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Abstract. In mathematics, the Riemann hypothesis is a conjecture that
the Riemann zeta function has its zeros only at the negative even inte-
gers and complex numbers with real part 1/2. Many consider it to be
the most important unsolved problem in pure mathematics. It is one of
the seven Millennium Prize Problems selected by the Clay Mathematics
Institute to carry a US 1,000,000 prize for the first correct solution. We
prove the Riemann hypothesis using the Complexity Theory. Number
theory is a branch of pure mathematics devoted primarily to the study
of the integers and integer-valued functions. The Goldbach’s conjecture
is one of the most important and unsolved problems in number theory.
Nowadays, it is one of the open problems of Hilbert and Landau. We
show the Goldbach’s conjecture is true or this has an infinite number
of counterexamples using the Complexity Theory as well. An important
complexity class is 1NSPACE(S(n)) for some S(n). These mathematical
proofs are based on if some unary language belongs to 1NSPACE(S(log
n)), then the binary version of that language belongs to 1NSPACE(S(n))
and vice versa.

Keywords: complexity classes · regular languages · reduction · number
theory · primes · one-way.

1 Introduction

1.1 The Riemann hypothesis

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta
function has its zeros only at the negative even integers and complex numbers
with real part 1

2 . Many consider it to be the most important unsolved problem
in pure mathematics [16]. It is of great interest in number theory because it
implies results about the distribution of prime numbers [16]. It was proposed
by Bernhard Riemann (1859), after whom it is named [16]. In 1915, Ramanujan
proved that under the assumption of the Riemann hypothesis, the inequality:∑

d|n

d < eγ × n× log log n

holds for all sufficiently large n, where γ ≈ 0.57721 is the Euler’s constant and
d|n means that the natural number d divides n [12]. The largest known value
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that violates the inequality is n = 5040. In 1984, Guy Robin proved that the
inequality is true for all n > 5040 if and only if the Riemann hypothesis is true
[12]. Using this inequality, we prove the Riemann hypothesis is true.

1.2 The Goldbach’s conjecture

The Goldbach’s original conjecture, written on 7 June 1742 in a letter to Leon-
hard Euler, states: “... at least it seems that every number that is greater than
2 is the sum of three primes” [6]. This is known as the ternary Goldbach con-
jecture. We call a prime as a natural number that is greater than 1 and has
exactly two divisors, 1 and the number itself [18]. However, the mathematician
Christian Goldbach considered 1 as a prime number. Euler replied in a letter
dated 30 June 1742 the following statement: “Every even integer greater than
2 can be written as the sum of two primes” [6]. This is known as the strong
Goldbach conjecture.

Using Vinogradov’s method, Van der Corput and Estermann showed that
almost all even numbers can be written as the sum of two primes (in the sense
that the fraction of even numbers which can be so written tends towards 1) [5],
[7]. In 1973, Chen showed that every sufficiently large even number can be written
as the sum of some prime number and a semi-prime [3]. The strong Goldbach
conjecture implies the conjecture that all odd numbers greater than 7 are the
sum of three odd primes, which is known today as the weak Goldbach conjecture
[6]. In 2012 and 2013, Peruvian mathematician Harald Helfgott published a pair
of papers claiming to improve major and minor arc estimates sufficiently to
unconditionally prove the weak Goldbach conjecture [10], [11]. In this work, we
prove the strong Goldbach’s conjecture is true or this has an infinite number of
counterexamples.

2 Theory and Methods

We use o-notation to denote an upper bound that is not asymptotically tight.
We formally define o(g(n)) as the set

o(g(n)) = {f(n) : for any positive constant c > 0, there exists a constant

n0 > 0 such that 0 ≤ f(n) < c× g(n) for all n ≥ n0}.

