
EasyChair Preprint
№ 3557

MOSIX: Architecture, Job management, Cluster
Management, Filesystem Management

Muhammad Umair Khan

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 5, 2020

 1

Abstract— MOSIX is a cluster management system

offering a single system picture to users and

applications. Users can run multiple processes within

a MOSIX cluster by allowing them to search for

MOSIX resources and assign and migrate

automatically between nodes, without changing the

interface executable environment and the associated

login nodes. Users therefore do not have to change or

connect applications to a specific library, modify

applications, login or copy files to remote nodes or

even know where their programs are going. This

report represents an overview of the MOSIX

architecture in the form of object models, Task

management in clusters, cluster management, and

filesystem management.

INTRODUCTION

MOSIX is a general-purpose distributed system for UNIX. It’s

a gadget which supports cluster computing. It has kernel,

resource sharing algorithms that are tended for high

performance, easy scalability and easy to use it for scalable

clustering. [1] The significance of the MOSIX technology is the

ability of multiple servers and workstations to work

supportively as if component of a system that is system.

MOSIX algorithm is designed in a way that it can efficiently

respond to deviations of resource allocation among different

nodes. It does this task by drifting processes from one node to

another, load-balancing and to resist memory exhaustion in any

node. MOSIX technology is scalable and it challenges to

increase the whole performance by dynamic distribution and

reallocation of the workload and the resources in the nodes of

any size of a computing-cluster [1]. MOSIX in time-sharing

environment supports multiple users for the performing both

parallel and sequential tasks.

MOSIX can change a cluster of Linux of x86 based servers and

workstations to execute like an SMP. The major purpose of

MOSIX is that, in case you generate one or multiple processes

in login nodes, MOSIX allocates and reallocates your processes

among nodes to regulate performance with best possibilities. [1]

The basic of MOSIX is a set of management algorithms that

constantly monitor the events of the processes vs. the existing

resources, in order to return to irregular resource sharing and to

take benefit of the resource with top existence.

The MOSIX algorithms use preemptive process mode to

provide:

• Automatic work distribution-parallel processing or

transition from slower to faster nodes to process.

• Load balance–even distribution of work.

• Migration of processes from the main memory node to

prevent swapping or thrashing.

• Migration of a file server by an intensive I / O

operation.

• Migration from a client node to a file server of parallel

I / O processes.

First we define MOSIX architecture in the first section and the

second section is about cluster job management and the third

section discusses file system management and the fourth

section explains cluster management and in the fifth section we

give an overview of the space allocation and in the last section

we discussed some unique feature of MOSIX as shown in the

following section:

1- MOSIX ARCHITECTURE

The Architecture of MOSIX was designed by prof. Ammon

Barak team at Hebrew University of Jerusalem, and it provides

clusters of Linux with better clustering. [2] Now its prolonged

with new attribute that can provide a network of clusters of

Linux execute as a supportive system of united clusters. Our

system design consists of clusters which are independent, e.g.,

of different groups, whose master desire to distribute their

resources computationally, though still upholding control over

private resources. The major features of the resultant system

are:

• Auto discovery of resources: users do not need to

have any knowledge of any specific resource's

configuration or status.

• Preventive (transparent) migration processes and

automatic load balancing within and across

clusters.

• Modify management that responds to changes in

resources free and required.

• A secure guest-process run-time environment.

MOSIX: Architecture, Job management, Cluster Management,
Filesystem Management

 Muhammad Umair Khan (14849)
 Department of Computer Science

 Riphah International University Lahore, Pakistan

 Email:umairkhan8120@gmail.com

 2

• Support dynamic configuration: partitioning or

combination of clusters.

• Precedence over guest processes and guest

processes for local run-time.

• Prevention of flooding.

• Dynamic environment support: clusters can at any

time be connected or disconnected.

The above four points were got by increasing present cluster of

MOSIX within a grid environment, though the latter four are

new features that were designed for such environment.

A current way to define an OS is the object model. Examples of

objects are processes, files, directories, virtual terminals, pipes,

memory segments, disks, terminals, disk blocks and the like

possible. The OS, with time, generate objects, alters their state,

and typically destroys them. [4]

The perfect split-up between the object and its low level is

necessary for the object model. There is a separate program

called a' type module' for each type of object, which is the only

module which manipulates the internal display explicitly and is

responsible for the integrity of those objects. It delivers abstract

actions on those objects to the rest of the system.

