
EasyChair Preprint
№ 1590

Early Health Prediction System for ICU Patient
using Machine Learning and Cloud Computing

Asif Ahmed Neloy, Muhammad Shafayat Oshman,
Md. Monzurul Islam, Md Julhas Hossain and Zunayeed Bin Zahir

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 6, 2019

Early Health Prediction System for ICU Patient using
Machine Learning and Cloud Computing

Asif Ahmed Neloy
dept. of electrical and computer

engineering
North South University

Dhaka, Bangladesh
asif.neloy@northsouth.edu

Muhammad Shafayat Oshman
dept. of electrical and computer

engineering
North South University

Dhaka, Bangladesh
shafayat.oshman@northsouth.edu

Md. Monzurul Islam
dept. of electrical and computer

engineering
North South University

Dhaka, Bangladesh
aurkouchchahs@gmail.com

Md Julhas Hossain
dept. of electrical and computer

engineering
North South University

Dhaka, Bangladesh
julhas78@gmail.com

Zunayeed Bin Zahir
dept. of electrical and computer

engineering
North South University

Dhaka, Bangladesh
zunayeed.zahir01@northsouth.ed

u

Abstract—Adaptable Intensive Care Unit (ICU) system is a
key concern for hospitals in developing countries like
Bangladesh. Most of the hospital in Bangladesh lack serving
proper health service due to unavailability of appropriate, easy
and scalable systems. There also appears communication and
information gaps between hospital authority and patient’s
relative. The aim of this project is to build an adequate system
for hospitals to serve the ICU patients with a real-time feedback
system. Based on the doctor’s suggestions, we have primarily
chosen the main factors for our project. In this paper, we
propose a generic architecture, associated terminology and a
classificatory model for observing ICU patient’s health condition
with machine learning and cloud computing. Machine learning
(ML) health prediction is the key concept of this research. IBM
Cloud is the platform for this research to store and maintain our
data. For our ml models, we have chosen the following
algorithms: Naive Bayes, Logistic Regression. For real-time data
and information view, we have developed a Mobile Application
named “ICU Patient Management System - IPMS”. Our system
architecture is designed in such a way that the ml models can
train and deploy in a real-time interval by retrieving the data
from IBM Cloud and the cloud information can also be accessed
through IPMS in a requested time interval. To help the doctors,
the ml models will predict the condition of a patient. If the
prediction based on the condition gets worse, the IPMS will send
an SMS to the duty doctor and nurse for getting immediate
attention to the patient. Combining with the cloud storage,
distributed database system, ml models and mobile application,
the project may serve as a complete medical decision for the
doctors.

Keywords—ICU Care, Machine Learning, Cloud Computing,
ICU Patient Monitoring System, Naive Bayes.

I. INTRODUCTION
Patient Monitoring System is a process where a doctor can

continuously monitor more than one patient, for more than one
parameter at a time in a remote place and also can have control

over medicine dosage [1]. Whether these systems will prove
beneficial for these hospitals depends on the support that will
be provided to ensure the effective use of the systems
implemented and also on the satisfaction of its users, which is
one of the most important determinants of the success of these
systems. Development and evaluation of the ICU decision-
support systems would be greatly facilitated by these systems.
A reliable and efficient real-time remote patient monitoring
system that can play a vital role in providing better patient care.
Devices such as vital sign monitors, mechanical ventilators and
dialysis machines, and some others more are used to support
critical patients whose bodies need time to recover and repair
[2]. Most of the machines are managed manually by
supervising the patient's condition and test reports. In a country
like Bangladesh, where there are only 3 doctors for 10000
people [3], it’s quite impossible to manage so many patients at
a time and also the top experienced doctor has a high demand
of the patient. Also, there is a massive 19% rate of producing
wrong treatment to the ICU and cabin Patients [4]. So, we
thought to reduce the communication and information gap by
taking help from modern technology, especially the machine
learning and cloud computing. Machine learning models can
predict the near future condition of the patients, whether their
condition will increase or decrease, whether they need
ventilation support or not. If the doctor is not present in the
ICU, he/she can send feedback or necessary parameter through
IPMS, to the duty doctor or nurse so that immediate action can
be taken properly. To generalize our models and data, we have
selected IBM Cloud which altogether spans public, private and
hybrid environments. As initially we cannot deploy our models
directly to the hospital servers or cloud service and install our
systems to retrieve data from ICU machines, we had to use
IBM Cloud, IBM Watson Studio for storing, testing and
deploying our whole system. The machine learning models run
within the cloud service and also trains with the live data, the
IPMS also can access the Cloud services through Bluemix [5].