For example, 2 × n = o(n2), but 2 × n2 6= o(n2) [4]. In theoretical computer
science and formal language theory, a regular language is a formal language
that can be expressed using a regular expression [2]. The complexity class that
contains all the regular languages is REG. The two-way Turing machines may
move their head on the input tape into two-way (left and right directions) while
the one-way Turing machines are not allowed to move the head on the input
tape to the left [14]. The complexity class 1NSPACE(f(n)) is the set of decision
problems that can be solved by a nondeterministic one-way Turing machine M ,
using space f(n), where n is the length of the input [14].
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3 Results

3.1 The Complexity of PRIMES

The checking whether a number is prime can be decided in polynomial time by
a deterministic Turing machine [1]. This problem is known as PRIMES [1].

Theorem 1. PRIMES /∈ 1NSPACE(S(n)) for all S(n) = o(log n).

Proof. If we assume that PRIMES ∈ 1NSPACE(o(log n)), then the unary ver-
sion should be regular. Certainly, the standard space translation between the
unary and binary languages actually works for nondeterministic machines with
small space [8]. This means that if some language belongs to 1NSPACE(S(n)),
then the unary version of that language belongs to 1NSPACE(S(log n)) [8]. In
this way, when PRIMES ∈ 1NSPACE(o(log n)), then the unary version should
be in 1NSPACE(o(log log n)) and we know that REG = 1NSPACE(o(log log n))
[14], [8]. Since we know that the unary version of PRIMES is non-regular [13],
then we obtain that PRIMES /∈ 1NSPACE(S(n)) for all S(n) = o(log n).

3.2 The Riemann hypothesis

Definition 1. We define the Robin’s language LR as follows:

LR = {0n#0m1#0m2 : n ∈ N ∧ n > 5040 ∧m1 = (σ(n)− n)

∧ m2 = deγ × n× log log ne ∧m1 + n < m2}

where # is the blank symbol and σ(n) =
∑
d|n d [12]. We define the language

coLR as

coLR = {0n#0m1#0m2 : n ∈ N ∧ n > 5040 ∧m1 = (σ(n)− n)

∧ m2 = deγ × n× log log ne ∧m1 + n ≥ m2}

where coLR is the complement language of LR.

Theorem 2. If the Riemann hypothesis is true, then the Robin’s language LR
is non-regular.

Proof. We can easily prove this using the Pumping lemma for regular languages
[17].

Definition 2. We define the verification Robin’s language LV R as follows:

LV R = {(n,m1,m2) : such that 0n#0m1#0m2 ∈ LR}.

Lemma 1. The Robin’s language LR is the unary representation of the verifi-
cation Robin’s language LV R.

Proof. This is trivially true from the definition of these languages.
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Theorem 3. LV R /∈ 1NSPACE(S(n)) for all S(n) = o(log n).

Proof. The language LV R cannot be computed in 1NSPACE(S(n)) for some
S(n) = o(log n), because of this would imply that the problem PRIMES belongs
to 1NSPACE(S(n)) for some S(n) = o(log n) as well. Certainly if this could be
true, then we can find m2 = deγ × p × log log pe and check whether the triple
(p, 1,m2) is an element of LV R and thus, we could decide whether p is prime.
Indeed, a number p is prime if and only if the sum of its divisors is p + 1 [9].
This could be nondeterministically done on input p just choosing arbitrarily
another number m2, but instead of putting in the work tapes, then this will put
with p and 1 in the output tape just using constant space in one-way. We are
able to do this, because of m2 should be polynomially bounded by the input
p. After that, we use the space composition reduction just using the previous
output of p, 1 and some integer m2 into a new nondeterministic Turing machine
that would decide whether the instance belongs to LV R in 1NSPACE(S(n))
for some S(n) = o(log n) using (p, 1,m2) as input [15]. Since 1NSPACE(S(n))
for some S(n) = o(log n) is closed under 1NSPACE-reductions with constant
space, then the whole computation could be done in 1NSPACE(S(n)) for some
S(n) = o(log n). However, this would be a contradiction according to Theorem
1, since the language PRIMES /∈ 1NSPACE(S(n)) for all S(n) = o(log n).
Consequently, we obtain that LV R /∈ 1NSPACE(S(n)) for all S(n) = o(log n).