The demonstration information about type module algorithms

are concealed in the type module. The word' operate' is

maintained below for the abstract-level operation, while'

manipulate' is used for the low-level deployment of the actions.

Objects can be either active or passive. Processes in MOSIX are

only active objects. Only those objects that can change the

mode of other objects and thus change the system mode. [4]

Remember that the process can very limitedly change the mode

of any other process. Sometimes we denote programs as active

instances by using language, but these programs are only active

if they are executed by a process.

Each object exists in a single machine in MOSIX. That is, the

demonstration of the object resides in one machine's secondary

or primary storage and only that machine's kernel can

manipulate that object directly. Objects exist in close proximity

to their physical complements, e.g. there is a terminal object in

the machine to which the resulting physical terminal is bound

and there is a pipe object in the machine where the pipe buffer

is stored. [4] The process object is the exemption from this

pattern; during its action, a process can momentarily span

machines.

To be able to function on a remote object on a kernel in one

machine, it must have a clear name for that object. Each

network-wide system object has a general name that recognizes

the object in the network exclusively. These names are not seen

by the user and are generated and dynamically demolished by

the system. [4]All network objects excluding processes are

static, i.e. they are not transferred by machine boundaries. In

these static cases, the general name includes the identity of the

machines in which the object exists, as well as other

information that certifies the object's acquisition and validates

the connection as to whether it was made specific to an object.

1.1- INTERNAL KERNEL STRUCTURE

Kernel is the most important part of the operating system. The

MOSIX kernel consists of three major sub-systems: the lower

kernel, the connector and the upper kernel as shown in Figure

1. The kernel structure is the framework in which the kernel

develops dissimilar definite algorithms. [4] These algorithms

are not intended to be part of a high-level design; they are

therefore only shown in this paper as examples.

1.1.1- LOWER KERNEL

This sub-system deploys the objects that exist in each machine.

It is the kernel only component that has full knowledge of local

objects and is responsible for their reliability. [4]The connector

allows abstract actions to be performed on local objects, but the

lower kernel is independent of the originator.

 The lower kernel provides life support facilities for processes

that exist in the system at the moment. The simple: these

facilities are concerned with processor cycles: computing

resources and primary memory.[4] It multiplexes the primary

memory between the executable processes and the processor,

these executable processes offer operations to change their

computer-generated address space and coordinate with

uncoordinated actions in the upper kernel. The lower kernel

does not respond to the machine's ID. This determines the ID of

the computer, but only uses it to establish general names for its

objects.

 1.1.2- LINKER

 The connection connects upper kernels and lower kernels as

the upper kernel has the ability to request behavior in any device

in the system's lower kernel. [4] The communication protocols

and the individual hardware are covered in the connector. The

connector is the only one with up-to-date network formation

knowledge, i.e. which machines are currently running in the

network.

The connector is accountable for consistent service. Remotely

operations may not constantly spread their target, but failures

will be exceptional and the upper kernel never redoes a failed

operation.

1.1.3- UPPER KERNEL

Upper Kernel software is the logical extension of the program

oprator. Procedures performing operator’s program sometimes

route on the upper kernel. Any method or process running on

the upper kernel examines only the program of the operator and

adds the operator's address space to the process address space.

The core responsibility of this software level is to call

behavioral systems and preserve the process environment while

completely hiding the network from the program of the

operator. [4] But the lower kernel directly requested by the

upper kernel on the same machine in assured rare cases.

 3

2- JOB MANAGEMENT IN CLUSTER

EnFuzion and MOSIX are two packages representing different

cluster management approaches. MOSIX and EnFuzion are two

sets of different methods for organizing the cluster. EnFuzion

is a user-level line-up arrangement that can communicate to a

cluster a programmed number of procedures. [5] Nimrod is a

marketable variety, a device that restricts the sweeping

application of phase variations. MOSIX is also an operating

system (kernel) level program that facilitates preventive process

relocation for near-optimal, cluster-wide reserve management,

effectively eliminating the cluster track as SMP. Usually, users

also use EnFuzion with a predictable cluster operating system,

or MOSIX lacking a queue supervisor.

