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Abstract 

Diabetes Mellitus (DM) is the most widespread category within metabolic disorders and finding a potential therapeu-

tic Dipeptidyl peptidase-4 (DPP-4) inhibitor agent is crucial. This study aims to uncover the efficacy of DPP-4 inhib-

itors utilizing a Neuro-symbolic approach, a new branch of artificial intelligence, and RoBERTa (NLP-transformer 

model). We employ the LTN (Logical Tensor Networks), a novel machine learning technique, procuring data from 

ChEMBL and BindingDB databases. After curation, each database consists of 3918 and 3285 for the classification 

task. We experimented with 14 molecular feature extraction approaches, including descriptors fingerprints such as 

AtomPairs2DCount, AtomPairs2D, EState CDKextended, CDK, CDKgraphonly, KlekotaRoth, KlekotaRothCount, 

MACCS, Substructure, PubChem, SubstructureCount, PubChemPy, Lipinski’s Rule (RDKit). The LTN model yields 

a groundbreaking Accuracy incorporating an CDKextended fingerprint of 0.978, an F1-score of 0.978, an ROC AUC 

of 0.966, and an MCC of 0.931. Conversely, RoBERTa resulted in 0.9493 Accuracy, F1 score of 0.9491, ROC AUC 

0.9174, and MCC 0.8423. Our findings show that integrating the neuro-symbolic strategy (neural network-based 

learning and symbolic reasoning) has immense potential to discover the drugs that have the potential to inhibit 

diabetes mellitus and classify biological activities that inhibit it. Overall, the LTN model exhibits interpretable reason-

ing and learning, which enables the discovery of novel insights into type 2 diabetes mellitus inhibitors. 

Contact: jakechen@uab.edu 

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

 

1 Introduction  

Diabetes, also identified as Diabetes Mellitus (DM), is a chronic metabolic 

syndrome characterized by elevated levels in the bloodstream, and it's 

considered a global epidemic. As per the World Health Organization 

(WHO) Report 2019, DM. has been included in the list of the top ten 

leading causes of mortality [1], reporting an estimated 1.6 million people 

globally died because of diabetes [ [2], page 22]. In the United States, 

diabetes has a substantial role in one of the primary causes of death. 

According to the national health institution Centers for Disease Control and 

Prevention (CDC), it is stated that approximately 37.3 million individuals, 

constituting around 11.3% of the entire U.S. population, are affected by 

diabetes, and total medical costs, lost wages are $327 billion [3]. In addition 

to that, there are several crucial risk factors and health complications 

involved—for instance, blindness, stroke, kidney failure, and heart disease 

might occur due to diabetes [3].  

Diabetes Mellitus primarily can be classified as Type-1 Diabetes Melli-

tus (T1DM) and Type-2 Diabetes Mellitus (T2DM). The severity and 

impact of T2DM surpasses T1DM, with over 90% of diabetes cases at-

tributed to T2DM and Dipeptidyl peptidase-4 (DPP-4), Glucagon-like 

peptide-1 (GLP-1) inhibitors are imperative therapeutic pathway for 

T2DM. Dipeptidyl Peptidase-4 is an enzyme involved in glucose metabo-

lism. In diabetes, medications known as DPP-4 inhibitors are treated to 

help regulate blood sugar levels by inhibiting the activity of this enzyme, 

and this inhibitor is recognized as FDA-approved (Appendix A). Current 

DPP-4 inhibitors have several adverse effects. However, several studies 

have used AI methods to reveal the potential antidiabetic drugs. To illus-

trate, conventional artificial intelligence (AI) technologies began to be in-

corporated into diabetes management and research in the early 2000s. Re-

searchers initiated the exploration of AI techniques, encompassing ma-

chine learning and data mining, to delve into the analysis of diabetes-as-

sociated data. In recent years, AI has become more widely integrated into 

numerous elements of diabetes management, including glucose predic-

tion, insulin dose recommendations, early detection, new drug design and 

development utilizing millions of compounds data, identifying new 



 

inhibitors and complex relationships among gene, protein, and cost reduc-

tion developing building AI-based Clinical Decision-Support System 

(CDSS). 

