u+

n−ψ+)|dx.

Since ∂
,iTk(u+

n −ψ+) = 0 on the set {u+
n −ψ+ > k}, we

pose L := {u+
n − ψ+ ≤ k} then

N∑
i=1

∫
L

ai(x, un, ∇un)∂ i(u+
n − ψ+)dx

≤
∫

Ω
fnTk(u+

n − ψ+)dx+
N∑
i=1

∫
L

|φni (un)||∂i(u+
n − ψ+)|dx,

thus, we can write

N∑
i=1

∫
L

ai(x, u+
n , ∇u+

n )∂ iu+
n dx ≤

∫
Ω
fnTk(u+

n − ψ+)dx

+
N∑
i=1

∫
L

|φni (un)||∂ iu+
n |ω

−1
pi(x)
i (x)ω

1
pi(x)
i (x) dx

+
N∑
i=1

∫
L

|φni (un)||∂iψ+|dx+
N∑
i=1

∫
L

|ai(x, u+
n ,∇u+

n )∂iψ+|dx

Using to Young’s inequalities, and accordingng to (6), we



obtain
N∑
i=1

∫
L

ai(x, un, ∇un)∂ iu+
n dx ≤

∫
Ω
fnTk(u+

n − ψ+) dx

+ C1(α)
N∑
i=1

∫
L

|φni (Tk+‖ψ‖∞(un))|p
′
i(x) ω

−1
pi(x)−1
i (x) dx

+ α

6

N∑
i=1

∫
L

|∂iu+
n |pi(x) ω i(x) dx

+
N∑
i=1

∫
L

|φni (Tk+‖ψ‖∞(un))||∂iψ+|dx

+
N∑
i=1

α

6

∫
L

Ri(x)|p
′
i(x)dx+

N∑
i=1

α

6

∫
L

|u+
n |pi(x)ω i(x) dx

+
N∑
i=1

α

6

∫
L

|∂ iu+
n |pi(x) ω i(x) dx+

N∑
i=1

C2(α)
∫
L

|∂ iψ+|pi(x)ω i(x)dx.

Combining (2), (5), (6), (7) and ( A1 ), we get

N∑
i=1

∫
{u+

n−ψ+≤k}
|∂ iu+

n |pi(x) ω i(x) dx ≤ Ck + C ′ (11)

Since {x ∈ Ω, u+ ≤ k} ⊂ {x ∈ Ω, u+−ψ+ ≤ k+‖ψ+‖∞},
then

N∑
i=1

∫
Ω
|∂iTk(u+

n )|pi(x) ω i(x) dx

=
N∑
i=1

∫
{u+≤k}

|∂ iu+
n |pi(x) ω i(x) dx

≤
N∑
i=1

∫
{u+−ψ+≤k+‖ψ+‖∞}

|∂ iu+
n |pi(x) ω i(x) dx. (12)

Hence, thanks to (11), we get

N∑
i=1

∫
Ω
|∂ iTk(u+

n )|pi(x) ω i(x) dx

≤ (k + ‖ψ+‖∞)C + C ′ ∀k > 0. (13)

Similarly taking v = un + Tk(u−n ) as test function in
approximate problem (10), we have

N∑
i=1

∫
Ω
|∂iTk(un)|pi(x) ω i(x) dx ≤ C ′′(k + 1). (14)

By (13) and (14), we obtain

N∑
i=1

∫
Ω
|∂Tk(un)|pi(x)ωi(x) dx ≤ (k+‖ψ+‖∞+1)C ′ ∀k > 0.

Step 3 : Strong convergence of truncations

Proposition 4. Let un be a solution of approximate
problem (10). Then there exists a measurable function u
and a subsequence of un such that

Tk(un)→ T (u) strongly in W
1,−→p (·)
0 (Ω,−→ω ).

Proof. According to Proposition 3, we obtain

‖Tk(un)‖
W

1,−→p (·)
0 (Ω,−→ω ) ≤ C(k + ‖ψ+‖∞ + 1)

1
p . (15)

Firstly, we will show that (un)n is a Cauchy sequence in
measure in Ω. For all λ > 0, we obtain {|un−um| > λ} ⊂
{|un| > k} ∪ {|um| > k} ∪ {|Tk(un)− Tk(um)| > λ} which
implies that

meas {|un − um| > λ} ≤ meas{|un| > k}+ meas{|um| > k}
+ meas {|Tk(un)− Tk(um)| > λ}.

