
EasyChair Preprint
№ 6791

PoseTED: a Novel Regression-Based Technique
for Recognizing Multiple Pose Instances

Afsana Ahsan Jeny, Masum Shah Junayed and Md Baharul Islam

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 6, 2021



PoseTED: A Novel Regression-Based Technique for
Recognizing Multiple Pose Instances?

Afsana Ahsan Jeny1[0000−0002−8524−9600], Masum Shah Junayed1[0000−0003−3592−4601],
and Md. Baharul Islam1[0000−0002−9928−5776]
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Abstract. Pose estimation for multiple people can be viewed as a hierarchical
set predicting challenge. Algorithms are needed to classify all persons accord-
ing to their physical components appropriately. Pose estimation methods are di-
vided into two categories: (1) heatmap-based, (2) regression-based. Heatmap-
based techniques are susceptible to various heuristic designs and are not end-to-
end trainable, while regression-based methods involve fewer intermediary non-
differentiable stages. This paper presents a novel regression-based multi-instance
human pose recognition network called PoseTED. It utilizes the well-known ob-
ject detector YOLOv4 for person detection, and the spatial transformer network
(STN) used as a cropping filter. After that, we used a CNN-based backbone that
extracts deep features and positional encoding with an encoder-decoder trans-
former applied for keypoint detection, solving the heuristic design problem before
regression-based techniques and increasing overall performance. A prediction-
based feed-forward network (FFN) is used to predict several key locations’ pos-
ture as a group and display the body components as an output. Two available
public datasets are tested in this experiment. Experimental results are shown on
the COCO and MPII datasets, with an average precision (AP) of 73.7% on the
COCO val. dataset, 72.7% on the COCO test dev. dataset, and 89.7% on the
MPII datasets, respectively. These results are comparable to the state-of-the-art
methods.

Keywords: Keypoints estimation · Pose recognition · Person detection · Trans-
former encoder-decoder · STN · FFN

1 Introduction

Humans frequently use various forms of gestures framed with different organs to com-
municate their cognitive and emotional wellness. Correctly recognizing those poses will
aid in observing the present mental and physical state of the individual. Thus, human
pose recognition is receiving research attention in recent years. The pose evaluation was
necessary owing to the difficulty in identifying human joints in photos or films (often
known as the essential points - knees, arms, elbows, etc.). In addition to being a chal-
lenging area of research, human pose measurement is critical in many practical uses,
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including action recognition, pedestrian detection, medical imaging, human-computer
interaction, animation, health, and sports, and others. However, pose detection is a com-
plicated subject that has remained unsolved. Many factors contribute to the difficulties,
including prominent position and size diversity, cross-body connection, considerable
visual variance, and background complexity. Several methods for estimating occluded
joints involve using statistical and topological approaches to address the difficulties as-
sociated with occlusion [19].

To solve this problem, researchers have found solutions to this challenge by break-
ing it down into smaller tasks, including assessing a single-person stance, assessing
multiple-person poses, and determining the pose of a human in a busy environment. To
complete these sub-tasks, few methodologies have been tested in prior studies. First,
top-down techniques utilize a bounding box as an object detector to identify and focus
on a single individual to maximize efficiency [23]. Following that, calculating the pos-
ture of a single person, whereas with a bottom-up approach, examine various indepen-
dent semantics elements and put them together to form a single-person pose [7]. Several
heat map-based methods [30,23] are used to implement complex key points identifica-
tion, which is then followed by subsequent processes for clustering and grouping. Only
a few research studies [24,32,28] have focused on regression-based techniques, primar-
ily because regression-based methods often perform worse than heat map-based meth-
ods in terms of accuracy and precision. However, heatmaps establish a gap between
the overall estimate of the key points cannot make an end-to-end learning framework.
On the other hand, regression-based methods are still inefficient because of a signifi-
cant number of heuristic designs of the architecture, computation efficiency, and it is
challenging to detect keypoint in occluded scenes [18,28].