Theorem 4. The Riemann hypothesis is true.

Proof. If the Riemann hypothesis is false, then LR ∈ REG or LR is non-regular
and its complement coLR is infinite, since every finite set is regular and REG is
also closed under complement [15]. Let’s assume the possibility of LR ∈ REG.
Nevertheless, this implies that the exponentially more succinct version of LR,
that is LV R, should be in 1NSPACE(S(n)) for some S(n) = o(log n), because of
REG = 1NSPACE(o(log log n)) and the same algorithm that decides LR within
1NSPACE(o(log log n)) could be easily transformed into a slightly modified algo-
rithm that decides LV R within 1NSPACE(S(n)) for some S(n) = o(log n) [14],
[8]. Actually, LR is the unary version of LV R due to Lemma 1. As we mentioned
before, the standard space translation between the unary and binary languages
actually works for nondeterministic machines with small space [8]. This means
that if some unary language belongs to 1NSPACE(S(log n)), then the binary
version of that language belongs to 1NSPACE(S(n)) [8]. In this way, we ob-
tain that LR /∈ REG, since it is not possible that LR ∈ 1NSPACE(o(log log n))
under the result of LV R /∈ 1NSPACE(S(n)) for all S(n) = o(log n) as a con-
sequence of Theorem 3. Consequently, we obtain a contradiction just assuming
that the Riemann hypothesis is false and LR ∈ REG. Hence, we obtain that
the Riemann hypothesis is true or the Robin’s inequality has an infinite number
of counterexamples. However, the asymptotic growth rate of the sigma function
can be expressed by [12]:

lim sup
n→∞

σ(n)

n× log log n
= eγ
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where lim sup is the limit superior and σ(n) =
∑
d|n d. In this way, if the Robin’s

inequality has an infinite number of counterexamples, then the previous limit
superior should be false. Since this is a previous checked result, then we have
the Riemann hypothesis is true as the remaining only option.

3.3 The Goldbach’s conjecture

Definition 3. We define the Goldbach’s language LG as follows:

LG = {02×n#0p0q : n ∈ N ∧ n > 2 ∧ p and q are odd primes ∧ 2× n = p+ q}

where # is the blank symbol. We define the language coLG as

coLG = {02×n#02×n : n ∈ N ∧ n > 2 ∧

there are not odd primes p and q such that 2× n = p+ q}

where coLG is the complement language of LG.

Theorem 5. If the strong Goldbach’s conjecture is true, then the Goldbach’s
language LG is non-regular.

Proof. We can easily prove this using the Pumping lemma for regular languages
[17].

Definition 4. We define the verification Goldbach’s language LV G as follows:

LV G = {(2× n, p, q) : such that 02×n#0p0q ∈ LG}.

Lemma 2. The Goldbach’s language LG is the unary representation of the ver-
ification Goldbach’s language LV G.

Proof. This is trivially true from the definition of these languages.

Theorem 6. LV G /∈ 1NSPACE(S(n)) for all S(n) = o(log n).

Proof. The language LV G cannot be computed in 1NSPACE(S(n)) for some
S(n) = o(log n), because of this would imply that the problem PRIMES be-
longs to 1NSPACE(S(n)) for some S(n) = o(log n) as well. Certainly, if this
could be true, then we can take any number p and check whether p is prime.
This could be nondeterministically done on input p just deterministically gener-
ating the numbers p + 3 and 3 and nondeterministically choosing an arbitrary
number q, but instead of putting in the work tapes, then we will put them to
the output tape just using constant space in one-way. After that, we use the
space composition reduction just using the previous output of (p + 3, 3, q) as
input into a new nondeterministic Turing machine that would decide whether
the instance belongs to LV G in 1NSPACE(S(n)) for some S(n) = o(log n). In-
deed, the nondeterministic one-way computation will accept this input if and
only if the nondeterministic generated number q is equal to p and p is prime. In
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this reduction, we assume the initial string p has a binary representation with
the least significant bit in the first position within the input tape from left to
right. In this way, it will be possible to deterministically generate p+ 3 in one-
way using constant space. Since 1NSPACE(S(n)) for some S(n) = o(log n) is
closed under 1NSPACE-reductions with constant space, then the whole compu-
tation could be done in 1NSPACE(S(n)) for some S(n) = o(log n) . Neverthe-
less, this would be a contradiction according to Theorem 1, since the language
PRIMES /∈ 1NSPACE(S(n)) for all S(n) = o(log n). Consequently, we obtain
that LV G /∈ 1NSPACE(S(n)) for all S(n) = o(log n).