II. MOTIVATION
Health sector seems to be one of the neglected fields in

terms of usage of technology in Bangladesh [6]. Although
other sectors have adequately taken this advantage, health
sector seems to be lagging behind. Government projects to
integrate technology into the health sector has mostly failed.
Patient monitoring has been one of the most neglected fields in
the health sector. Due to inefficient handling of patients during
an emergency, most of the cases result in death or permanent
physical/mental damage to the patients, the main reason being
the attending physician’s inability to monitor the patient’s
vitals immediately [26]. The main method of communication is
a mobile phone when the doctor is absent, resulting in
communication mismatch. Our research installs the mechanism
where the doctor can monitor the patient’s vitals remotely,
taking full advantage of Machine Learning to prescribe an
advanced course and Cloud Computing to access the patient’s
vitals from any remote location. Cloud Computing’s “Always
On” nature guarantees an uptime [7], which makes it
convenient for the users to access the data whenever needed
when a minimal possibility of the server outage. The
application that is developed as a result of this project, will
benefit doctors and patients equally. Doctors can monitor
multiple patients within a short span of time. Patients’ relatives
can get regular updates without having to visit the hospital
every now and then.

III. FIELD SURVEY

A. Decision-making assistant for the Doctors
Accommodate a huge number of patients with a limited

resource is a challenge for a doctor in Bangladesh [8]. To get a
resolvable decision, the doctors will be benefited largely by
this application. Some previous works have integrated cloud
computing to upload patient data into the cloud to viewed later
and machine learning with ICU patient care [9]. We are
proposing a system that will integrate both the features and
take maximum advantage and in the process, proper patient
care to an extended degree of improvement.

B. Field Survey Report

 Before starting the project, we have visited several
hospitals in Dhaka including Dhaka Medical College (DMC),
Bangladesh Medical College (BMC) and also privately visited
doctors to know about the current situation and basic needs for
the ICU patients. One of the core intentions was to know more
about the complete process that conducts the ICU system.
From this survey, we came to know about the parameters that
define the medical condition of a patient, the natural health
conditions and the critical health conditions and most
importantly the crucial time to make adequate decisions.
Health conditions and parameters differ from age to age and
from patient to patient [10]. Also, a single instance can affect
others, like heart disease, can trigger lower pulse or maybe
higher pulse based on the high pressure or low pressure.
Considering all the survey results, we have created the project
plan from step by step building the core components. Based on
the doctor’s suggestion, we only chose to consider age, sex,

weight, pulse, blood pressure, blood circulation, ventilator,
oxygen supply, and internal bleeding as our main factoring
features for this project [11].

IV. SYSTEM DESIGN
The whole system is comprised of six major layouts. Each

of them is briefly described below.

A. Hospital Terminal
Hospital terminal is the main input section for the cloud

storage. Through this terminal, the nurse or duty doctor will
put the prescribed condition and information or the recent
condition of the patient to the IBM Cloud.

Fig. 1. Hospital Terminal

“Fig. 1”, shows the main interface for the hospital. This
interface will be an administrative interface for all authorized
personals. From the main interface, there will be two distinct
option for patients. The register page will be using as the
“registration” process for the patients and the patient update
page will be the windows for an hourly update of the condition.

Fig. 2. Registration and Update page for patients

Fig. 3. Sample Dataset

 “Fig. 2”, describes the distinct pages for registration and
condition update page features. All the information, input
from these terminals will be directly stored in the IBM Cloud
database.

B. Cloud Architecture
To establish the system proposed by the author’s research,

IBM Cloud with IBM Watson was required. In the Bluemix
Console of IBM Cloud, an instance of the Db2 Warehouse on
Cloud service was created [12]. Db2 Warehouse service
supports SQL based database [13], thus it was selected. The
NDX9073 schema was selected to build up the database.
Tables for Patient Registration, Patient Update, Doctor’s info,
ML Result were created, where concerned data were stored.

 “Fig. 3”, Illustrates the sample dataset that is stored through
Hospital Terminal. Patient Registration contained all the
primary data of the patients. Patient Update contained the data
of regular updates of the patient’s condition. For daily
updates, there will be in total 6 reading per day collected from
hospitals terminal.