Toshev et al. [26] introduced one of the earliest regression methods named Deep-
Pose using AlexNet as a backbone, then extended it to learn essential key points from
pictures. Since DeepPose has shown such remarkable results, the human pose estima-
tion (HPE) research community has moved from traditional techniques to convolutional
neural networks (CNNs) because of the weak localization. In 2017, a regression-based
method, namely LCRNet, was proposed to identify human pose in both 2D and 3D.
One disadvantage of this approach is that the restricted number of anchors places a
constraint on the network’s ability to estimate new positions. Luvizon et al. [15] com-
bine soft-argmax function and soft-plus (which produces vectors with equivalent joint
coordinates) to provide an utterly differentiable approach for HPE. However, the con-
volutional features are misaligned. It also faced typical localization and quantization
problems. Then, in [16], a single pose regression-based method based on a transformer
and CNN was presented. The model assumes a series of keypoint locations utilizing
CNN and transformer simultaneously. This method is inefficient since it causes de-
sign issues and is computationally costly. However, the design of all recently advanced
model architectures is more complicated since it has many levels of complexity.

Contributions. Motivated by the above observations, a regression-based 2D multi-
instance human pose identification technique is proposed to utilize the modified YOLO-
v4 for person detection. The keypoints detection transformer is used for pose estimation.
For the feature extractor of the image of the bounding boxes, we utilize the CNN-based
three networks such as DarkNet-53 [21], ResNet-101 [10], and VGG-19 [22] by elim-
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inating the fully connected layer. As a result, the total number of parameters is mini-
mized from 44.6 million, 143.6 million, and 40.5 million to 8.2 million, 25.8 million,
and 5.6 million, respectively. Furthermore, to mitigate the parameters, the computing
cost is significantly decreased as well. We compare the proposed architecture to the
available regression-based methods to ensure the proposed method is more robust. It
shows the competitive performance in posture recognition while eliminating the need
for heuristic designs and allowing for quicker and more accurate pose recognition. The
following contributions are significant in this paper.

– A novel regression-based multi-instance human pose recognition technique is pro-
posed based on a general-purpose object detector, which is end-to-end trainable
with two networks and can solve several limitations using transformers with YOLOv4.

– For faster and more accurate person detection, the modified YOLO-v4 [2] object
detection model is used, followed by a cropping filter and passing images through
a spatial transformer network (STN) to crop in the original images. The cropped
images are fed into a CNN-based backbone that uses to extract covariance features.
This feature passes into the transformer encoder-decoder using positional encoding,
which involves defining the location of an object relative to its bounding box.

– DarkNet-53 [21], ResNet-101 [10], and VGG-19 [22] are three well-known CNN-
based modified backbones are utilized for deep covariance feature extraction and
decreased parameters. A prediction-based feed-forward network (FFN) was also
employed to forecast the pose of multiple key points as a group and depict the body
components as output.

– The efficacy of the PoseTED is experimentally shown on two complex benchmark
datasets: the COCO [14] datasets (COCO val set and COCO test dev set), and the
MPII [1] Human Pose dataset. It significantly improves the state-of-the-art perfor-
mance on recent advanced regression-based techniques and is comparable to the
heatmap-based methods.

2 Proposed PoseTED

Figure 1 depicts the PoseTED model’s architecture. It has four parts: a modified YOLO-
v4 well-known object detector is utilized for human detection with the bounding box;
STN is used for cropping filter, then a CNN-based backbone network is utilized for
feature extraction of the image; then it is connected to the transformer encoder-decoder
combinations, and finally, feed-forward networks are used to detect and locate long-
range spatial interactions of the linear combination of classes, person keypoint coordi-
nates, and ultimately visible of identifying key points.

Person Detector (YOLO-v4). Our method is used for a regression approach to
solve the multi-person pose recognition issue, and we used YOLO-v4 [2], a well-known
object detection architecture, as the detection method. It is chosen for this study be-
cause of its excellent accuracy and reliability, the speed with which it can be assem-
bled, simplicity of implementation, stability, and promise of acceptable results even
in minute details. We studied the impact of various network resolutions, detection ac-
curacy, and transfer learning parameters on detection outcomes while improving the
YOLOv4 model. The updated YOLOv4 person detector is shown in Figure 2.
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Fig. 1: The PoseTED architecture has been proposed. Here, YOLO-v4 is used for hu-
man detection with a bounding box. After detecting the person, the STN was utilized
to crop the original image with the predicted boxes. Then, the backbone is used to
generated in-depth features. The Transformer encoder-decoder with positional encod-
ing works as keypoint-detection relative to corresponding bounding boxes. Finally,
prediction-based FFN has predicted key points and displays vectors of body parts.