Studies identified various QSAR (Quantitative Structure-Activity Re-

lationship) modeling that employed machine learning strategies, auto-

QSAR modeling incorporating AI algorithms, and models to predict the 

DPP-4 inhibitor's efficacy. For instance, Conv1D-LSTM [44], Random 

Forest, Bayesian, Support Vector Machine, Rotation Forest, XGBoost, 

Recursive Partitioning, Generalized Linear Model, Gradient Boosting Ma-

chine, PSO, Rotation Forest, Genetic function approximation (GFA), Ada-

boost, Bagging, ExtraTree, K Nearest Neighbor, Ridge, ElasticNet Model, 

SGD, Transformer, Multi Linear Regression, Deep Neural Network, and 

Artificial Neural Network [4]-[9]. Although they have shown outstanding 

performance, none of the conventional AI strategies were integrated data 

and knowledge-driven approaches. Although deep learning, a black box 

system, contributions are breakthroughs, various flaws exist, such as poor 

reasoning ability, massive data consumption, and lack of explainability, 

transparency, and interpretability. 

In recent years, the new dimension of AI emergence, named Neuro-

symbolic  (NeSy) approaches [10]-[13], has gained immense attention for 

their ability to blend the métiers of neural networks and symbolic reason-

ing, leading to more interpretable and insightful predictions. Most im-

portantly, reasoning, explainability, and interpretability is crucial in 

healthcare. Our study uncovered the following innovative NeSy models 

that were implemented with healthcare & non-healthcare domain: (Diabe-

tes) FES [14], (Protin Function) MultipredGO [15], (Gene Sequence) 

KBANN [16], (Diabetic Retinopathy) ExplainDR [17], (Link Prediction) 

NeuralLP [18], (Ontology) RRN [19], NSRL [20], Neuro-Fuzzy [21], 

FSKBANN [22], DeepMiRGO [23], NS-VQA [24], DFOL-VQA [25], 

LNN [26], NofM [27], PP-DKL [28], FSD [29], CORGI [30], NeurASP 

[31], XNMs [32], Semantic loss [34], NS-CL [35], LTN [36]. 

However, this study aimed to investigate the role of the hybrid (LTN) 

and advanced pre-trained language model RoBERTa [37] in the DPP-4 

bioactivity prediction. Specifically, finding potential therapeutic DPP-4  

Inhibitor agents for type 2 Diabetes Mellitus. and developing a molecular 

compound classification predictive Neuro-symbolic model utilizing more 

diverse compound instances. To achieve this goal, we determined the 

ChEMBL and BindingDB databases with 14 distinct molecular feature ex-

traction approaches, including descriptors fingerprints (PaDEL [41], 

RDKit [42], and PubChemPy [43]). The LTN model gained a ground-

breaking accuracy, incorporating an PaDEL-CDKextended fingerprint of 

0.9778 compared to RoBERTa, which had 0.9493 accuracy. Overall, the 

finding of this study exhibits that integrating the Neuro-symbolic strategy 

(neural network-based learning and symbolic reasoning) has immense po-

tential in predicting and classifying biological activities. 
 

The significant contribution of this study is that; 1) we built a highly 

scalable, robust AI predictive model with immense accuracy improvement 

for DM DPP-4 inhibitors. 2) A novel representation integrating data and 

rules (Knowledge) for DPP-4 inhibitor bio-activity classification 3) Ac-

quired and utilized more diverse compound datasets and fingerprints than 

previous studies. 4) The RoBERTa (meta-AI) pre-trained model was also 

experimented with to compare the performance with LTN for DPP-4 

chemical substance classification.   

The remainder of the article elaborated as Section II outlines the Meth-

odology. Afterward, the simulation result of this study is presented in Sec-

tion III. Finally, the Conclusion and Future direction are given in Section 

IV. 

2 Materials & Methods 

This segment presents a set of methodology procedures to determine the 

performance of Logic Tensor Networks (LTN) [36] and an advanced lan-

guage model known as RoBERTa [37] that we employed on ChEMBL 

and BindingDB Dataset related to DPP-4 inhibitors. LTN framework was 

retained to address the limitations of traditional deep learning systems, 

which are not well-suited to tasks that require reasoning, interpretability, 

symbolic manipulation, and knowledge integration. This section covers 

the entire pipeline, including the materials, data preprocessing, feature ex-

traction, simulation environment, network architecture, LTN knowledge-

based Setting, the training and inferencing phases, and the evaluation met-

rics used to measure the model's performance.  

