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Abstract.  Denoising of the Electromyography (EMG) signal is critical in the diagnosis of muscle illnesses and several 

EMG-based mechatronics applications. This paper presents an improved EMG denoising method based on the Discrete 

Wavelet Transform (DWT) and the Non-Local Means (NLM) estimates. The DWT-based denoising method is quite 

effective in reducing the noise present in high-frequency regions. Unfortunately, this method demands large 

decomposition levels to mitigate the noise in low-frequency regions. The NLM method is efficient in mitigating noise 

from low-frequency regions but its performance is limited by the rare patch effect that results in signal distortion. 

Henceforth, these techniques are unable to meet the growing demand of the new generation applications. Subsequently, 

an improved denoising technique that effectively integrates the capabilities of both NLM and DWT is proposed in this 

paper. The performance of the proposed method is evaluated and compared to the proposed work on the signal taken 

from the EMGLAB database. 
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1 Introduction 
 

Electromyography (EMG) is a myoelectric signal that specifies the information on the electrical activities of the 

human neuromuscular system. These signals have a vital role in several applications including psychomotor and 

neuromuscular research, neurological diagnostics, and robot limb control [1]. However, these signals often get 

contaminated with artifacts during their acquisition, recording, and transmission process. The noises that affect these 

biopotential signals generally come from electrodes, cables, data collection equipment, and amplifiers. Moreover, 

even the body itself influences the signal acquisition from the body surface such as motion artifacts.  

     Several mathematical frameworks for EMG denoising in the literature are based on filtering, Empirical Mode 

Decomposition (EMD) [2], DWT [3], NLM [4], Variational Mode Decomposition (VMD) [5], and Generalized 

Variational Mode Decomposition (GVMD) [6]. The EMD-based denoising [2] approaches tend to enhance the 

signal-to-noise ratio (SNR) but are less efficient in preserving the morphological structure of EMG signals [7]. 

Furthermore, these methods are computationally expensive when it comes to extracting intrinsic mode functions 

(IMFs) [8]. The VMD is used to decompose the signal into a set of modes generated using a non-recursive process 

such that the spectrum of each mode is concentrated around center frequencies. However, its centre frequencies 

cannot be flexibly adjusted [6]. The DWT-based denoising approach is effective in removing only the high-

frequency noise which results in signal distortion and information loss. Moreover, accessing the very low-frequency 

components requires substantial decomposition levels that lead to computational overhead [3]. Inversely, the NLM- 

based methods effectively remove the low–frequency noise but suffers from the rare-patch effect due to its 

incompetence in high-frequency regions [4]. In this paper introduces a competitive method utilizing the efficacy of 

both DWT- and NLM-based techniques for EMG signal denoising.  

    This paper is structured as: Section 2 explains the materials and methods while Section 3 describes the proposed 

EMG denoising approach and performance metrics. Next, section 4 discusses the qualitative analysis of the results. 

Finally, the conclusion is presented in Section 5. 

 

2 Materials and Methods 

 

Let's say that the real EMG signal x(i), the noise n(i), and the noisy version of the EMG signal S(i), are all related as 

follows: 
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The number of samples in the signal S(i) is N. The purpose of this research is to remove noise from a corrupted 

EMG signal, S(i) without impacting the EMG's morphological components. This section briefly explains the DWT- 

and  NLM-based EMG denoising techniques. 

 

2.1 Discrete Wavelet Transform (DWT)-Based Denoising 

 

The wavelet-based denoising techniques are widely preferred for denoising the EMG signals due to their inherent 

time-frequency resolution [9].  It has become a powerful tool for nonstationary signal analysis due to the availability 

of multiple wavelet functions. The DWT-based denoising methods are implemented in three steps where the signal 

is decomposed into detail and approximation coefficients in stage 1. In stage 2, the signal is denoised by 

implementing thresholding on the obtained detailed coefficient. Finally, the signal is reconstructed from the 

modified coefficients.  

    In DWT, a signal can be disintegrated and recreated using low- and high-pass filters with impulse responses L(i) 

and H(i), respectively. The approximation coefficient from the particular decomposition level is fed into these filters 

to get higher-level approximation and detailed coefficients. These filters are related as follows: 
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    After decomposition, the detailed coefficients are exposed to the thresholding techniques for denoising the signal. 

These techniques are broadly classified into two categories namely Hard and Soft Thresholds. The Hard Threshold 

is a keep or kills rule and it is more suited only when the detail coefficient is either a signal or a noise coefficient 

which is generally not the case. On the contrary, the  Soft Threshold (Cf. Eq. (3)) is preferred when the detail 

coefficient contains both signal and noise [10].  
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where λ is the threshold value, Dj,k  and  ̂    denotes the detail and estimated coefficients, respectively. This method 

denoises the high-frequency noise well but demands large decomposition levels to diminish the noise from low-

frequency regions. A higher decomposition level means more filter banks, which increases computing time and 

complexity. The last approximation coefficient will still contain residues of very low-frequency noise components 

even after a larger number of decompositions. The elimination of crucial diagnostic information from the EMG 

signal is also a result of the thresholding of larger detail coefficients. The quality of the denoised EMG signal is 

affected as a result of this. Moreover, the efficacy of these methods depends on the noise characteristics’ estimation 

that helps to compute its optimum threshold value at any decomposition level. An inappropriate threshold setting 

results in the loss of important signal information, resulting in a poorly denoised EMG signal. 