There are three main parts of this model: the spine, the neck, and the head. For
reducing unwanted highlights, the spine is directly responsible. This CSPDarknet53
connection has been shown out to be an excellent choice. In [2], the yield is split into
two portions: one is in the base layer and the other is in the reserved layer. One person
heads to the Dense Block, while the other takes the following steps along the path as an
exhibit presentation. Thick squares are composed of layers stacked on top of each other,
with each subsequent layer beginning with Batch Normalization and ReLU, followed
by a convolutional layer. A Dense Block layer is created by using all of the component
guides from previous levels. That increases the area of the spinal column that may be
accessed and aids in recognition of complicated image features. The concept of spatial
pyramid pooling (SPP) [21] is used in neckbands to increase the acquiring field and
provide interfaces that permit connections between different levels of the spine. A final
portion has two parts; a classification head is placed on the object and assigned to the
person or background detection, and a 4-channel regression head is applied for the
predict and computed bounding boxes.

STN. After obtaining the detected pictures with bounding boxes, the STN [8] iden-
tifies the object as a person and predicts the bounding boxes to crop out the necessary
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Fig. 2: The architecture of the YOLO-v4 person detector.

portions of the detected human with the bounding box. In the first step, STN selects
the bounding box of the detected feature, rotates the area to normalize the posture, and
then scales the cropped region before passing it to the CNN backbone. Feature maps
and bounding box coordinates can be used to differentiate this cropping process. The
grid (w×h) of the bounding box (b = (xl ,xr,yt ,yd)) is generated by,

xi =
w− i

w
xl +

i
w

xr (1)

y j =
h− j

h
yt +

j
h

yd (2)

where b, w and h are the original detected image’s bounding box, height and weight
of feature map respectively. And, (xl ,xr,yt) and yd are denoted by coordinates of the
bounding box in detected image respectively.

Backbone.The CNN architecture is often considered to be a backbone framework.
The feature extractor in PoseTED’s backbone extracts essential low-level characteris-
tics such as body key points of humans. In order to arrive at more relevant comparisons,
we have chosen three representative backbone designs, including ResNet, VGG, and
DarkNet. Simplicity is essential when working with complex data sets such as images,
and we thus maintain the first, pre-trained portion of the ImageNet CNN model as the
initial layers to extract low-level characteristics from the input picture. After tuning
these feature extractors, ResNet-101[10], VGG-19 [22], and DarkNet-53 [21] are given
to us as ResNet-P, VGG-P, and DarkNet-P. Compare to the three competitor backbone’s
parameters count are only 8.2 million, 25.8 million, and 5.6 million, respectively, repre-
senting 18.3%, 17.8%, and 13.8% of the original ResNet-101 (44.6 million), VGG-19
(143.6 million), and DarkNet-53 parameters, respectively (40.5 million).

Transformer Encoder Decoder. After getting the low-level feature maps of the
CNN backbones, the detection of pose key points is used to the conventional architec-
ture as the basis for the transformer encoder-decoder model with positional encoding
[4]. There are six layers and eight attention heads in the encoder and decoder [27]. Re-
ducing the size of the input channels by a 1×1 convolution is done in the encoder. The
multi-head method requires sequential input; thus, the tensor is first downsampled and
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then compressed on the spatial dimension to one dimension. Because the transformer
design is permutation-invariant, we encoded the picture as a fixed positional encoding
to get the results we want. Instead, the positional encodings used by the decoder are
known as object queries, and they correspond to the learned embeddings that we refer
to as objects. Without permutation invariance, these queries will have to be changed
when using the decoder because of the permutation. The decoder input is formed by
adding them to the encoder output. The decoder first converts the queries to input em-
beddings before converting them to output embeddings. The poses are generated sepa-
rately, and then the class labels and poses are decoded together to provide the final pose
keypoints predictions and class labels. The resulting capability enables a query to find
one instance, identify it, and forecast its posture keypoints and location.