2.1- ENFUZION

 EnFuzion is a presentation level set that delivers an

extraordinary level environment for the conception, scattering

and organization of huge constraint sweep applications.

EnFuzion is a marketable software that has been discovered in

the Nimrod project to build research ideas. [5] Constraint sweep

applications are classified by many workers, each finding a

fragment of a more global constraint. A computational model is

usually performed several times, whereas there are various

constraints on the model. The jobs are released separately from

an early sprinkling of files and input restrictions, and a complete

aggregation of data, can be distributed into a pool of processors

working together. [5].EnFuzion consists of two main modules,

one generator and the other generator. [5] The generator

proceeds with a computational test frame explanation and

shapes a file that shows how the model is going to be route and

what the authentic restriction arrangements are. The dispatcher

continues a route folder, and works on the connections that are

available at the time are configured and routes. This is achieved

by moving that job to the successor machine, using a first-come

first-serve delivery method. Significantly, when a job begins to

be carried out on a knot, it rests there waiting for it to finish.

This simpler delivery method, as we know and see earlier, can

produce systemically ruthless tasks when changing

implementation times differ in one direction.

EnFuzion does not agree that processors share a file system, and

so files are unoriginal from the server, which challenges the

MOSIX algorithms to move the operation to the knot in which

the file resides. Generally, on a particular file system, many file

processes are completed by a procedure. [5] MOSIX has

significant advantages over additional network file schemes as

it allows the use of a native file system. It clearly denies the

overhead argument between the process and the file server.

Linking EnFuzion and MOSIX gives the cluster an

authoritative stage in which EnFuzion creates, assigns and lines

work, and MOSIX succeeds and improves the power circulation

within the cluster between knots. In some cases, EnFuzion

benefits from the ability of MOSIX to perform preventive

relocation of processes, and MOSIX benefits from a queue

control system. [5] While EnFuzion mainly assigns procedures

consistently through the cluster, it cannot regulate how the

procedures will be conducted when they take placeFor example,

a procedure with a set of constraints has very different memory

requests from those running with a different set of limitations.

This is non-deterministic in most cases and two procedures of

enormous memory constraints may end up on a knot while a

new node has two procedures that have slight memory

constraints. This can affect the exchange on a knot and mark the

cluster's overall performance. With the proactive relocation of

MOSIX protocol, these procedures could be moved to other

knots to allow the transfer. Moreover, MOSIX will balance the

cluster’s capacity if it is not smooth. This will occur moreover

although an EnFuzion route is ending some knots may turn into

lazy or the CPU speediness of the cluster’s knots are dissimilar.

3- FILE SYSTEM MANAGEMENT
MOSIX is cluster handling system that cares preemptive

procedure relocation. In this how we signify MOSIX Direct File

System Access (DFSA), [6] an establishment that can increase

the performance of cluster file systems by permitting a travelled

procedure to directly access files in its current position. This

competence, when pooled with a suitable file system, could

considerably increase the I/O performance and decrease the

network blocking by transferring an I/O severe procedure to a

file server somewhat than the traditional way of carrying the

file’s records to the procedure.

DFSA is appropriate for clusters that achieve a pool of common

disks between multiple machines. With DFSA, it is imaginable

to transfer comparable processes from a consumer knot to file

servers for equivalent access to dissimilar files. [6] Any reliable

file system can be familiar to work with DFSA. To test its

performance, we established the MOSIX File-System (MFS)

which allows stable matching procedures on different files. In

which we designate DFSA and MFS.

3.1- DFSA

The Direct File System Access (DFSA) is a redirect adjustment

that was planned to reduce the extra load of executing file

concerned with system-calls of a transferred procedure. This is

proficient by execution most of those which system calls in the

knot where the process now runs. [6]The main benefits of this

methodology are speedy access to files, avoiding network

blocking, decreasing the network communicating overheads,

and even excluding it entirely when the procedure runs in the

similar knot as the file it uses. [6]

DFSA is used to checks the partition which is used by a certain

system-call that is confirmed to be straddling on all knots and

that its file-system category provisions DFSA. If so, it generally

runs file and directory concerned with system calls openly on

the current knot, and only extraordinary cases are focused to the

 4

home knot. We can example it as, when a file descriptor is

mutual among many procedures.

