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Abstract 

Principal Component analysis or aka PCA is one of the most 

important dimensionality reduction technique out there. This 
paper is devoted towards why we need PCA, what are the 

steps to be taken and what are the benefits of using 
Principal component analysis. While in Data Exploratory 

Analysis we need to reduce the dimension in such a way that 
the maximum of what we need is to be captured.  
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Introduction 

Principal component analysis was invented in 1901 by Karl 

Pearson, as an analogue of the principal axis theorem in 
mechanics; it was later independently developed and named 

by Harold Hotelling in the 1930’s. [1] Depending upon the 
field of the application, it is also named the discrete 

Karhunen-Lo`eve transform (KTL) in signal processing, the 
Hotelling transform in multivariate quality control, proper 

orthogonal decomposition (POD) in mechanical engineering, 
singular value decomposition (SVD) of X (Golub and Van 

Loan 1983), eigenvalue decomposition (EVD) of  XTX in linear 

algebra, factor analysis (for a discussion of the difference 
between PCA and factor analysis) Eckart-Young theorem 

(Harman, 1960), or empirical orthogonal functions (EOF) in 
meteorological science, empirical eigenfunction 

decomposition 

(Sirovich, 1987), empirical component analysis (Lorenz, 

1956), quasiharmonic modes (Brooks et al. 1988), spectral 

decomposition in noise and vibration, and empirical modal 
analysis in structural dynamics.  Principal Component 

analysis or aka PCA is one of the most important dimension 
rotationality technique out there. Principal component 

analysis (PCA) is the process of computing the principal 
components and using them to perform a change in basis on 

the data, sometimes using only the first few principal 
components and ignoring the rest. 

 
Figure 1: Example of the two-dimensional data (x1, x2). The 

original data are on the left with the original coordinate, i.e. 
x1 and x2, the variance of each variable is graphically 

represented and the direction of the maximum variance, i.e. 
the principal component P C1, is shown; on the right the 

original data are projected on the first (blue stars) and 
second (green stars) principal components. 

 

Principal component analysis is used in exploratory data 
analysis for making predictive models. It is commonly used 

for dimensionality reduction by projecting each data point 
onto only the first few principal components to obtain 

lower-dimensional data while preserving as much of the 
data’s variation as possible. The first principal component 

can equivalently be defined as a direction that maximizes 

the variance of the projected data. Principal component 
analysis is the simplest of the true eigenvector-based 

multivariate analyses and is closely related to factor 
analysis. Factor analysis typically incorporates more domain 

specific assumption and solves eigenvectors of a slightly 
different matrix. 

 

The steps to be taken for PCA 

1.  Standardization of data 

Before proceeding with PCA, we need to perform the 
standardization of the data. 

Performing standardization is a crucial step because the 
original variables may have different scales. We need to 

bring them to a similar range to get reasonable 
covariance analysis. 

 



 

2. Covariance Matrix Method: 

In this method, there are two main steps to calculate 
the PCs of the PCA space. First, the covariance matrix of 

the data matrix (X) is calculated. Second, the 
eigenvalues and eigenvectors of the covariance matrix 

are calculated. Figure 2 illustrates the visualized steps of 
calculating the PCs using the covariance matrix method. 

 

Calculating Covariance Matrix (Σ) & Block Diagram: 

The variance of any variable measures the deviation of that 

variable from its mean value and it is defined as follows, 
σ^2(x) = V ar(x) = E((x − µ)^2) = E{x2} − (E{x})^2, where µ 

represents the mean of the variable x, and E(x) represents 
the expected value of x. The covariance matrix is used when 

the number of variables more than one and it is defined as 

follows, Σij = E{xixj} − E{xi}E{xj} = E[(xi − µi)(xj − µj )]. As 
shown in Figure 2, step(A), after calculating the mean of 

each variable in the data matrix, the mean-centring data are 
calculated by subtracting the mean (µ ∈ R(M×1)) from each 

sample as follows, D = {d1, d2, . . . , dN } = {x1 − µ, x2 − µ, . . . 
, xN − µ} .The covariance matrix is then calculated as follows, 

Σ = DDT(see Figure 2, step (B)). 

 

 
Figure 2: Visualized steps to calculate the PCA space using 

the covariance matrix method & Block Diagram 

 

xi, i = 1, . . . , M, while the off-diagonal entries represent the 
covariance between two different variables as shown in 

Equation (1). A positive value in covariance matrix means a 

positive correlation between the two variables, while the 

negative value indicates a negative correlation and zero 
value indicate that the two variables are uncorrelated or 

statistically independent. 

 

 
 

3.  Calculating Eigenvalues (λ) and Eigenvectors (V): 

The covariance matrix is solved by calculating the 
eigenvalues (λ) and eigenvectors (V) as follows: 
 V Σ = λV                                                                 (2) 
where V and λ represent the eigenvectors and eigenvalues 
of the covariance matrix, respectively. 
 

 

The eigenvalues are scalar values, while the eigenvectors are 

non-zero vectors, which represent the principal 
components, i.e. each eigenvector represents one principal 

component. The eigenvectors represent the directions of 

the PCA space, and the corresponding eigenvalues represent 
the scaling factor, length, magnitude, or the robustness of 

the eigenvectors. The eigenvector with the highest 
eigenvalue represents the first principal component and it 

has the maximum variance as shown in Figure 1 (Hyvärinen, 
1970). The eigenvalues may be equal when the PCs have 

equal variances and hence all the eigenvectors are the same 
and we cannot decide which eigenvectors are used to 

construct the PCA space. 

 
Pseudo  Algorithm: 

Algorithm 1: Calculating PCs using Covariance Matrix 
Method 

1: Given a data matrix (X = [x1, x2, . . ., xN]), where N 

represents the total number of samples and xi 
represents the i th sample. 