Theorem 7. The strong Goldbach’s conjecture is true or this has an infinite
number of counterexamples.

Proof. If the strong Goldbach’s conjecture is false, then LG ∈ REG or LG is
non-regular and its complement coLG is infinite, since every finite set is regular
and REG is also closed under complement [15]. Let’s assume the possibility of
LG ∈ REG. However, this implies that the exponentially more succinct version
of LG, that is LV G, should be in 1NSPACE(S(n)) for some S(n) = o(log n),
because we would have REG = 1NSPACE(o(log log n)) and the same algo-
rithm that decides LG within the complexity 1NSPACE(o(log log n)) could be
easily transformed into a slightly modified algorithm that decides LV G within
1NSPACE(S(n)) for some S(n) = o(log n) [14], [8]. Actually, LG is the unary
version of LV G due to Lemma 2. As we mentioned before, the standard space
translation between the unary and binary languages actually works for non-
deterministic machines with small space [8]. This means that if some unary
language belongs to 1NSPACE(S(log n)), then the binary version of that lan-
guage belongs to 1NSPACE(S(n)) [8]. Consequently, we obtain that LG /∈ REG,
since it is not possible that LG ∈ 1NSPACE(o(log log n)) under the result of
LV G /∈ 1NSPACE(S(n)) for all S(n) = o(log n) as result of Theorem 6. In this
way, we obtain a contradiction just assuming that the strong Goldbach’s conjec-
ture is false and LG ∈ REG. In contraposition, we have the strong Goldbach’s
conjecture is true or this has an infinite number of counterexamples.
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8. Geffert, V., Pardubská, D.: Unary Coded NP-Complete Languages in ASPACE
(log log n). International Journal of Foundations of Computer Science 24(07),
1167–1182 (2013). https://doi.org/10.1007/978-3-642-31653-1 16

9. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Oxford
University Press (1979)

10. Helfgott, H.A.: Minor arcs for Goldbach’s problem. arXiv preprint arXiv:1205.5252
(2012)

11. Helfgott, H.A.: Major arcs for Goldbach’s theorem. arXiv preprint arXiv:1305.2897
(2013)

12. Lagarias, J.C.: An elementary problem equivalent to the riemann hypothesis. The
American Mathematical Monthly 109(6), 534–543 (2002)

13. Matuszek, D.: Pumping Lemma Example 3 (February 1996), in The Pumping
Lemma Lecture at https://www.seas.upenn.edu/∼cit596/notes/dave/pumping6.
html. Retrieved 26 April 2020

14. Michel, P.: A survey of space complexity. Theoretical computer science 101(1),
99–132 (1992). https://doi.org/10.1016/0304-3975(92)90151-5

15. Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)
16. Sarnak, P.: Problems of the millennium: The riemann hypothesis (2004) (April

2005), in Clay Mathematics Institute at http://www.claymath.org/library/annual
report/ar2004/04report prizeproblem.pdf. Retrieved 26 April 2020

17. Sipser, M.: Introduction to the Theory of Computation, vol. 2. Thomson Course
Technology Boston (2006)

18. Wells, D.G.: Prime Numbers, The Most Mysterious Figures in Math. John Wiley
& Sons, Inc. (2005)