Read system call on DFSA enabled the sequence of operations

shown in figure 2

As we shown Remote-Deputy protocol in figure 1, the whole

system-call is executed in the isolated knot, and although the

Deputy still wants to be ultimately informed, DFSA avoids the

want to interaction the Deputy per system call, and operations

short summary are queued that is sent to be the deputy,

commonly after a extent of several system calls, and even then,

that summary is piggy-backed to further messages.

Any file system can work with DFSA that fulfils the given

properties: [6]

• A single-knot stability: the outcomes of any

arrangement of read/write processes on a data item by

methods running in a set of knots could also happen if

those methods were all running in one knot.

• Time-stamps on files and data between files in the

similar partition essential be stable and non-

decreasing, irrespective from which knot the changes

are made.

• It must be ensured that directories/files are not clear

when unlinked, any process in the cluster as long as

still holds them to open.

3.2- MFS

A single-knot must be requires DFSA file and directory stability

between methods that run on different knots because even the

similar methods can seems to activate from dissimilar knots. To

use DFSA lacking any common hardware, we applied a

prototype file system, that is called the MOSIX File System

(MFS), that offers a joined vision of all files on all attached file

systems of any type on all the knots of a MOSIX cluster as if

they were all exclusive a single panel. For example, if one

steeds MFS on file /mfs/1456/usr/tmp/myfile before that the

/mfs mount-point, formerly the mentions to the file

/usr/tmp/myfile on node #1456. [6] This makes MFS both

common since /usr/tmp may be of any file system form and

accessible (since MOSIX itself is mountable and all MOSIX

knots are included). MFS tree structure which is shown in

figure 3. [6]

, See figure 4 for MFS uses a client/server model. [6]When a

process matters an MFS-related system-call, the native kernel

acts as consumer and forwards the demand to the suitable MFS

server, client and a server both can used each node. The MFS

server entrées its local file system. Dissimilar other file systems,

MFS provides a single-node uniformity by preserving only one

cache on the server. To device this, the regular disk and manual

caches of Linux are used only in the server and are by-passed

on the consumers. The main benefit of this methodology is

provided that a simple, however mountable scheme for

constancy. Additional benefit of the MFS methodology is

floating the client–server collaboration to the system-call level

which is particularly worthy for huge I/O tasks. Clearly, having

no cache on the consumer is a main disadvantage for I/O tasks

with minor chunk sizes.

 We reminder that MFS does not care great accessibility, E.g. a

letdown of a knot avoids any entree to files that were placed in

that knot.

4- CLUSTER MANAGEMENT SYSTEM

MOSIX clusters consist on a servers and nodes that connect

together and are administered by master and have the similar

version of MOSIX, each node in the cluster having information

about the availability and status of resources in other nodes.

4.1- CONFIGURATION OF SINGLE CLUSTER:

The main feature in a MOSIX cluster is the determination of the

nodes that are participating in the cluster on the way to find the

participating nodes, the nodes in the cluster through the IP

address will be consecutive from each other, so they will have

a constant IP address. [7] There may be some holes in a cluster,

but still we can determine the participant nodes by knowing the

full range of the cluster. MOSIX also has a feature that

automatically detects participating nodes that you just have to

run "mos_autoconf", and it will find nodes in the local TCP / IP

subnet, but this command will run only if all the nodes are

running or if the cluster is too large it will not be able to detect

them.

To improve efficiency of process relocation for each category

of node, you can define whether the node is remote or near the

node you are trying to configure. The reason behind this is that

it is better to jam the migrating nodes when the network is slow.

This will take CPU time, but will reduce network volume and

time. There are some nodes which is known as Aliases Nodes

that are connected to multiple networks and will have multiple

IPs. Then there will be a possibility that another node message

 5

may arrive at that node with an IP address that is different from

the IP used to deliver messages from that node. These nodes

allow MOSIX to differentiate between the IP addresses. So, that

valid messages can arrive and associate them with one of its

configured nodes.

4.2- CONFIGURATION OF MULTIPLE CLUSTER:

The MOSIX clusters are configured to work together

and also run the same MOSIX version. The MOSIX cloud

represents the organization and each cluster of this cloud will

have its own owner. [7] It contains information about the status

and availability status of all nodes connected together through

different groups in each node. Different groups can have a

shared environment such as an NFS file system.