 

2.2 Non-Local-Means (NLM)-Based Denoising 

 

The NLM algorithms were originally developed for image denoising. However, the algorithms have evolved and 

have been applied to EMG signal denoising due to their repetitive characteristics similar to that of the EMG [11].  

The NLM method calculates an estimate for each sample in the noisy EMG signal. The estimated    sample value 

Ŝ(m) can be expressed as the weighted sum of n samples in the search neighborhood. The centers of the local 

patches that occur inside a search neighborhood of R(m) correspond to m and n for a given signal. Each patch will 

have Bδ samples ranging from –P : P. Subsequently Bδ = (2P + 1) samples where δ represents the patch number. 

The following is a representation of the estimated signal: 
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here,  ( )  ∑  (   )  is the total of the weight values over a search neighborhood (  [    ]) and  (   ) is 

the weight value specified as: 
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Where δ is the patch width (–P : P) in Eq. (5) and   is a variable that ranges over Bδ. The bandwidth parameter, τ 

determines how much smoothing will be applied to the signal. The discrepancy between the data points of the 

patches centered at m and n, accordingly, is represented by d. The weight value is calculated by summing the 

difference value over δ and normalizing it. There have been other weighting approaches presented, but the most 

accepted is squared patches with a central reference point. A patch correction technique is used to achieve better 

results in the instance of image de-noising as follows: 
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     The under averaging of high-frequency areas due to the infrequent patch effects [12] results in signal distortion. It 

a computationally demanding as each sample is estimated over the entire search neighborhood. 

  

3 Proposed W-NLM EMG Denoising Method 
 

The DWT and NLM algorithms are two powerful denoising approaches with a complementary set of advantages and 

limitations. Subsequently, combining these approaches can result in an effective EMG denoising technique. 

However, a direct cascading of these approaches will result in an ineffective and computationally expensive 

denoising system. Henceforth, this research work presents an effective method of combining these approaches to get 

the desired results. 

 

 

 

  

 

 

 
       
        
 

 

 

 
Fig.3. Block diagram of the W-NLM EMG de-noising approach 

 

     The proposed W-NLM method is implemented in the following three steps: 1) Signal Decomposition using DWT  

2) denoising using NLM and thresholding 3) signal reconstruction. A block diagram representation of the proposed 

work is illustrated in Fig. 3. 

 

Wavelet Decomposition: Initially, the acquired signal (given in Eq.(1)) is decomposed using DWT to get detailed 

(D1)-and approximation (A1)-coefficients. The signal is decomposed to a level such that it maintains the signal's 

morphological structure and keeps computations low. A single-level decomposition is selected after several 

experimental analysis, in this paper. Furthermore, a wide range of mother wavelet function’s performance was 

compared in terms of SNR output (SNRout), root mean square error (RMSE), and percent root distortion (PRD) as 

performance measures. On basis of preliminary experimental analysis, Symlet wavelet function of order 9 (‘sym9’) 

was chosen for decomposition of the signal [8].  

 
Denoising the Signal: In this stage, the decomposed signal is denoised using NLM estimation and thresholding. The 

DWT’s detailed coefficients are exposed to soft thresholding techniques for denoising the signal. The various 

strategies for thresholding are available in the literature such as VisuShrink [10], SURE-Shrink [12][13], 

NeighShrink [14], and NeighShrinkSURE [15]. The NeighShrinkSURE is an upgraded version of NeighShrink 
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thresholding approach [16]. A performance comparison of various threshold selection techniques was conducted at 

different SNRin. On basis of preliminary results, NeighShrinkSURE is selected for Soft Thresholding of detail 

coefficients.  

     The approximation coefficients A1 being low-frequency coefficients are denoised by applying the NLM method. 

The selection of the following NLM parameters is crucial for the proposed work: patch half-width (P), the search 

neighborhood half-width (Q), and the bandwidth parameter (τ). The patch half-width P chooses the scale to compare 

the patches. Moreover, raising the neighborhood half-width M (which results in a "less local" search) should 

improve performance, in principle. Although a wider search neighborhood (2Q+1) provides better estimation, it 

increases the computational load. The smoothness degree provided to the given signal is determined by the 

parameter τ. Over-smoothing and patch similarity problems will occur if τ is too large or too small. The value of τ is 

chosen in the majority of the previous research [4] so that it is proportionate to noise standard deviation.  SNRout for 

various combinations of P and Q values averaged across the developmental set at a given SNR level of 5 dB. The 

ideal   and Q values were determined to be 6 and 900 samples, respectively. Similarly, on comparing the SNRout for 

various values of τ, its value is taken as 0.65σ. 