Motivated by [5,12,34], we instead demand all decoder layers to anticipate the key-
point coordinates. The thing that we specifically allow is for the first decoder layer to
guess the destination coordinates directly. Refining the predictions of each subsequent
decoder layer helps improve the predictions of each preceding decoder layer. The key
points then build on each other by becoming increasingly more nuanced.

FFN. After getting nuanced features from the transformer encoder-decoder, a 2-
channel regression map predicts the coordinates of each key point. After that, the 3-
layer perceptron with ReLU activation and a linear prediction layer estimates the final
posture. The linear layer produces the class label using a softmax function, while the
perceptron layer provides the center coordinate of key points. It produces an output
consisting of the body component’s respective coordinate and displacement values and
the scores for every body part. The resulting vector is sent through a softmax classifier,
which yields the class label. As a result, we made images normalize around their center
and their offset from their origin.

3 Experiments

3.1 Dataset

MPII dataset. There are around 25,000 photos of annotated body joints in the MPII
[1] collection, covering more than 40,000 participants. The images were culled from
YouTube videos depicting 410 different types of ordinary human activity. There are
frames with 2D and 3D joint labels, head, torso alignments, body component occlusions
in the collection, and frames with no labels. Another peculiarity of the MPII dataset is
that it comprises frames from the prior and subsequent frames. However, they are not
labeled.

COCO Dataset. It is the most broadly utilized enormous scope dataset. In our work,
we used the COCO keypoints 2017 dataset. More than 200k pictures of the MS COCO
keypoint dataset [14] in public, and more than 250k person instances are tagged with
17 human joints in this dataset. We train our networks using the COCO 2017 training
dataset, which contains 57K pictures and 150K tagged human instances without us-
ing any additional data. We assess our networks ’ performance with the val2017 (5k
pictures) and the test-dev2017 (20k images) datasets.
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3.2 Experimental Setup and Training Details

To estimate human posture, we used a regression-based model. After detecting humans
with the bounding box, cropped pictures of a single individual are provided in the train-
ing samples. All pictures are resized to a resolution of 384×288 and 256×192 pixels.
As with [23], we used the same training methods and person’s key detection outcomes.
In the [31], they used to coordinate decoding method to minimize quantization error,
which decodes detecting features from downsampled data, which is also used in our
implementation. ReLU activates the function after training the feed-forward layers with
0.1 dropouts. Due to the ability to handle three backbones and the usage of the parame-
ters, we configured the Transformer encoder hyperparameters in a way to avoid creating
an excessive model capacity. To this end, thee stage networks are used throughout all
of our studies. When throwing the forward pass, the time to execute is about 0.8-1.0
milliseconds on the Geforce RTX 2080 2080 GPU. When we compared the multi-view
regression model’s calculation time to the usage of the 2D detector, we can conclude
that the computation time of our multi-view regression model is practically significant.
For the COCO dataset, the Adam optimizer is used to train this model. To minimize
error, first the learning rate at 0.001 is used, then exponentially decreased this rate to
0.0001. To conduct the validation of the MPII dataset, we randomly picked up 350
pictures from the training set to be used for this purpose. For the 300th epoch, all the
single-person samples and the remaining training pictures are utilized. For extreme sit-
uations when centroids are overlapped, an offset is applied to significantly disrupt the
centroids.

3.3 Evaluation Matrics

We utilized the well-accepted approach described in [23] and employed Object Key-
point Similarity (OKS) for the COCO dataset to assess the overall performance. For the
MPII dataset, Percentage of Correct Keypoints (PCK) is used to determine the precision
with which various keypoints may be located within a certain threshold. For each test
image with the head segment length, the threshold is set to 50 percent, and it is marked
as PCKh@0.5.The larger the PCK number, the greater the model’s performance can be
considered.