Now how to notify one cluster about another partner cluster.

There is no need to be aware of all groups in the MOSIX cloud,

but you should be aware of the partner groups we will use to

send or receive processes. You will identify each cluster with a

specific name, this name is for that specific cluster that does not

need to be the same across all multi groups and then you can

add some details with it. The other method of finding partner

clusters is similar to that discussed above in single clusters

through their IP addresses. [7]

The partner cluster relates migration between relationship

processes, by default this can occur from both directions.

Processes from local clusters can move to any participant

cluster at any time and can also move from a participant cluster

to a local cluster, but there is an option that we can only allow

one direction migration. We can also set some priorities, the

number between 0 and 65535 is lower, the higher the priority.

When a new cluster partner is defined the priority of that cluster

will be 50 by default. [7]

4.3- MOSIX PROCESS:

Processes are created by the "mosrun" command, these

processes have standard Linux executions when they start but

they run in an environment that allows them to be moved from

one node to another and the home node to the node where this

process will take place.

Configuring process speed: In the previous MOSIX the speed

of the process can be detected automatically, but it is difficult

to detect the speed with immense diversity in the process and

their special characteristics, so you need to know the

information of your computer. The process should trigger or

measure the performance of real applications. [7]

4.4- FREEZING POLICIES

 There is a risk that memory will run out when too many

processes are running on its home node. The process will be

interchanged and performance will be reduced and in the worst

case the swap space will be exhausted and the Linux kernel will

start killing these processes. A possible example for this

scenario is when some other clusters shut down. Which will

force a large number of homecoming processes and the solution

of this problem in MOSIX is to freeze such returning processes.

They will resume these processes will not consume memory

and more resources. [7]

4.5- DISK SPACE FOR FREEZING

You must inform MOSIX where the frozen process will be

located, and you will configure it under the name of the

directory, all these freezing processes make the memory image

in the director "/ freeze". You must ensure that this directory

exists. Otherwise the cold will fail every time or you can also

select different directories. [7]

5- STORAGE ALLOCATION

 MOSIX allocate the storage for the processes and the other

working which are listed below.

5.1- SWAP SPACE

 There should be enough swap space to meet the memory

demands for all processes, this process can migrate but these

processes are likely to return to their home nodes for several

reasons so you should consider the worst case and accordingly

must assign swap location.

5.2- MOSIX FILES

 The MOSIX system creates and maintains a directory "etc /

mosix / var" to manage many small files. [7] When there is no

available disk to create those files, the Mosix operation will be

interrupted. It asked if you want to make it a regular directory

or a symbolic link when Mosix is first installed but you can

change it later.

5.3- FREEZING SPACE

 There are several reasons that a mosquito process can be

temporarily frozen manually by using the command or

automatically when the load is increased or removed from

another cluster. [7] Frozen process memory images are placed

on disk by default if the process's memory content does not have

enough space to write so it is killed to prevent it from filling up

memory space or swap space. Therefore MOSIX placed a

directory on disk for these frozen processes.

5.4- PRIVATE FILE SPACE

 Users have an option that they can create files with the

process that will migrate with them as well, the file size is

smaller by 10MD, then it is kept in memory otherwise they

require backing storage on disk and this system. It is the

responsibility of the administrator to allocate enough space for

them, the system can setup 3 different directories for the private

files which are local Of processes, which are 2 for guest process

from same cluster and 3 for guest process from different cluster.

[7]

6- UNIQUE FEATURE OF MOSIX:

MOSIX provides several unique features to make processing

easier and work on remote nodes without informing the user.

Some of them are listed below:

1. Resource discovery

Resource discovery is performed by providing all nodes in all

clusters about resource availability and status. This was done

through the Gossip Algorithm, in this algorithm each node

 6

regularly updates its resource status and also monitors the CPU

speed, free and used memory and current load on it and it The

information is sent to some randomly selected nodes, usually

the same cluster nodes. [8]

2. Preemptive Process migration:

We need this for multiple points. For load balancing we require

process migration that can move a process from slow to fast

node. [8]Processes can be transferred from nodes that run out

of free memory and cannot perform memory-related tasks. This

can be done automatically or manually, copying the process's

memory image and setting its run time environment. The

memory image is usually compressed which will improve

performance.