MLRESULT table stored the data of ml predictions. Main
Credentials were created using IBM’s system [14]. These
credentials were optimized to integrate the Android
Application and Web Application.

C. Machine Learning Models
 The ubiquitous monitoring of ICU patients has generated a
wealth of data which presents many opportunities but also
great challenges.

Fig. 4. System Architecture

 To turn out the best predictive results by using ml takes
carefully selecting the algorithms [15].

a) Import data from IBM Cloud: All the machine ml
models will be auto-deployed from the IBM Watson Studio.
For connecting the central database, the admin from the
master cloud will provide “Username” “password” “Hostname
or IP Address” and “Database Type”. To connect any other
cloud and database with the master database, these pieces of
information are needed to fill out from “Assets” and “Edit
Connection” Sections. “Fig. 5”, shows the process to connect
the Watson Studio models with IBM Cloud database.

Fig. 5. IBM Watson and IBM Cloud Connection

 This process is basically a pipeline between several cloud
storage entities [16]. This connection will be auto-refreshed
after each data is pushed to the cloud. For manually refresh the
data, the “Discover Data Assets” option can be utilized. Also,
in case of checking the newly entered data validation this
manually, control option can regulate the process.

b) Auto Pre-processing of the dataset: We cannot
perform manual pre-processing within our live database [17].
To perform pre-processing from IBM Cloud we have to use
“Refine” function from model building. From Refine function,
a set of instruction can be set to pre-process automatically. For
our dataset, the instructions are - Convert Column Values to
Missing, Remove Empty Rows and Replace Substring. For
every instruction, we have to set the column values and this
will perform automatic cleanse of the live database. After the
cleanse, the dataset will be saved in CSV format. “Fig. 6”,
shows the core process of pre-processing of the dataset.

Fig. 6. Auto-Preprocessing of dataset

c) Watson Machine Learning models: IBM Watson
provides flexible options to create and run ml models [18]. A
model can be created from “Model Builder” option. To use
any existing trained model from local storage or to import any
ml models, the “From File” option is present. For our project,
we will use Jupyter Notebook models by setting the training
parameter as manual [27]. For importing out dataset into the
models we need to select the Pandas DataFrame function to
load the ‘registration’ dataset into our models. IBM Boto
Client can import the required configuration to the notebook
kernel and the dataset onto it. The following code will do the
importing process –

import sys
import types
import pandas as pd
from ibm_botocore. client import Config
import ibm_boto3
from ibmdbpy import IdaDataBase, IdaDataFrame

def __iter__(self): return 0

client_xxxx = ibm_ boto3. client(service_name='s3',
ibm_api_key_id='xxxxxxx’;
ibm_auth_endpoint="https://iam.bluemix.net/oidc/to
ken",
config=Config(signature_version='oauth'),
endpoint_url='https://s3-api.us-
geo.objectstorage.service.networklayer.com')

if not hasattr(body, "__iter__"): body.__iter__ =
types.MethodType(__iter__, body)

df = pd.read_csv(body)

 The dataset will be exported as CSV file format.

d) Select Model Type: As we are working with model
builders, we need to define the parameters for our training
models [19]. The targeted output from our dataset is
“Send_SMS” column which carries two class - “Yes” and
“No”. For this binary feature, we created “Binary Classifier”
for our first model. This model classifies whether to send the
SMS to the doctor or not. The estimator and algorithm for the
model is - Logistic Regression.

Fig. 7. Logistic Regression prediction for feature “Send_SMS”

 Once we set the estimators and the parameters, the Watson
ml engine automatically trained the models according to our
actions and provided the training score. Based on that score,
the IPMS send SMS to the duty doctor.

Fig. 8. Logistic Regression integration with SMS API

 We will choose another model for the features “Ventilator”
and “Condition”. Ventilator score provides the necessity to
install the ventilator for the specific patient. Condition feature
will give the prediction of the health condition of the patient
whether it will increase or decrease or stay stable. If the model
predicts more than 80% chance to decrease the condition, the
SMS API will send the corresponding results to Doctor and
Nurse. “Fig. 9”, illustrates the whole process with SMS API.