2.1 Dataset 

2.1.1 Data source and acquisition 

The study utilized two publicly available databases: ChEMBL [38] & 

BindingDB [39]. The ChEMBL Database contains more than 2 million 

compounds. We retrieved a total of 5098 molecular canonical SMILES 

related to DPP-4 inhibitor with the target organism Homo Sapiens using 

ID: CHEMBL284 and standard type IC50 (Table 1). The data was extracted 

using the ChEMBL Database's Python API (chembl_webresource_client). 

In addition, we procured 7331 data from BindingDB manually using DPP-

4 string keywords from their official site.   

Table 1: ChEMBL and BindingDB collected data distribution  

Inhibitors Content ChEMBL 
Bind-

ingDB 
Total 

DPP-4 

Raw 5098 7331 12429 

After Curated 3918 3285 7203 

Final  

(active classes) 
3080 2659 5739 

Final (inactive 
Classes) 

838 626 1464 

2.1.2 Data Preprocessing and Descriptors Calculation 

We collected subsets from raw data focused on the IC50 biological activity 

standard value, Canonical SMILES, and similar steps for the BindingDB 

(Fig. 1). Afterwards, we combined both datasets, removed duplicates, and 

conducted preprocessing to eliminate irrelevant information. Standard 

value (IC50) is categorized into two groups: "Inactive = 0" and "active = 

1". Those with less than 1000 nM were considered active, and those with 

values more than 10,000 nM were inactive. Intermediate values are those 

that fall between 1,000 and 10,000 nM. The Intermediate classes needed to 

be disregarded [40].  

 We computed several descriptors/fingerprints during the feature 

extraction phase, particularly by leveraging the PaDEL Descriptor tool. A 

total number of 12 descriptors gather (Table 2) and accumulate their 

corresponding attributes. Additional fingerprints are obtained using Pub-

ChemPy and RDKit (Lipinski's rules). We experimented with 14 types of 

descriptors and post-feature extraction; we applied Standardization.   

Fig. 1 The Fig illustrates the sample of final preprocess data. 

https://www.ebi.ac.uk/chembl/
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Fig. 2: CDKextened fingerprint dataset that was collected based on cor-
responding smiles.  

 

 

 

Table 2: List of Descriptors and no. of features  

PaDEL Descriptors [41] 

Name of the Fingerprints/ De-

scriptors 

 No of Features 

AtomPairs2DCount 780 

AtomPairs2D 780 

CDKextended 1024 

CDK 1024 

CDKgraphonly 1024 

EState 79 

KlekotaRothCount 4860 

KlekotaRoth 4860 

MACCS 166 

PubChem 881 

SubstructureCount 307 

Substructure 307 

RDKit [42] 

Lipinski  4 

PubChem [43] 

PubChemPy 39 

2.2 LTN Classification model: 

LTNs were architected using two key components: a logic component and 

a neural network. The visual architecture of the classification model can 

be found in Appendix C. The logical mechanism contains a set of axioms 

or rules (explained in detail in the Knowledge-based setting); during the 

backpropagation, weights are updated based on LTN loss functions, which 

are calculated based on hypotheses. In this work, we built the DPP-4 LTN 

Classifier Constructing MLP, which consists of 4 layers and input units 

(1024) since CDKextended descriptors number of features are 1024, hid-

den layers units (1024,512,256), ReLU activation, batch size 32, optimizer 

Adam with learning rate 0.00001, seed 42. LTN knowledge-based setting 

and other significant components are discussed in the following section. 

2.2.1 LTN Knowledge Base Setting 

Knowledge-based was defined based on domains (features and labels), 

variables, Constants (classes), and Predicates (𝑝). The true potential of 

predicate logic 𝑝(𝑥, 𝑙) Neural-Symbolic systems, specifically Logic Tensor 

Networks, lie in their ability to represent and reason over complex logical 

relationships having domain-specific knowledge. The benefit of predicate 

logic is that it enables the training of neural networks with the domain 

knowledge (i.e., in this case, First-order logic and Real Logic). In addition, 

reasoning and interpretability are achievable with predicate logic. The 

concept of building this structure was adopted from the official LTN 

framework [36]. Table 3: denoting the significant components of LTN 

knowledge-based setting as well as representing the learning and loss 

function and detail setting up components can be found in Appendix B 

sections. 