(16)

Using Hölder’s inequality, Lemma 1 and (15), we have

k.meas{|un| > k} =
∫
{|un|>k}

|Tk(un)|dx ≤
∫

Ω
|T (un)dx

≤ (meas(Ω))
1
p ‖Tk(un)‖Lp(Ω)

≤ C(meas(Ω))
1
p ‖Tk(un)‖

W
1,−→p (·)
0 (Ω,−→ω )

≤ C(k + ‖ψ+‖∞ + 1)
1
p .

Then meas{|un| > k} ≤ C
(

1
k
−1+p + 1+‖ψ+‖∞

kp

) 1
p → 0 as

k → ∞. Which implies that, for all ε > 0, there exists
k0 such that ∀k > k0, we get

meas{|un| > k} ≤ ε

3 and meas{|um| > k} ≤ ε

3 . (17)

Since the sequence (Tk(un))n is bounded in W 1,−→p (·)
0 (Ω,−→ω )

there exists a subsequence (Tk(un))n such that T (un)
converges to vk a.e. in Ω, weakly in W

1,−→p (·)
0 (Ω,−→ω ) and

strongly in Lp(Ω) as n tends to ∞. Then the sequence
(Tk(un))n is a Cauchy sequence in measure in Ω, thus for
all λ > 0, there exists n0 such that

meas{|Tk(un)−Tk(um)| > λ} ≤ ε

3 , ∀n,m ≥ n0. (18)

Using (16), (17) and (18), then ∀λ, ε > 0 , we have

meas{|un − um| > λ} ≤ ε ∀n,m ≥ n0.

Hence (un)n is a Cauchy sequence in measure in Ω, then
there exists a subsequence denoted by (un)n such that un
converges to a measurable function u a.e. in Ω and

Tk(un) ⇀ T (u) weakly inW 1,−→p (·)
0 (Ω,−→ω )and a.e.inΩ∀k > 0.

(19)
Now, we will show that

lim
n→∞

N∑
i=1

∫
Ω

(ai(x, Tk(un),∇Tk(un))−

ai(x, Tk(un),∇Tk(u)))(∂ iTk(un)− ∂iTk(u))dx = 0. (20)



Let consider v = un+T1(un−Tm(un))− as test function
in approximate problem (10), we have

−
N∑
i=1

∫
Ω
ai(x, un,∇un)∂iT1(un−Tm(un))− dx−

N∑
i=1

∫
Ω
φni (un)

∂iT1(un − Tm(un))− dx ≤ −
∫

Ω
fnT1(un − Tm(un))−dx.

We pose L− := {−(m+ 1) ≤ un ≤ −m}, Then

N∑
i=1

∫
L−

ai(x, un,∇un)∂iun dx+
N∑
i=1

∫
L−

φi(un)∂iun dx

≤ −
∫

Ω
fnT1(un − Tm(un))− dx. (21)

We pose Φni (s) =
∫ s

0
φni (t)χL−dt. Then using the Green’s

formula, we obtain

N∑
i=1

∫
L−

φi(un)∂
,iun dx =

N∑
i=1

∫
Ω
∂ iΦni (un) dx = 0.

Then, we have

N∑
i=1

∫
L−

ai(x, un,∇un)∂iun dx ≤ −
∫

Ω
fnT1(un−Tm(un))−dx

(22)
According to Lebesgue’s theorem, we get

lim
m→∞

lim sup
n→∞

∫
Ω
fnT1(un − Tm(un))− dx = 0

Then, we get

lim
m→∞

lim sup
n→∞

N∑
i=1

∫
L−

ai(x, un, ∇un)∂ iun dx = 0. (23)

Similarly, we take v = un − ηT1(un − Tm(un))+ as test
function in approximate problem (10), we pose L+ :=
{m ≤ un ≤ m+ 1}, then

lim
m→∞

lim sup
n→∞

N∑
i=1

∫
L+

ai(x, un, ∇un)∂ iun dx = 0. (24)