 For both of these two features, we implemented “Naive
Bayes” and the estimators are - Decision Tree Classifier. The
estimators basically work as the base predictors for the models
[28].

https://iam.bluemix.net/oidc/token
https://iam.bluemix.net/oidc/token
https://s3-api.us-geo.objectstorage.service.networklayer.com/
https://s3-api.us-geo.objectstorage.service.networklayer.com/

Fig. 9. Naïve Bayes integration with SMS API

e) Deployment of the models: For ensuring the
continuous evolution of our dataset on a large scale and in a
selected time scale, we needed to set a deployment of the ml
models. For our mobile app and automated dataset series, the
“Batch Prediction” performed the best [20]. Batch Prediction
deployment is auto-deployed in a selected time interval with
all the models that we selected for training. For the
deployment, the parameters are following-

TABLE I. Deployment Connection

Input Connection Output Connection

Type - bluemix cloud object
storage

Type - dashdb

{
 "firstlineheader": true,
 "file_name":
"REGISTRATION.csv",
 "infer_schema": "1",
 "file_format": "csv",
 "type":
"bluemixcloudobjectstorage"
}

{
 "type": "dashdb",
 "tablename":
"MLRESULT",
 "schemaname":
"NDXXXXX",
 "writemode": "write"
}

 Once we selected the parameters for the deployment, the
models auto-deployed in selected time series. We can evaluate
the deployment from the “Status” section, if the Status is
“Successful” then the deployment is running successfully and
if not, we need to debug and fix the prominent errors to make
it running.

Fig. 10. Deployment Credentials

f) Create entities for the Models: To store the deployed

ml model’s evaluation, the central database needs to modify
afterward. The “MLRESULT” table stores the written results
from the ml models. From this table, both our mobile app
IPMS and SMS API accessed the predicted results and did
their functions accordingly.

TABLE II. Entities of Machine Learning models

Patient
ID

Condition
(Last

Feedback)

Send_
SMS

Naive
Bayes

Naive
Bayes
Inbuilt

Logistic
Regression

01 Normal No 72.9 55.6 0

09 Critical Yes 85.6 80.6 1

155 Normal No 80.7 56.6 1

147 Decreasing Yes 98.6 88.6 1

 The table allocates each result in a different column. The ml
models scores indicate the testing score of the individual
models. In logistic regression, “0” indicates “No” and “1”
indicates “yes” in column Send_SMS. The table allocates each
result in a different column.

D. Connecting the Android Application with IBM:
 To make the output visible, more user-friendly and under
stable, we introduced our mobile application IPMS [21].
Which is for both doctor and patients relative. It can make a
new perspective to monitor patient even away from the
hospital. It can also relieve the relative of the patient by
monitoring patient condition even from home or from a
remote place. The UI is very friendly and easy to access. Our
app is only utilized as an output device. It is not for entering
new data in the database.

a) Collect dataset from IBM Cloud: The full app is
based on a database from IBM Cloud. The admin will provide

“Username” “password” “Hostname or IP Address” to
connect the app with a database. After connecting the database
from login to patient all will be displayed as an output of ml
model. Every feature of the ml model database is used here.
These connections are auto-refreshed after each data is pushed
or ml models results are updated to the cloud. From “Fig. 11”,
we can see an overview of the working model.

Fig. 11. Android data fetch workflow.

b) Login UI: We made the login panel as reliable as

possible. We did not divide the UI model for doctor and
patient. Both doctor and patient can log in from same Login
UI. Username and access code easily identify the doctor and
patient. The access code is manually generatable from hospital
authority. The first condition is based on ‘username’. If the
username matches it looks for the access code. ‘Patient’ and
‘doctor’ cannot have the same access code. Thus, the user
code can define who is a doctor and who is a patient. If the
doctor access code matches it calls for an intent name
‘doctor’, same goes for the patient. Every patient will receive
a different access code when they will be admitted and only
the db administrator will have the access to provide these
codes [22]. After deciding the patient or doctor, two different
UI model will be opened.

Fig. 12. Login UI principle

c) UI Doctors: Doctor has full access to patient data.
Can easily monitor all the patient condition at a glance as a
short description. All the patient list under the doctor will be
shown on a simple UI. We selected patient admitted date, age,
sex, primary disease and name for short description. We
circulated a linear layout to make the long list visible so that
the doctor can scroll down [23] easily. The simple query
generated to collect date, age, sex, primary disease etc. All this
info is collected from the “Registration” table. All these data
are shown by “textview” and “button view” of the android
studio. If the query fulfilled the condition “Settext”, then it has
been called to place the data on “textview”. To access the full
condition of the patient, the doctor needs to select the
“Details” button. “details” button can call new “Intent”. As we
are representing all the patient list at a glance, shortlist of
functions has been introduced. The doctor has no access to
enter new data. There is an emergency condition that a doctor
can call the nurse, who is allocated for a patient. “Emergency”
button can access the nurse number under the patient. The
query can identify the number from the “Registration” table
through “Fetch” function.