 

Table 3: LTN Knowledge-based Setting for DPP-4 Classification  

Contents Classification 

Define Axioms 

• ∀xA, 𝑝(xA, l𝐴): all the examples of class 

𝐴(𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒 = 0)should have a label 𝑙𝐴 

• ∀𝑥𝐵, 𝑝(𝑥𝐵, 𝑙𝐵): all the examples of class 𝐵 (Ac-

tive = 1) should have a label  𝑙𝐵 

Axioms (rules, 

knowledge base) 
                      𝒦 = ∀𝑥𝐴𝑃(𝑥𝐴, 𝑙𝐴), ∀𝑥𝐵𝑃(𝑥𝐵, 𝑙𝐵) 

SatAgg is given 

by 
SatAgg𝜙∈𝒦𝒢𝜽,𝑥←𝑫(𝜙) 

Learning & Loss  𝑳 = (1 − SatAgg
𝜙∈𝒦

𝒢𝜽,𝑥←𝑩(𝜙)) 

Note: This table was developed inspired by the official LTN [36] 

 

Here; 

𝑆𝑎𝑡𝐴𝑔𝑔 is defined using the 𝑝𝑀𝑒𝑎𝑛𝐸𝑟𝑟𝑜𝑟 aggregator. 

𝑝𝑀𝐸(𝑢1, … , 𝑢𝑛) = 1 − (
1

𝑛
∑ (1 − 𝑢𝑖)𝑝𝑛

𝑖=1
)

1

𝑝𝑝 ≥ 1              (1) 

SatAgg𝜙∈𝒦𝒢𝜽,𝑥←𝑫(𝜙) 

• SatAgg: This stands for "Satisfaction Aggregator"  

• ϕ∈K: This part indicates that ϕ (phi) belongs to the set K. ϕ is 

often used to represent a predicate. 

• 𝒢(θ): This is denoted by grounding (𝒢) with parameters θ. θ 

represents a set of parameters or weights in a model. 

• x←D: 𝐷 the data set of all examples 

• the input to the functions SatAgg and 𝒢(θ). 

2.3  RoBERTa Classification Model 

Keras NLP packages were used to develop the DPP-4 Finetuned RoB-

ERTa[37] (base model) classifier. Here, we define the model hyperparam-
eters, vocabulary size 50265, num layers 12; num heads 12, hidden dim 

768, intermediate dim 3072, dropout 0.1, max sequence length 512, opti-

mizer RMSprop with learning rate 0.00005, and batch size 16. 

2.4  Model Training and Validation Phase 

LTN was trained and tested using TensorFlow 2.15.0 Python 3.10.12 on 

Google Colab laboratory. Conversely, pre-trained RoBERTa was trained 

on Kaggle for 6.5 hours (Table 5) with GPUP100. For training and testing, 

we did partition 80: 20 ratios over 310 epochs during LTN training, while 

RoBERTa was trained 80 epochs. We stopped here as overfitting oc-

curred. The following metrics, such as Accuracy, F-score (F), ROC AUC 

Score, and Mathew Correlation Coefficient (MCC), were used to assess 

the model's performance, and the misclassified classes can be seen in Fig. 



 

4. Additionally, both models’ comparison efficiencies and other parame-

ters are presented in table 5. 

 

Equation 1: Accuracy  
 

Accuracy =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 
                                                (2) 

 

Equation 2: F1 Score 
 

F1 
=

2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
    (3) 

 

Equation 3: ROC AUC Score 

ROC AUC = ∫ TPR
1

0
 𝑑(FPR)     (4) 

Equation 4: MCC 
 

MCC =
TP×TN−FP×FN

√(TP+FP)×(TP+FN)×(TN+FP)×(TN+FN)
                              (5) 

3 Results 

In this section, we illustrate the performance of two approaches, LTN 

(knowledge Integration into the neural network) and RoBERTa, an ad-

vanced language model, for revealing DPP-4 potential inhibitors. The 

Table 4 shows LTN model achieved the highest Accuracy (0.9778), F1 

score (0.9778), ROC AUC (0.9657), and MCC (0.9315) with the CDKex-

tended 1024 features (Fig. 3). Notably, among the three descriptors 

(PaDEL Tool, PubChemPy, and RDKit) PaDEL consistently performed 

well with rules and neural network integration system (LTN), except 

AtomPairs2D and followed by the PubChemPy descriptors (Accuracy: 