Figure3: MOSIX migrates the process a & b from node a to

any free node in the cluster, process b to node b

3. The run-time environment

The MOSIX software layer is implemented in such a way that

applications can run on remote nodes that are away from their

home node. This is done by system calls [8] In MOSIX, it’s an

environment in which the migrated process is also running in

their home nodes will not allow the user to know where the

program is running.

4. The Priority Method

This method ensures always running high-priority local

processes and pushing out all processes with lower priority.

Therefore the guest process will always proceed when the

process of a home cluster comes in and the owners can

determine which cluster they can accept the process from or

from which they can block the cluster without blocking the

process of the recognized cluster can do. [8] By proper

management of priority settings you can share two or more

clusters between users of each cluster.

5. Flood Control

 It can cause flooding when the user generates a large number

of processes with the hope that the program will run it somehow

or allow them to occur spontaneously. This can also happen

when some clusters are cut off which will cause the large

process to return to their home node. [8] Some functions have

been performed in MOSIX to prevent load balancing in a way

that does not allow migration of the process when there is not

enough memory or it sets a limit to limit the number of each

local node when Limits become stricter Additional procedures

are frozen.

6. Load Balancing

Migration processes are constantly trying to reduce the

difference in load between node pairs. If a load imbalance

occurs, it responds quickly to this and switches a system from a

slower node to a faster node to a better node or the best

allocation to a load node that might occur from more than one

load node. Results and comparisons show that the algorithm for

load balancing is only about 2 percent slower than the optimal

allocation.

7. Memory Ushering

There are some hypotheses about the onset of ushering

memory in that it can initiate process migration from a node

with a free memory to which memory is available [8].

Figure4: We use the memory ushering algorithm when the free

memory of a node moves below the threshold value, where the

node with the lowest load survives unnecessary migration or

that the node under the threshold to reduce the communication

process brings

8. Decentralized Control and Autonomy

Every node in the MOSIX framework can work as

independent system. Make all its control decisions

independently. [8] There is no master slave relationship

between nodes, allowing for a dynamic configuration in which

any node with minimal interference can connect to or leave the

network.

7- CONCLUSION

 MOSIX is an operating system that provides gadget for

sharing computational sources across clusters. Its most essential

function is to provide ease of use by providing the concept of

running on the same laptop with multiple processes. By

maintaining the run node environment and the interface of the

home node for jogging on the distant node. As a result, the

consumer will not need to understand the place where the

application will run. Another special attribute is computerized

resource discovery, dynamic workload distribution through the

migrating process, the use of a prioritization technique that will

allow the use of available support for the cloud to migrate

between nodes. This is very beneficial when allocating huge

amounts of nodes to a cluster is unavoidable. Migration of the

system is completed in a sequential manner whenever support

is not available, leaving any cluster flooded and the use of

MOSIX's disruptive configurations.

 7

REFERENCES

[1] R. SUBRAMANIAN, "A TECHNIQUE FOR IMPROVING THE

SCHEDULING OF NETWORK COMMUNICATING PROCESSES

IN MOSIX," SOUTH GUJRAT, 1998.

[2] "MOSIX Architecture," [Online]. Available:

https://www.uninet.edu/umeet/conferencias/DavidSanto/node26.html..

[3] A. Barak, A. Shiloh and L. Amar, "An Organizational Grid of Federated
MOSIX Clusters," IEEE International Symposium on Cluster

Computing and the Grid, p. 8, 2005.

[4] A. BARAK and A. LITMAN, "MOS : A Multicomputer Distributed
Operating," Jerusalem.

[5] D. Abramson, A. Barak and C. Enticott, "Job Management in Grids of

MOSIX Clusters".

[6] L. AMAR, A. BARAK and A. SHILOH, "The MOSIX Direct File

System Access Method for," in Cluster Computing 7, 141–150, 2004,

Jerusalem, 20014.

[7] A. Barak, MOSIX Cluster Management system, Jerusalem, 2017.

[8] A. Barak and A. Shiloh, "The MOSIX Cluster Management System for

Distributing Computing on LINUX CLlusters and Muliti-Cluster
Provate Clouds," Jerusalem.