We define the following function of one real variable:

hm(s) =

 1 if |s| ≤ m
0 if |s| ≥ m+ 1
m+ 1− |s| if m ≤ |s| ≤ m+ 1,

where m > k. Let consider ϕ = un − η(Tk(un) −
T (u))+hm(un) as test function in approximate problem
(10), we obtain

N∑
i=1

∫
Ω
ai(x, un, ∇un)∂ i(Tk(un)− T (u))+hm(un)dx

+
N∑
i=1

∫
Ω
ai(x, un , ∇un)(Tk(un)− Tk(u))+∂ iunh

′
m(un) dx

+
N∑
i=1

∫
Ω
φni (un)∂ i(Tk(un)− Tk(u))+hm(un) dx

+
N∑
i=1

∫
Ω
φni (un)∂ iun(Tk(un)− Tk(u))+h′m(un) dx

≤
∫

Ω
fn(Tk(un)− Tk(u))+hm(un) dx.

(25)

Using (23) and (24), we get the second integral in (25)
converges to zero as n and m tend to ∞. Since hm(un) =
0 if |un| > m+ 1, we obtain

N∑
i=1

∫
Ω
φni (un)∂ i(Tk(un)− Tk(u))+hm(un)dx =

N∑
i=1

∫
Ω
φi(Tm+1(un))hm(un)∂ i(Tk(un)− Tk(u))+ dx.

(26)

By Lebesgue’s theorem, we get φni (Tm+1(un))hm(un) →
φi(T (u))hm(u) in Lp

′
i(Ω, ω∗i) and ∂ iTk(un) ⇀ ∂ iT (u)

weakly in Lpi(Ω, ω i(x)) as n goes to ∞, then the third
integral in (25) converges to zero as n and m tend to ∞.

Combining (5), (23), (24) and Lebesgue’s theorem, we
have

lim
m→∞

lim
n→∞

N∑
i=1

∫
L−
|∂ iun|pi(x)(Tk(un)− Tk(u))+ ω i(x) dx = 0,

(27)
and

lim
m→∞

lim
n→∞

N∑
i=1

∫
L+
|∂ iun|pi(x)(Tk(un)−Tk(u))+ ω i dx = 0.

(28)
We conclude that

lim
m→∞

lim
n→∞

N∑
i=1

∫
Ω
ai(x, un, ∇un)∂ i(Tk(un)− Tk(u))+

hm(un)dx ≤ 0,



which implies that, if we take Lk := {Tk(un) − Tk(u) ≥
0, |un| ≤ k} and L′k := {Tk(un)− Tk(u) ≥ 0, |un| > k}

lim
m→∞

lim
n→∞

N∑
i=1

∫
Lk

ai(x, un,∇un)∂i(Tk(un)−Tk(u))hm(un) dx

− lim
m→∞

lim
n→∞

N∑
i=1

∫
L′

k

ai(x, un,∇un)∂ iTk(u)hm(un) dx ≤ 0.

Since hm(un) = 0 in {|un| > m+ 1}, we obtain
N∑
i=1

∫
L′

k

ai(x, un , ∇un)∂iTk(u)hm(un)dx

=
N∑
i=1

∫
L′

k

ai(x, Tm+1(un), ∇Tm+1(un))∂ iTk(u)hm(un)dx.

Since (ai(x, Tm+1(un),∇Tm+1(un)))n≥0 is bounded in
Lp
′
i(.)(Ω, ω∗i) we have ai(x, Tm+1(un), ∇T (u)) converges

to Y im weakly in Lp
′
i(Ω, ω∗i). Hence

lim
m→∞

lim
n→∞

N∑
i=1

∫
L′

k

ai(x, Tm+1(un),∇Tm+1(un))∂iTk(u)hm(un)dx

= lim
m→∞

N∑
i=1

∫
{|u|>k}

Y im∂ iTk(u)hm(u) dx = 0,

as results

lim
m→∞

lim
n→∞

N∑
i=1

∫
{Tk(un)−Tk(u)≥0}

ai(x, Tk(un), ∇Tk(un))