0.8820, F1 score: 0.8340, ROC AUC: 0.8688, MCC: 0.6777). Although 

RDKit (Lipinski) took last place. The RoBERTa model, on the other hand, 

achieved a competitive Accuracy (0.9493) and F1 score (0.9491) ROC 

AUC (0.9174), MCC (0.8423) using only tokenized features that indicated 

the potential of natural language processing approaches for this DPP-4 

classification. However, training time was much higher (Table 5) than 

LTN. In addition, Table 6 showcases five random sample predictions from 

unseen test data. LTN accurately classified all, while RoBERTa misclas-

sified one. The total misclassified report and ROC AUC curve can be vis-

ible in Figs. 4 and 6. 

 

 

 

Table 4: LTN & RoBERTa DPP-4  Classification Result Summary 

Model Category Descriptors Features Accuracy F1 Score ROC AUC MCC 

LTN 

PaDEL Tool 

CDKextended 1024 0.9778 0.9778 0.9657 0.9315 

CDK 1024 0.9722 0.9723 0.9610 0.9150 

CDKgraphonly 1024 0.9702 0.9702 0.9546 0.9080 

KlekotaRothCount 4860 0.9695 0.9535 0.9592 0.9071 

KlekotaRoth 4860 0.9653 0.9474 0.9553 0.8952 

PubChem 881 0.9625 0.9436 0.9549 0.8880 

MACCS 166 0.9604 0.9398 0.9459 0.8798 

AtomPairs2DCount 780 0.9500 0.9502 0.9254 0.8466 

SubstructureCount 307 0.9389 0.9102 0.9312 0.8234 

Substructure 307 0.9146 0.8746 0.8943 0.7522 

EState 79 0.9063 0.9097 0.8980 0.7400 

AtomPairs2D 780 0.8397 0.7902 0.8511 0.6106 

PubChem PubChemPy 33 0.8820 0.8340 0.8688 0.6777 

RDKit Lipinski 4 0.7627 0.7796 0.7392 0.4133 

RoBERTa Tokenize RoBERTa Tokenization 768 0.9493 0.9491 0.9174 0.8423 

 

Table 5: LTN & RoBERTa Performance and Efficiency Comparison 

Model Input Features 
Training 

Times 

Trainable 

Params 

Total 

Params 
Accuracy 

LTN 
Fingerprint  

(CDKexetended) 
1024 

15 
minutes 

1,706,242     1,706,242 0.9778 

RoBERTa 
SMILES  

(Tokenization) 
768 6.5 hours    592,130 124,644,866 0.9493 

Table 5 demonstrates the comparison performance and efficiency of two models, LTN and ROBERTa, for predicting the properties of molecules associ-
ated with DM inhibitors. The LTN model consumed a fingerprint representation of molecules as input, while the ROBERTa (pertained finetune method) 

model uses a SMILES representation as a string and afterward processes RoBERTa tokenization. The LTN model has a higher accuracy (0.9778) than 

the RoBERTa model (0.9493) NLP-transformer model. It took approximately 15 minutes to train the LTN model and 6.5 hours to train the RoBERTa 
model. The RoBERTa has fewer trainable parameters than the LTN model since it was a pre-trained NLP; therefore, the parameters are immense. 
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         Fig 3: Descriptors and Accuracy (Rounded up)   Fig 4: Confusion Matrix for LTN, RoBERTa 

 

 
   Fig. 5: LTN Loss and Accuracy Graph (Training and Testing)           Fig. 6: LTN and RoBERTa  ROC AUC Curve 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
Table 6: LTN and RoBERTa model five random prediction samples based on the test dataset 

S.No Source ID Smiles (Input) Molecule (2D Structure) Actual 

RoBERTa LTN 

Predicted 

(Output) 

Predicted 

(Output) 

1.  

CHEMBL18
8043 

 

N[C@H](C(=O)N1
CC[C@H](F)C1)[C

@@H](C(=O)N1C

CC1)c1ccc(-c2ccc(F
)cc2)cc1.O=C(O)C(

F)(F)F  

Active Active Active 

2.  