 

Wavelet Reconstruction: Following noise removal, the enhanced EMG signal is subjected to a reverse 

decomposition (Inverse DWT). The signal is reconstructed using the modified detail and approximation coefficients. 

 

Performance Measures: We have used the SNRin, SNRout, RMSE, and PRD as the performance measures [17]. SNRin 

and SNRout measure the signal-to-noise ratio before and after denoising. In contrast, RMSE is a measure of error 

between the original and denoised signal, and the PRD identifies the distortion present in the denoised output. Eq. 

(7-10) represents the performance measures used.  
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Fig. 4. Denoising of the EMG signal with W-NLM and reference methods (a) Clean EMG signal, (b) Noisy signal at 0 dB input 

SNR, (c) DWT, (d) NLM, and (e) W-NLM. 
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4 Experimental Results  

 

The performance of the proposed work is evaluated on synthetic EMG signals available on the EMGLAB database 

[18]. It provides synthetic EMG signals generated using a model closely resembling the physiology of skeletal 

muscles and a line source model for needle positioning consistent with clinical studies. Three signals S00101, 

S00111, and S00121 were taken from the database, and each signal consists of 50000 samples. 

    This section presents the performance validation of the proposed work while exporting a comparative study of 

reference methods [4, 18] in different scenarios. The AWGN is added to synthetic EMG signals to generate different 

SNR levels. The comparison of W-NLM with DWT and NLM in denoising an EMG signal is demonstrated in Fig. 4. 

The noisy EMG signal (Fig 4(b)) is created by adding AWGN noise to the healthy EMG signal (Fig. 4(a)). The input 

SNR of the signal is set at 0 dB for this experiment. As it is observable from the results, the W-NLM  has effectively 

denoised the signal and retained the signal’s morphological structure. Furthermore, the two references have distorted 

the information present in the EMG signal. 

 

                 
 

Fig. 5.  Performance Comparison in terms of SNRout of the proposed with existing work for various input SNR. 

 

    Whereas, the reference methods show a sharp decay in SNRout for the drop-in input SNR. The PRD metric is 

employed to determine the amount of distortion present. Distortion should be kept to a bare minimum. For all input 

SNR levels, the W-NLM method has the least RMSE and PRD values. The improvements in SNRout for a given EMG 

report are plotted in Fig. 5. Here, the performance is evaluated at SNRin of -5dB, 0dB, 5dB, and 10dB. As shown by 

the results, the SNRout of the proposed W-NLM technique is much greater than that of other existing methods. 

 
Table 1. Performance comparison of the proposed work with exiting methods at different SNRin.  
 

EMG 

Records 

SNRin DWT-based denoising NLM-based denoising Proposed W-NLM Method 

SNRout RMSE PRD SNRout RMSE PRD SNRout RMSE PRD 

S00101 -5 1.92 0.073 27.6 5.32 0.063 20.5 9.12 0.053 14.4 

0 5.01 0.061 22.9 8.81 0.051 16.5 12.2 0.042 11.5 

5 10.6 0.045 14.8 13.8 0.036 10.7 16.7 0.028 7.53 

10 14.2 0.027 9.21 16.2 0.022 7.13 19.2 0.016 5.23 

S00111 -5 2.01 0.070 27.4 5.51 0.061 20.3 9.32 0.051 14.2 

0 5.23 0.058 22.6 9.01 0.049 16.3 12.4 0.039 11.3 

5 10.8 0.043 14.6 14.01 0.034 10.5 16.9 0.025 7.34 

10 14.4 0.025 8.99 17.2 0.021 6.88 19.4 0.015 4.98 

S00121 -5 1.73 0.075 27.7 5.12 0.065 20.7 8.89 0.055 14.6 

0 4.82 0.063 22.9 8.61 0.053 16.8 11.9 0.044 11.7 

5 10.4 0.048 14.9 13.6 0.038 10.9 16.5 0.030 7.72 

10 13.9 0.029 9.42 16.7 0.024 7.37 18.9 0.018 5.45 
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Table 1 shows the quantitative analysis in terms of SNRout, RMSE, and PRD values concerning three test EMG 

signals at different SNRin. The SNR levels of the input are fixed at -5dB, 0dB, 5dB, and 10dB. The results show that 

SNRin drops, and the SNRout degrades gradually for the proposed method.  

       

5 Conclusion  
 

The efficiency of DWT- and NLM-based denoising techniques are exploited to propose an EMG denoising method 

in this paper. In other words, the proposed method retains the efficacy of NLM in low-frequency zone and DWT 

methodology in reducing high-frequency noises. The DWT decomposes into the detailed and approximation 

coefficients. Subsequently, the detail coefficient is Soft Thresholded to diminish the high-frequency noise. Further, 

the signal is exposed to the NLM technique to remove the low-frequency noise. The W-NLM significantly reduces 

the computing time to that of NLM and DWT methods. The performance of the proposed method has been validated 

on various EMG signals in different noisy conditions.  
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