∂ i(Tk(un)− Tk(u))hm(un) dx ≤ 0. (29)

Moreover, we have ai(x, Tk(un),∇Tk(u))hm(un) →
ai(x, Tk(u),∇Tk(u))hm(u) in Lp

′
i(.)(Ω, ω∗i) and

∂i(Tk(un)−Tk(u)) converges to 0 weakly in Lpi(.)(Ω, ωi),
then

lim
m→∞

lim
n→∞

N∑
i=1

∫
{Tk(un)−Tk(u)≥0}

ai(x, Tk(un), ∇Tk(u))

∂ i(Tk(un)− Tk(u))hm(un) dx = 0. (30)

According to (7), (29) and (30), we deduce

lim
m→∞

lim
n→∞

N∑
i=1

∫
{Tk(un)−Tk(u)≥0}

(ai(x, Tk(un),∇Tk(un))

−ai(x, Tk(un),∇Tk(u)))∂i(Tk(un)−Tk(u))hm(un)dx = 0.
(31)

Similarly, we choose ϕ = un + (Tk(un)− Tk(u))−hm(un)
as test function in approximate problem (10), we have,

lim
m→∞

lim
n→∞

N∑
i=1

∫
{Tk(un)−Tk(u)≤0}

(ai(x, Tk(un),∇Tk(un))

− ai(x, Tk(un),∇Tk(u)))∂i(Tk(un)− Tk(u))hm(un)dx = 0.
(32)

Using (31) and (32), we have

lim
m→∞

lim
n→∞

N∑
i=1

∫
Ω

(ai(x, Tk(un),∇Tk(un))

−ai(x, Tk(un),∇Tk(u)))∂i(Tk(un)−Tk(u))hm(un)dx = 0.
(33)

Now, we show

lim
m→∞

lim
n→∞

N∑
i=1

∫
Ω

(ai(x, Tk(un),∇Tk(un))−ai(x, Tk(un)

,∇Tk(u)))∂ i(Tk(un)− Tk(u))(1− hm(un))dx = 0. (34)

Let ϕ = un + Tk(un)−(1 − hm(un)) as test function in
approximate problem (1), we obtain

−
N∑
i=1

∫
Ω
ai(x, un, ∇un)∂iTk(un)−(1− hm(un))dx

+
N∑
i=1

∫
Ω
ai(x, un, ∇un)∂iunTk(un)−h′m(un)dx

−
N∑
i=1

∫
Ω
φi(un)∂iTk(un)−(1− hm(un))dx

+
N∑
i=1

∫
Ω
φi(un)∂iunTk(un)−h′m(un)dx

≤ −
∫

Ω
fnTk(un)−(1− hm(un))dx.

(35)

Thanks to (23) and (24), we obtain

lim
m→∞

lim
n→∞

N∑
i=1

∫
Ω
ai(x, un, ∇un)∂ iunTk(un)−h′m(un)dx = 0.

Then the second integral in (35) converges to zero as n
and m goes to ∞. Since ∂ iTk(un)− ⇀ ∂ iTk(u)−
in Lpi(.)(Ω, ω i) and φi(Tk(un))(1 − hm(un)) →
φi(Tk(u))(1− hm(u)) strongly in Lp

′
i(.)(Ω, ω∗i), we get

lim
m→∞

lim
n→∞

N∑
i=1

∫
Ω
φi(un)∂iTk(un)−(1− hm(un))dx

= lim
m→∞

N∑
i=1

∫
Ω
φi(Tk(u))∂iTk(u)−(1− hm(u))dx.

In view to Lebesgue’s theorem, we have

lim
m→∞

N∑
i=1

∫
Ω
φ i(Tk(u))∂ iTk(u)−(1− hm(u))dx = 0.

Hence the third integral in (35) converges to zero as n
and m tends to ∞.



We set Φni (t) =
∫ t

0
φi(s)Tk(s)−h′m(s)ds, in sight to

Green’s Formula, we obtain
N∑
i=1

∫
Ω
φni (un)∂ iunTk(un)−h′m(un) dx

=
N∑
i=1

∫
Ω
∂ iΦni (un) dx = 0.