CHEMBL32

16493 

 

Cc1ccc(-c2c(CN)c(
CC(C)C)nc3ccc(CC

C(=O)O)cc23)cc1.C

l.Cl 

  

Active Active Active 

3.  
22091 

 

N[C@@H](C1CCC
CC1)C(=O)N1CCC

CC1 

 
 

Inactive Inactive Inactive 

4.  

 
CHEMBL36

1758 

 

N[C@H](C(=O)N1

CCc2ccccc2C1)c1c
cccc1 

 
 

Inactive Active Inactive 

5.  

CHEMBL23

5199 

 

CN(C)C(=O)[C@@

H]([C@H]1CC[C@
H](C2CCc3ncnn3C

2)CC1)[C@H](N)C

(=O)N1CCC(F)(F)C

1 

  

Active Active Active 

Note: The RoBERTa model had input as SMILE string where LTN input is fingerprint/descriptor (i.e CDKextended) 

 
        Overall, this study suggests that the LTN model with the PaDEL 

Tool, CDKextended, is a promising, more robust, and efficient approach 

for predicting the properties of molecules classification of DPP-4 adverse 

and potential inhibitors. The findings also recommend using pre-trained 

transformer-based natural language approaches, such as the RoBERTa 

model, which also shows promise for DPP-4 classification. However, fur-

ther research is needed to improve its performance, and the Neuro-sym-

bolic approach is more scalable and robust than conventional AI methods 

(Table 5). 

Conclusion 

Diabetes Mellitus is a vital global health concern, and discovering effec-

tive chemical substances is crucial to tackling this epidemic. This study 

explored the therapeutic potential of DPP-4 inhibitors employing a novel 

approach called the LTN (Neuro-symbolic AI) that integrates domain-spe-

cific knowledge into neural networks. The study is a pioneer in applying 

Neuro-symbolic strategy in the DM domain and provides new insights 

showing groundbreaking performance for revealing DPP-4 potential in-

hibitors. The root cause of achieving such performance could be uphold-

ing learning and reasoning principles and training neural networks with 

rules. Furthermore, we experimented with the RoBERTa, an NLP pre-

trained Transformer model, which also attained prominent Accuracy, alt-

hough training performance and consumption of the resources are higher 

than LTN.  

 In conclusion, the findings of this study demonstrated that LTN is 

among the state-of-the-art models for uncovering potential DPP-4 

inhibitors. We aim to deploy the model within a real-time prediction 

application to identify the right therapeutic agent that could promptly 

benefit ML practitioners, academics, and industry researchers. However, an 

ideal next step could involve integrating additional potential Neuro-

symbolic strategies, such as Semantic Loss, DeepProblog on GLP-1, IDO, 

and PTP1B DM inhibitors extracting a variety of new descriptors, and 

fingerprints with different datasets (PubChem, Protein Data Bank) focusing 

regression task.  
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Appendix A: A list of FDA, E.U., EMA (European Medicines Agency), JAPAN, and KOREN body approved DPP-4  inhibitor’s structure and respective 

2D compound structures images as below. 

 
ChEMBL ID Target Approved 

Body 

Smiles Ref 

CHEMBL376359 Alogliptin FDA Cn1c(=O)cc(N2CCC[C@@H](N)C2)n(Cc2ccccc2C#N)c1=O [45]  

CHEMBL1929396 Anagliptin Japan Cc1cc2ncc(C(=O) NCC(C)(C)NCC(=O)N3CCC[C@H]3C#N)cn2n1 [47] 

CHEMBL3707235 Gemigliptin Korea  N[C@@H](CC(=O)N1CCc2c(nc(C(F)(F)F)nc2C(F)(F)F)C1)CN1CC(F)(F)C

CC1=O 

[47] 

CHEMBL237500 Linagliptin FDA CC#CCn1c(N2CCC[C@@H](N)C2)nc2c1c(=O)n(Cc1nc(C)c3ccccc3n1)c(=O

)n2C 

[45][47] 

CHEMBL385517 Saxagliptin FDA N#C[C@@H]1C[C@@H]2C[C@@H]2N1C(=O)[C@@H](N)C12CC3CC(C

C(O)(C3)C1)C2 

[45][47] 