d) UI for Patients: Hospital has their own privacy over
data and the relative of a patient also have the right to know
the condition of a patient [24]. Considering this, we designed
the patient UI so that the patients relative can see the details
and not violating the privacy of the hospital. So, we filtered
the dataset and choose those data that needs to display only to
visualize the current condition of a patient. Here also
“textview” has been set. Then the “settext” changes the
content according to a different patient. This time only
“Registration” table has been accessed to identify the patient's
details.
 The Android UI is specially designed for the doctor. All the
info of the patients will be displayed at a glance with details.
All the problems like blood pressure, heart rate, current
condition etc. depends on patient disease will be shown here.
Our ml prediction results also placed here. The doctor can
easily monitor a patient from here and can have time to time
update. In a short, the whole patient's parameters are shown
here. The query can fetch all the info of a single patient via
"textview” and “settext” functions.

E. Integration of SMS Sending System
 In order to inform about the patient condition to doctors
and patient relatives, we regulated an SMS system. For this,
we connected an SMS API named “BD Bulk SMS”. The API
can send bulk SMS to any local operators. With the API we
can send unlimited numbers of SMS from our system with
negligible time difference because of using the IBM Watson
SMS API gateway [25]. For the process, the system collected
the prediction of the ml model from “MLRESULT” table and
also “Full_Name”, “Patient_ID”, “Send SMS”,
“Contact_Number”, “Ventilator” and “Last_Feedback”
columns from the dataset. If the Send_SMS column is “Yes”
then the system collects corresponding doctors and the

relative’s mobile phone number in the following 11-digit
phone number format “01XXXXXXXXX”.

Fig. 13. SMS API working process

 The column “condition” carries 4 values - Normal, Critical,
Increasing and Decreasing of fallen. Based on the detected
column values, the SMS is requiring to create in a single
String. The API will send selected text based on patient
condition, i.e. “Dear Mr. “Doctor_Name”, “Parameter” of
Patient ID: “Patient_ID, has “MLRESULT” in the latest
report. Please advise a course of action”.

Fig. 14. Sample SMS for critical patients

 After sending the SMS the system moves to the first phase
and repeat the process again based on the ml model prediction.

F. The Central Control Unit (CCU)
 The CCU basically comprised of IBM Cloud Database,
IBM Watson Studio of ml models, Android Application IPMS
and SMS API. CCU is a base store for all the input vector for
the Mobile Application and the Machine learning models.
There is a web interface for data input for the condition of the
patient. This data will be updated by duty doctor for every 6
hours. Furthermore, this section will be using for the “Test
Result” store section.

 The “PatientUpdate” table will store all these data from
daily updates. From the cloud storage, SMS API will access
this table and send the output through mobile application
IPMS. Accessing the cloud through SMS API is a complex
process. Some of the security credentials like password, id,
hostname needed to update from cloud and Watson studio. For
this process “Configure” table was created. To access

credentials, the SMS API only needed to access this table and
save this information in CSV format through SQL query.

Fig. 15. CCU Architecture

V. RESULT TESTING AND ANALYSIS
 Testing part is the most crucial part of this project. As per
as the nature of this project, we had to follow the waterfall
model to deliver each feature [28]. Firstly, we tested the IBM
Cloud data entry process. In this process, we had to fix several
Cloud issues to avoid data loss [29]. We pushed in total almost
700 sample patient info from both Hospital terminal as
registration and daily update schema. we found the following
statistics from data schema.

TABLE III. Cloud Entry Testing

Service Schema Total
Rows

Successful

Success
Rate

NDX9073 Registration 522 489 93.67

NDX9073 Patient
Update

175 165 94.29

 IBM Cloud showed more than 90% data successfully
converted from the terminal to cloud. From this data, the
Watson studio carried out the machine learning model
accuracy and validity.

TABLE IV. Machine Learning Models Accuracy

Model Precision Recall f1-score Support

Naive
Bayes

0.95 0.94 0.93 200

Logistic
Regression

0.90 0.91 0.92 75

 Avg accuracy from the models varied from 93%-96%. For
Validation of the models we established the Confusion Matrix
and the Receiver operating characteristic (ROC) curve [30]
[31]. We observed the following results-

TABLE V. Machine Learning Models Validation

Model Confusion Matrix

Logistic Regression [[50 2]
 [1 22]]

Naive Bayes [[142 12]
 [10 48]]

Naive Bayes Inbuilt [[12 20]
 [5 13]]

 We carefully observed the ROC Curve, whether it could
show the accurate areas under prediction. The ROC Curve
brought out most of the areas under True Positive Rate.