Then the fourth integral in (35) converges to zero as n
and m tend to ∞. Using to Lebesgue’s theorem, we get
the integral on the right hand in (35) converges to zero as
n and m goes to ∞. We Conclude

lim
m→∞

lim
n→∞

N∑
i=1

∫
{un≤0}

ai(x, un,∇un)∂iTk(un)

(1− hm(un))dx = 0. (36)

Following this, for η small enough, we choose ϕ = un −
ηTk(u+

n −ψ+)(1−hm(un)) as test function in approximate
problem (10), we have

N∑
i=1

∫
Ω
ai(x, un,∇un)∂iTk(u+

n − ψ+)(1− hm(un))dx

−
N∑
i=1

∫
Ω
ai(x, un, ∇un)∂iunTk(u+

n − ψ+)h′m(un)dx

+
N∑
i=1

∫
Ω
φni (un)∂ iTk(u+

n − ψ+)(1− hm(un))dx

−
N∑
i=1

∫
Ω
φni (un)∂ iunTk(u+

n − ψ+)h′m(un)dx

≤
∫

Ω
fnTk(u+

n − ψ+)(1− hm(un))dx.

(37)
Thanks to Hölder’s inequality, (5), (23) and (24), we get

lim
m→∞

lim
n→∞

N∑
i=1

∫
Ω
φni (un)∂iunTk(u+

n − ψ+)h′m(un)dx = 0.

Using the Young’s inequality we have
N∑
i=1

∫
Ω
ai(x, un, ∇un)∂ iTk(u+

n − ψ+)(1− hm(un))dx ≤

N∑
i=1

∫
L−

ai(x, un, ∇un)∂ iunTk(u+
n − ψ+)dx

+
∫

Ω
fnTk(u+

n − ψ+)(1− hm(un))dx

+
N∑
i=1

∫
{u+

n−ψ+≤k}
φni (un)∂ iu+

n (1− hm(un))dx

+
N∑
i=1

∫
{u+

n−ψ+≤k}
φni (un)∂iψ+(1− hm(un))dx

(38)

Thank to (23), we obtain the first integral on the right
hand converges to zero as n and m tend to ∞. By
Lebesque’s theorem, we have the second integral in the
right hand converges to zero as n and m tend to ∞. Since

N∑
i=1

∫
{u+

n−ψ+≤k}
φni (un)∂ iu+

n (1− hm(un))dx

=
N∑
i=1

∫
Ω
φni (T{k+‖ψ+‖L∞(Ω)}(un))

∂iT{k+‖ψ+‖L∞(Ω)}(u
+
n )(1− hm(un))dx.

(39)

As ∂iT{k+‖ψ+‖L∞(Ω)}(u+
n ) ⇀ ∂iT{k+‖ψ+‖L∞(Ω)}(u+)

weakly in Lpi(.)(Ω, ω i) and φni (T{k+‖ψ+‖L∞(Ω)}(un))(1−
hm(un))→ φi(T{k+‖ψ+‖L∞(Ω)}(u))(1−hm(u)) strongly in
Lp
′
i(.)(Ω, ω∗i) we obtain

N∑
i=1

∫
Ω
φni (T{k+‖ψ+‖L∞(Ω)}(un))∂iT{k+‖ψ+‖L∞(Ω)}(u

+
n )

(1− hm(un))dx =
N∑
i=1

∫
Ω
φi(T{k+‖ψ+‖L∞(Ω)}(u))

∂ iT{k+‖ψ+‖L∞(Ω)}(u)(1− hm(u))dx+ ε(n) .

Using the Lebesgue’s theorem, we have

lim
m→∞

N∑
i=1

∫
Ω
φ i(T{k+‖ψ+‖L∞(Ω)}(u))∂ iT{k+‖ψ+‖L∞(Ω)}(u)

(1− hm(u))dx = 0. (40)

Hence, we get the third integral converges to zero as n and
m tend to ∞. Similarly as (36), we have

lim
m→∞

lim
n→∞

N∑
i=1

∫
{un>0}

ai(x, un,∇un)∂iTk(un)

(1− hm(un))dx = 0. (41)

According to (36) and (41), we obtain

lim
m→∞

lim
n→∞

N∑
i=1

∫
Ω
ai(x, un,∇un)∂iTk(un)