4 Results and Discussions

4.1 Performance on COCO Dataset

Table 1 shows the outcomes of several 2D pose detection techniques on the COCO
dataset’s validation dataset, as well as the description of the test parameters (approaches,
backbones in models, input picture size, the size of parameters (PM), the GFLOPs net-
work, and AP values). It is clear from Table 1 that our proposed approach PoseTED
achieved more AP score than the popular TFPose (72.3 vs. 71) with the same input size
256× 192. When the input size is increased to 384× 288, our network outperformed
others regression-based methods in terms of AP score (73.7%), particularly from Deep-
Pose [26] (58.3%), PointSetNet [28] (65.7%), PointSetNet [28] (69.8%), and even from
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Table 1: Comparing performance with other state-of-the-art studies using the COCO
val. dataset. We compared the evaluation matrices to the backbones, input size, param-
eter size, and evaluation matrices.

Approaches Backbone Input Size PM GFLOPs AP AP@50 AP@75
Heatmap Based Approaches

CMU-Pose [3] VGG-19 - - - 64.2 86.2 70.1
Hourglass [17] HourGlass-8 256×192 25.1M 14.3 66.9 - -

CPN [6] ResNet-50 256×192 27M 6.20 68.6 - -
SimpleBaseline [30] ResNet-101 384×288 53M 26.7 73.6 89.6 80.3

HRNet [23] HRNet-W32 384×288 28.5M 16.0 75.8 90.6 82.7

Regression Based Approaches
DeepPose [26] ResNet-152 256×192 - 7.69 58.3 - -

PointSetNet [28] ResNeXt-101 - 65.7 85.4 71.8
PointSetNet [28] HourGlass-W48 - - - 69.8 88.8 76.3

TFPose [16] ResNet-50 256×192 - 9.2 71 - -
TFPose [16] ResNet-50 384×288 - 20.4 72.4 - -
PoseTED VGG-19 256×192 33.6M 13.8 68.2 88.7 78.6
PoseTED ResNet-101 256×192 52.1M 19.0 70.5 89.1 78.9
PoseTED DarkNet-53 256×192 52.8M 17.5 72.3 89.6 78.4
PoseTED VGG-19 384×288 33.6M 17.0 71.4 90.1 80.3
PoseTED ResNet-101 384×288 52.1M 23.2 72.1 90.3 80.5
PoseTED DarkNet-53 384×288 52.8M 21.0 73.7 90.5 80.9

TFPose [16] (72.4%) as well as their backbone networks (ResNet-152, ResNeXt-101,
and HourGlass-W48) are significantly larger than ours (DarkNet-53) except TFPose
(ResNet-50). Furthermore, the PoseTED obtained higher AP scores than the famous
heat map-based SimpleBaseline network (73.7 vs. 73.6) when the input size is the same
as the SimpleBaseline network [30]. Moreover, in terms of 50 and 75 percent AP IoU
thresholds, the performance of PoseTED is comparable with others.

Fig. 3 depicts various qualitative findings from the COCO datasets, such as in the
cases of walking, roller skating, basketball, exercising, inline skating, crossing, sitting,
racing cars, and so on. It is seen from these instances that, although twisted postures
have been observed among the public pictures, the estimates are still accurate enough.
Identifying joints in limbs that are not adequately separated from one another and dis-
locate one another are examples of challenging circumstances.

Table 2 demonstrates the evaluation of the COCO test-dev set’s performance with
several regression-based methods such as DeepPose [26], CenterNet [33], Directpose
[25], SPM [18], Integral [24], PointSetNet [28] and TFPose [16] are compared to our
PoseTED as well as heat map-based approaches. As can be shown in Table 2, our
PoseTED outperformed regression-based techniques such as DeepPose, Driectpose,
and Integral while using the same backbone network and input size as the other two
methods. Furthermore, it is also 3.3% and 0.4% higher than the heatmap-based meth-
ods such as G RMI [20] and Personlab [19], respectively, when the backbone network
(ResNet-101) is the same. When the input size is extended to 384×288 pixels, the sug-
gested PoseTED with the backbones (VGG-16 and ResNet-101) beat all regression-
based techniques, except TFPose. However, when the DarkNet-53 is used as a backbone
with the input size 384×288, the PoseTED obtained higher results even from TFPose
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Fig. 3: Various qualitative results from the COCO datasets e.g. in the case of walking,
roller skating, basketball, exercise, inline skatin, crossing, sitting, racing vehicles and
so on.