CHEMBL1422 Sitagliptin FDA N[C@@H](CC(=O)N1CCn2c(nnc2C(F)(F)F)C1)Cc1cc(F)c(F)cc1F [45],[47] 

CHEMBL2147777 Teneligliptin Japan Cc1cc(N2CCN([C@@H]3CN[C@H](C(=O)N4CCSC4)C3)CC2)n(-

c2ccccc2)n1 

[45]  

CHEMBL142703 Vildagliptin EMA N#C[C@@H]1CCCN1C(=O)CNC12CC3CC(CC(O)(C3)C1)C2 [45],[47] 

 

Additional approved inhibitors can be found in ChEMBL [38], Drug Bank [46], and Wikipedia [47].
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Appendix B: LTN / Knowledge-based Setting  

The construction of all the axioms components conceived from the official LTN framework [36] 

Classification: 

▪ Domains 

 

o 𝑖𝑡𝑒𝑚𝑠, denoting the examples from the DPP-4 dataset 

o 𝑙𝑎𝑏𝑒𝑙𝑠, representing the class labels (IC50 values) 

 

▪ Define Variables 

 

o 𝑥𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 , 𝑥𝑎𝑐𝑡𝑖𝑣𝑒 , , for the positive examples of classes 𝐴 𝑎𝑛𝑑 𝐵 

o 𝑥 for all examples 

o 𝐷(𝑥𝐴) = 𝐷(𝑥𝐵) = 𝐷(𝑥) = 𝑖𝑡𝑒𝑚𝑠 

 

 

▪ Define Constants 

 

o 𝐿𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 , 𝐿𝑎𝑐𝑡𝑖𝑣𝑒 the labels of classes 𝐴(0) 𝑎𝑛𝑑 𝐵(1) Respectively. 

o 𝐷(𝑙𝐴) = 𝐷(𝑙𝐵) = 𝑙𝑎𝑏𝑒𝑙𝑠 

 

▪ Define the P predicate. 

 

 

o 𝜌(𝑥, 𝑙) Denoting the fact that item 𝑥 is classified as 𝑙; 

o 𝐷𝑖𝑛(𝑃) = 𝑖𝑡𝑒𝑚𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠. 

 

▪ Connectives: 

 

o For All ∀ 

o And ∧ 

o Not ¬ 

o Or ∨ 

o Implies ⟹ 

 

▪ Axiom 

o ∀xA, 𝑝(xA, l𝐴): all the examples of class 𝐴(𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒)should have a label 𝑙𝐴               

  

o ∀𝑥𝐵, 𝑝(𝑥𝐵, 𝑥𝐵): all the examples of class 𝐵 (𝑎𝑐𝑡𝑖𝑣𝑒) should have a label  𝑙𝐵               

▪ Grounding: 

o 𝒢(items) = RN, items are described by 𝑁 features: 

▪ Example 

o DPP-4(AtomPairs2DCount descriptors):  𝒢(items) = R780 

 

o 𝒢(labels) = N2, We use an encoding to represent classes. 

 

o 𝒢(xinactive) ∈ Rm𝟙×N, that is, 𝒢(x𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒) is a sequence of m1 examples of class 𝑖𝑛active; 

 

o 𝒢(xactive) ∈ Rm𝟚×N, that is, 𝒢(xactive) is a sequence of m2 examples of class active; 

 

o 𝒢(x) ∈ R(m𝟙+m𝟚)×N, that is, 𝒢(𝑥) It is a sequence of all the examples. 

 

o 𝒢(lA) = 0, 𝒢(lB) = 1; 

 

o 𝒢( P ∣ θ ): 𝑥, 𝑙 ↦ l⊤ ⋅ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(MLPθ(x)), where 𝑀𝐿𝑃 has two output neurons corresponding to as many classes, notably in our 

cases, two classes as we explained earlier, and ⋅ denotes the dot product as a way of selecting an output for 𝒢( 𝑃 ∣ 𝜃 ). Multiplying 

the 𝑀𝐿𝑃 output by the probability. 𝑙⊤ Gives the probability corresponding to the class denoted by 𝑙. 

        
 

 



 

 Appendix C: LTN Model Architecture for multiclass classification. 

Fig. 7: LTN Classification Architecture [36] 