(1− hm(un))dx = 0. (42)

Furthermore, we have
N∑
i=1

∫
Ω

(ai(x, Tk(un),∇Tk(un))− ai(x, Tk(un),∇Tk(u)))

(∂ iTk(un)− ∂ iTk(u))dx =
N∑
i=1

∫
Ω

(ai(x, Tk(un),∇Tk(un))

− ai(x, Tk(un),∇Tk(u)))(∂iTk(un)− ∂iTk(u))h(un)dx

+
N∑
i=1

∫
Ω

(ai(x, Tk(un),∇Tk(un)))∂iTk(un)(1− hm(un))dx



−
N∑
i=1

∫
Ω

(ai(x, Tk(un),∇Tk(un)))∂iTk(u)(1− hm(un))dx

−
N∑
i=1

∫
Ω

(ai(x, Tk(un), ∇Tk(u)))(∂iTk(un)− ∂iTk(u))

(1− hm(un))dx.

Combining (33) and (42), the first and the second integrals
on the right hand side converge to zero as n and m tend
to ∞.

As (ai(x, Tk(un),∇Tk(un)))n is bounded in
Lp
′
i(.)(Ω, ω∗i ) and ∂ iTk(u)(1 − h(un)) converge to

zero in Lpi(.)(Ω, ωi) as n and m tend to ∞, then the
third integral on the right hand side converge to zero as
n and m tend to ∞. Where

ai(x, Tk(un),∇Tk(un))(1− h(u))
−→ ai(x, Tk(u),∇Tk(u))(1− h(u)) (43)

strongly in Lp
′
i(.)(Ω, ω∗i) and ∂ iTk(un) ⇀ ∂iT (u) weakly

in Lpi(.)(Ω, ω i) we obtain the fourth integral on the right
hand side converge to zero as n and m tend to ∞. Then,
we obtain (20).

Thanks to (19), (20) and Lemma 2, we have

Tk(un)→ T (u) strongly in W
1,−→p (·)
0 (Ω,−→ω ) and a.e. in Ω ∀ k > 0.

Step 4 : Passing to the limit. Let ϕ ∈ Kψ∩L∞(Ω),
we chose v = un − Tk(un − ϕ) as test function in
approximate problem (10), we have

N∑
i=1

∫
Ω
ai(x, un,∇un)∂iTk(un − ϕ)dx+

N∑
i=1

∫
Ω
φni (un)

∂iTk(un − ϕ)dx ≤
∫

Ω
fnTk(un − ϕ)dx,

which implies that,

N∑
i=1

∫
Ω
ai(x, Tk+‖ϕ‖∞(un),∇Tk+‖ϕ‖∞(un))∂iTk(un−ϕ)dx

+
N∑
i=1

∫
Ω
φi(Tk+‖ϕ‖∞(un))∂iTk(un−ϕ)dx ≤

∫
Ω
fnTk(un−ϕ)dx.

As Tk(un)→ T (u) strongly in W
1,−→p (·)
0 (Ω,−→ω ) and a.e. in

Ω for all k > 0, we obtain

ai(x, Tk+‖ϕ‖∞(un),∇Tk+‖ϕ‖∞(un)) ⇀
ai(x, Tk+‖ϕ‖∞(u),∇Tk+‖ϕ‖∞(u))

weakly in Lp
′
i(.)(Ω, ω∗i )

φi(Tk+‖ϕ‖∞(un))→ φi(Tk+‖ϕ‖∞(u)) strongly in Lp
′
i(.)(Ω, ω∗i )

and ∂iTk(un − ϕ) → ∂iTk(u − ϕ) strongly in Lpi(Ω, ωi)
we can pass to limit in

un ∈ Kψ
N∑
i=1

∫
Ω
ai(x, un,∇un)∂i Tk(un − ϕ)dx

+
∑N
i=1
∫

Ω φ
n
i (un)∂ iTk(un − ϕ)dx ≤

∫
Ω fn Tk(un − ϕ)dx

∀ϕ ∈ Kψ ∩ L∞(Ω) and ∀ k > 0,

this completes the proof of theorem 1.
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