 

2: Compute the mean of all samples as follows: 

 
3: Subtract the mean from all samples as follows: 

 



 

 
4: Compute the covariance matrix as follows: 

 
5: Compute the eigenvectors V and eigenvalues λ of the 
covariance matrix (Σ). 

6: Sort eigenvectors according to their corresponding 

eigenvalues. 

7: Select the eigenvectors that have the largest 

eigenvalues W = {v1, . . ., vk}. The selected eigenvectors 
(W) represent the projection space of PCA. 

8: All samples are projected on the lower dimensional 
space of PCA (W) as follows, 

 Y = W^T D.  

 

4. Sorting the eigen values in decreasing order 

After completing Eigendecomposition, we need to 
arrange them in decreasing order so that we can select 

the higher values which captures most of the 
features.[9] 

 

5. Selecting the number of principal components 
The first principal component will capture most of the 

variance from the original variables and the second 
principal component captures the second highest 

variance and so on…[9] 
 

6. Selecting the principal components 

PCA can be done only on the numerical variables. If you 
have categorical data, then you need to convert into 

numerical features before applying PCA.[9] 
 

There are some Limitations as well in PCA 
The result of PCA depends on the scaling of the 

variables. This can be cured by scaling each feature by 
its standard deviation, so that one ends up with 

dimensionless features with unital variance. 

The applicability of PCA as described above is limited by 
certain assumptions made in its derivation. In particular 

PCA captures linear correlation between the features 
but fails when this assumption is violated. 

Another limitation is the mean-removal process before 
constructing the covariance matrix for PCA. As an 

alternative method, non-negative matrix factorization 
focusing only on the non-negative elements in the 

matrices. 

  

Time Complexity:  
The algorithm has two computationally intensive steps: 

 Computing the covariance matrix 

 Computing the eigenvalue decomposition of 

the covariance matrix. 

 

Assuming your dataset is ‘X’ in R^{nxp} where n: 

number of samples, p: dimensions of a sample, you are 
interested in the eigenanalysis of X^TX which is the 

main computational cost of PCA. 

 Now matrices X^TX in R^{pxp} and XX^T in R^{nxn} 

have the same min(n, p) non negative eigenvalues and 
eigenvectors. Assuming p less than n you can solve the 

eigenanalysis in O(p^3). If p greater than n (for example 

in computer vision in many cases the dimensionality of 
sample -number of pixels- is greater than the number of 

samples available) you can perform eigenanalysis in 
O(n^3) time. 

 In any case you can get the eigenvectors of one matrix 
from the eigenvalues and eigenvectors of the other 

matrix and do that in O(min(p, n)^3) time. 

 

Application in Real World: 
PCA is predominantly used as a dimensionality reduction 
technique in domains like facial recognition, computer 

vision and image compression. It is also used for finding 
patterns in data of high dimension in the field of finance, 

data mining, bioinformatics, psychology, etc. 

It is one of the most widely used dimension reduction 
techniques to transform larger dataset into smaller 

dataset by identifying the correlation and patterns with 
preserving most of the valuable information. 

It is used to overcome the features redundancy in the 
dataset. Also, it aims to capture valuable information 

explaining high variance which results in providing the 

best accuracy.  It decreases the complexity of the model 
and increases computational efficiency.[10] 

 

Conclusion: 
PCA is a simple but effective method to reduce 

dimensions of linearly distributed data. Image data 
compression using PCA shows an efficient way to store 

huge imagery data with reduced dimensions and 

without loss of generality. However, in general situation 
prior knowledge of the data shape is strongly required 

to attain satisfying PCA result. If the given data set is 
nonlinear or multimodal distribution, PCA fails to 

provide meaningful data reduction.  



 

After applying PCA, you’ll have a set of Principal 

Components, ranked in descending order of how much 
they contribute to describing patterns in the data. In 

statistical parlance, they are ranked according to how 
much variance they explain. 

The first principal component is the most important at 
describing variance in the data. The remaining principal 

components are less critical expressing the variability of 
patterns in the data. 

Behind the scenes, Principal Component Analysis uses 

statistical tools to identify noise and redundancy in the 
dataset. It uses the covariance matrix to analyze: 

Variance of each feature. It will show if a feature is 
relevant or pure noise. Strength of linear relationship 

between pairs of features. This helps to spot redundant 
features. 

So, at the end of the day, what PCA will produce a set of 

principal components which: 

 Reduce noise, by maximizing feature variance. 

 Reduce redundancy, by minimizing the 

covariance between pairs of features. 

The basis of PCA is the covariance matrix and, in 

practice, there are two approaches to identify the 

principal components: 

 Calculate the eigenvectors of the covariance 

matrix. 

 Calculate the Singular value Decomposition of 

the covariance matrix. 
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IMPLEMENTATION : 

Import numpy as np 

def pca( number_components,data): 

if not 0<= number_components<=data.Shape[1]: 

raise ValueError(‘The number of features are less than the number of components’) 

#calculate the covariance matrix 

cov_matrix=np.cov(data.T); 

#calculate the eigen things 

eig_vals,eig_vecs=np.linalg.eigh(cov_matrix); 

#codes are the same 

eig_pairs=[(np.abs(eig_vals[i]),eig_vecs[:,i]) for i in range(len(eig_vals))] 

#Sorting All of them 

eig_pairs.sort(key=lamndax:x[0],reverse=True) 

#Getting the selected vectors in a form of matrix 

final=[eig_pairs[i][1].reshape(data.shape[1]) for i in range (number_components)] 

#Creating the Projection Matrix, multiplying by identify in an addons 

projection_matrix=np.hstack((final)); 

#transforming the data  

y=data.dot(projection_matrix); 

Return y; 
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