Fig. 16. ROC Curve

 Deploying the machine learning models was the last test to
satisfy all the Watson Studio process. We chose hourly
parameter as deploy condition. All the models will be
deployed when the hourly update of the patient will be input
from the hospital terminal. For each deploy models, all the
accuracy will be validated through the evaluation curve.

Fig. 17. Auto-deployment of models

 After deploying the model, we wanted to see the result in
person by examining in ICU. To do so, we visited Bangladesh
Medical College Hospital (BMC), Uttara, Dhaka to collect
live samples reading and run the machine learning models.
After examining 12 hours, we got the following results –

TABLE VI. Hospital testing reports

Patient age Primary
Disease

Model
Prediction

Actual
Condition

56 Heart Disease Normal Normal

63 Stroke Decreasing Normal

6 Unknown Decreasing Decreased

47 Stroke Normal Increased

 From the 12 hours survey, we collected in the total
condition of 6 patient, among the prediction 4 were correct
and 2 were wrong. As we only used 7 parameters to examine
the condition, the results were satisfactory for small-scale
prediction.

 As the predicting results showed satisfactory scenario, we
moved on to test this results in predicting health condition and
sending SMS task. Logistic regression predicted 560 SMS
needed to be sent as per as the condition forecast, among them
485 was the valid situation and 48 times the model predicted
wrong and 27 times the SMS sending was failed.

TABLE VII. SMS API testing

Total
SMS

Sent Right
Prediction

Wrong
Prediction

Failed
Attempt

560 533 485 48 27

 Nearly 90% accuracy rate also worked for this SMS API
Testing. Most of the wrong prediction case occurred for
“Normal” and “Increasing” condition. This indicates the
correlation between all the health parameters wasn’t
distinguished successfully. For failed attempts of sending, the
SMS API failed to grab the contact number from central cloud
storage. So, the reason couldn’t be identified. This can either
occur for network breakdown or also can occur for central
server responding issues.

 For our Android app verification, we examined each feature
separately and it worked perfectly for most of the parameters.
Only in some cases, like the “Patient Condition” section took
longer to update the reading. The machine learning models
deployed in time but the android “Get” function failed to read
from the table.

 Also, we took a survey among our classmates and faculties
in North South University, Dhaka to give feedback about the
user interface and features, the table shows the survey results
and feedback.

TABLE VIII. Audience Feedback

Total
participant

Good
Interface

Good
Features

Need to
improve

Not good
at all

32 23 22 11 5

 According to their suggestion, we updated and reassembled
our android app user interface and features to make it more
reliable.

CONCLUSION
Health Sector is one of the most rapidly growing field in
science and engineering. Most of the developed countries in
the world catch the latest technological tools to improve the
quality of the treatment. In this case, the developing and
underdeveloped countries in South Asia like Bangladesh
suffers the most. To provide better treatment we require more
advanced technologies with very low cost. We started this
project to bring out a good result in the hospitals to serve the
patient. We used some of the existed techniques and
technologies to give a new shape in the hospital and nursing
sector. Most of the ml models scored varied from an accuracy
of 90% to 96%. The lowest accuracy obtained is 90%. The
IBM Cloud showed good promising actions by keeping more
than 90% success rate. Altogether the results we obtained
from our project and experiments are showing promise to rise
this system in large scale for urban and low economical side
peoples. With the help of this project, a virtual doctor can be
established to serve the people better and monitor patients
with appropriate care. This is also a decision-making assistant
for the doctor. As we have established this project with very
few parameters of the physical segments, we can improve this
project more by adding full parameters to measure the human
body circulations. In the future, we are planning to install an
embedded system to take a live reading from Ventilator,
Medicine Pump, Heart Monitor, and other ICU machines. This
will also increase the overall working accuracy of this project.

ACKNOWLEDGMENT
We would like to express my very great appreciation to
Bangladesh Medical College and Dhaka Eye Care Hospital
authorities. Also, the students and faculties of North South
University for helping us in the survey.