(72.7 vs. 72.2). Furthermore, our network has greater GFLOPs than other networks,
suggesting that it is also more efficient.

4.2 Performance on MPII dataset.

Our proposed model PoseTED has achieved the highest performance among the regression-
based techniques when tested against the MPII dataset in Table 3. When VGG-19,
ResNet-101, and DarkNet-53 are used as the backbone in our network, 89.7, 88.2,
and 89.5 PCKh@0.5 scores have been obtained through our proposed model PoseTED
which is higher than regression-based methods such as Integral [24] and Carreira et
al. [5]. The PoseTED with the backbone network VGG-19 is also 2% higher than the
heatmap-based method CPM [29] and 7.3% higher than the method presented by Hu et
al. [11] (89.7% vs. 87.7% and 89.7% vs. 82.4%). PoseTED is generally comparable to
heatmap-based techniques in terms of performance.

5 Conclusion

In this article, we introduced a new architecture for regression-based multi-instance
pose recognition called PoseTED. It eliminates the need for complicated pre-processing
and post-processing techniques and employs less heuristic approaches than the prior
methods. The PoseTED employs YOLO-v4 well-known object detector for person de-
tection with a bounding box and STN for cropping the original detected picture. Follow-
ing cropping, three CNN-based backbones (DarkNet-53, VGG-19, and ResNet-101) are
used to extract deep covariance low-level features. Then, a transformer encoder-decoder
with positional encoding is utilized to match queries of human keypoints included in the
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Table 2: Comparing performance with other state-of-the-art studies using the COCO
test dev. dataset. We compared the evaluation matrices to the backbones, input size,
parameter size, and evaluation matrices.

Approaches Backbone Input Size PM GFLOPs AP AP@50 AP@75
Heatmap Based Approaches

Mask RCNN [9] ResNet-50 - - - 63.1 87.3 68.7
G RMI [20] ResNet-101 353×256 42.6M 57.0 64.9 85.5 71.3
PifPaf [13] Dilation ResNet-101 - - - 66.7 - -

Personlab [19] ResNet-101 - - - 67.8 88.6 74.4
Higher-HRNet [7] HRNet-W48 - - - 70.5 89.3 77.2

DARK [31] HRNet-W48 384×288 63.6M 32.9 76.2 92.5 83.6

Regression Based Approaches
DeepPose [26] ResNet-101 256×192 - 7.69 57.4 86.5 64.2
CenterNet [33] Hourglass-2 - - - 63.0 86.8 69.6
Directpose [25] ResNet-101 - - - 63.3 86.7 69.4

SPM [18] HourGlass - - - 66.9 88.5 72.9
Integral [24] ResNet-101 256×256 45.0M 11.0 67.8 88.2 74.8

PointSetNet [28] HourGlass-W48 - - - 68.7 89.9 76.3
TFPose [16] ResNet-50 256×192 - 9.2 70.9 90.5 79
TFPose [16] ResNet-50 384×288 - 20.4 72.2 90.9 80.1
PoseTED VGG-19 256×192 33.6M 13.8 67.3 88.8 74.7
PoseTED ResNet-101 256×192 52.1M 19.0 68.2 89.4 75.8
PoseTED DarkNet-53 256×192 52.8M 17.5 70.3 89.1 77.7
PoseTED VGG-19 384×288 33.6M 17.0 69.1 90.3 76.5
PoseTED ResNet-101 384×288 52.1M 23.2 69.8 90.6 77.5
PoseTED DarkNet-53 384×288 52.8M 21.0 72.7 90.4 79.2

loss calculation. The prediction-based FFN is then used to identify pose keypoints and
visualize them as a vector between human body joints, resulting in enhanced perfor-
mance. The experimental results on MS-COCO and MPII datasets are tested and com-
pared to the recent advanced approaches. The PoseTED outperforms all contemporary
techniques that are state of the arts. However, when people are highly obscured in sit-
uations, it is difficult to estimate these scenarios using our method in certain instances.
Therefore, to be implemented in the future, we would like to work on the previously
mentioned limitations and try to make more powerful backbone networks to experi-
ment with regression-based person identification and posture recognition to enhance
flexibility.
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