REFERENCES
[1] Gardner R.M., Shabot M.M. (2006) Patient-Monitoring Systems. In:

Shortliffe E.H., Cimino J.J. (eds) Biomedical Informatics. Health
Informatics. Springer, New York, NY

[2] S. Brett, T. Gould, P. McNaughton, Z. Puthucheary, & V. Nangalia
(Eds.). (2015). Handbook of Mechanical Ventilation A User’s Guide.
London: The Intensive Care Foundation.

[3] Ahmed, S. (n.d.). BREAST CANCER: PRESENTATION AND
LIMITATION OF TREATMENT – BANGLADESH PERSPECTIVE.
doi:10.4172/1948-5956.S1.041

[4] Clarke, F & Mcdonald, Ellen & Griffith, Lauren & Cook, D & Mead, M
& Guyatt, G & Rabbat, Christian & Geerts, W & Arnold, D &
Warkentin, T & Crowther, Mark. (2004). Thrombocytopenia in
medical–surgical ICU patients. Critical Care. 8. 1-1. 10.1186/cc2592.

[5] "Rational Unified Process", URL: [online] Available:
https://www.ibm.com/developerworks/rational/library/content/03July/10
00/1251/1251_bestpractices_TP026B.pdf.

[6] Anwar Islam, Tuhin Biswas. Health System in Bangladesh: Challenges
and Opportunities. American Journal of Health Research.Vol. 2, No. 6,
2014, pp. 366-374. doi: 10.11648/j.ajhr.20140206.18

[7] Jlelaty M, and Monzer Y, Factors in Cloud Computing adoption,
Master’s thesis, Lund University, 2012

[8] Joarder, T. (n.d.). Retaining Doctors in Rural Bangladesh: A Policy
Analysis. Retrieved from
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6186485/
DOI:10.15171/ijhpm.2018.37

[9] Clear DATA. (2018). How Machine Learning is Helping us Get Smarter
at Healthcare [Brochure].

[10] Choi, N. G., DiNitto, D. M., & Kim, J. (2014). Discrepancy Between
Chronological Age and Felt Age: Age Group Difference in Objective
and Subjective Health as Correlates. Journal of Aging and Health, 26(3),
458–473. https://doi.org/10.1177/0898264314523449.

[11] W Haider, Agha & G Larson, Martin & S Franklin, Stanley & Levy,
Daniel. (2003). Systolic Blood Pressure, Diastolic Blood Pressure, and
Pulse Pressure as Predictors of Risk for Congestive Heart Failure in the
Framingham Heart Study. Annals of internal medicine. doi:138. 10-6.
10.7326/0003-4819-138-1-200301070-00006.

[12] Catalog-IBM Cloud. (2016, May 01). Retrieved from
https://console.bluemix.net/catalog/ IBM.

[13] Db2 Warehouse. (n.d.). Retrieved from https://www.ibm.com/us-
en/marketplace/db2-warehouse.

[14] Generating service credentials. Retrieved from
https://console.bluemix.net/docs/services/ObjectStorage/os_credentials.h
tml.

[15] Rish, I. An Empirical Study of the Naive Bayes Classifier. in IJCAI-01
Workshop on Empirical Methods in AI. 2001.

[16] Hussam Abu-Libdeh, Lonnie Princehouse, Hakim Weatherspoon,
RACS: a case for cloud storage diversity, Proceedings of the 1st ACM
symposium on Cloud computing, June 10-11, 2010, Indianapolis,
Indiana, USA [doi: 10.1145/1807128.1807165].

[17] Das, Sudipto & Nishimura, Shoji & Agrawal, Divyakant & El Abbadi,
Amr. (2010). Live Database Migration for Elasticity in a Multitenant
Database for Cloud Platforms.

[18] D. A. Ferrucci, "Introduction to this is watson", IBM Journal of
Researchand Development, vol. 56, no. 3. 4, pp. 1-1, 2012.

[19] H. Wu, J. M. Mendel, "Classification of battlefield ground vehicles
using acoustic features and fuzzy logic rule-based classifiers", IEEE
Trans. Fuzzy Syst., vol. 15, no. 1, Feb. 2007.

[20] D. Wang, Robust data-driven modeling approach for real-time final
product quality prediction in batch process operation. IEEE Trans. on
Industrial Informatics, Vol. 7, No. 2, May. 2011.

[21] Jason. (2017, July 05). Benefits of mobile apps. Retrieved from
https://vividus.com.au/insights/benefits-of-mobile-apps/

[22] Devi N.D, A. (2018, November 02). Database Administrator Roles and
Responsibilities in an Organization. Retrieved from
https://www.mercurysolutions.co/blog/roles-and-responsibilities-of-the-
database-administrator.

[23] Linear Layout | Android Developers. (n.d.). Retrieved from
https://developer.android.com/guide/topics/ui/layout/linear

[24] Patient Rights and Responsibilities. (n.d.). Retrieved from
http://www.uhsystem.com/Conway/patient-rights-and-responsibilities.

[25] Getting started with SMS Gateway. (n.d.). Retrieved from
https://www.ibm.com/support/knowledgecenter/en/SS4U29/sms_getting
started.html.

[26] P. Griffiths, A. R. Saucedo, P. Schmidt, G. Smith. Vital signs
monitoring in hospitals at night. (n.d.). Retrieved from
https://www.nursingtimes.net/clinical-archive/assessment-skills/vital-
signs-monitoring-in-hospitals-at-night/5089989.article.

[27] What is the Jupyter Notebook? (n.d.). Retrieved from https://jupyter-
notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html.

[28] Overview: Estimators, transformers and pipelines - spark.ml. (n.d.).
Retrieved from https://spark.apache.org/docs/1.6.0/ml-guide.html.

[29] Data Loss Prevention and Encryption. (n.d.). Retrieved from
https://www.ibm.com/security/services/endpoint-data-protection.

[30] Simple guide to confusion matrix terminology. (2018, October 31).
Retrieved from https://www.dataschool.io/simple-guide-to-confusion-
matrix-terminology/

[31] Plotting and Interpreting a ROC Curve. (n.d.). Retrieved from
http://gim.unmc.edu/dxtests/roc2.htm.

	I. Introduction
	II. Motivation
	III. FIELD SURVEY
	A. Decision-making assistant for the Doctors

	IV. System Design
	A. Hospital Terminal
	B. Cloud Architecture
	C. Machine Learning Models
	a) Import data from IBM Cloud: All the machine ml models will be auto-deployed from the IBM Watson Studio. For connecting the central database, the admin from the master cloud will provide “Username” “password” “Hostname or IP Address” and “Database T...
	b) Auto Pre-processing of the dataset: We cannot perform manual pre-processing within our live database [17]. To perform pre-processing from IBM Cloud we have to use “Refine” function from model building. From Refine function, a set of instruction can...
	c) Watson Machine Learning models: IBM Watson provides flexible options to create and run ml models [18]. A model can be created from “Model Builder” option. To use any existing trained model from local storage or to import any ml models, the “From Fi...
	d) Select Model Type: As we are working with model builders, we need to define the parameters for our training models [19]. The targeted output from our dataset is “Send_SMS” column which carries two class - “Yes” and “No”. For this binary feature, we...
	e) Deployment of the models: For ensuring the continuous evolution of our dataset on a large scale and in a selected time scale, we needed to set a deployment of the ml models. For our mobile app and automated dataset series, the “Batch Prediction” pe...
	f) Create entities for the Models: To store the deployed ml model’s evaluation, the central database needs to modify afterward. The “MLRESULT” table stores the written results from the ml models. From this table, both our mobile app IPMS and SMS API a...

	D. Connecting the Android Application with IBM:
	a) Collect dataset from IBM Cloud: The full app is based on a database from IBM Cloud. The admin will provide “Username” “password” “Hostname or IP Address” to connect the app with a database. After connecting the database from login to patient all ...
	b) Login UI: We made the login panel as reliable as possible. We did not divide the UI model for doctor and patient. Both doctor and patient can log in from same Login UI. Username and access code easily identify the doctor and patient. The access cod...
	c) UI Doctors: Doctor has full access to patient data. Can easily monitor all the patient condition at a glance as a short description. All the patient list under the doctor will be shown on a simple UI. We selected patient admitted date, age, sex, pr...
	d) UI for Patients: Hospital has their own privacy over data and the relative of a patient also have the right to know the condition of a patient [24]. Considering this, we designed the patient UI so that the patients relative can see the details and ...
	The Android UI is specially designed for the doctor. All the info of the patients will be displayed at a glance with details. All the problems like blood pressure, heart rate, current condition etc. depends on patient disease will be shown here. ...

	E. Integration of SMS Sending System
	F. The Central Control Unit (CCU)

	V. Result Testing and Analysis
	Conclusion
	Acknowledgment
	references

