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GRTgaz has launched a major program for improving the assessment and the reduction of methane emissions due to
leaks from its gas transmission network and facilities. The industrial assets of GRTgaz notably include thousands of
gas delivery units, each containing pipes, gas pressure regulator(s), filter(s), shutoff valve(s), safety relief valve(s). . .
The leak detection campaign on the gas delivery units then requires significant resources and a lot of time. Targeting
the assets that are the most likely to leak is therefore an important challenge for improving the campaign efficiency,
moving forward the implementation of corrective measures, and reducing the methane emissions.

This work aims to explore XGBoost (Extreme Gradient Boosting) Cox survival regression model, associated with
SHAP (SHapley Additive exPlanations) method, and Bayesian Networks using BayesiaLab software, to identify and
explain the effect of different features on reliability of natural gas transmission assets, based on field feedback data.
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1. Introduction

GRTgaz is a major operator in the high-pressure
gas transportation sector. The company has a pub-
lic service mission aimed at guaranteeing the con-
tinuity of gas transmission, and a genuine com-
mitment to promoting renewable gas and to the
energy transition in the territories.

GRTgaz is committed to reduce its environmen-
tal impact and, as a priority, its direct emissions. It
has launched a major program for improving the
assessment and the reduction of methane emis-
sions due to leaks from its gas transmission net-
work and facilities. In parallel, GRTgaz joined
the OilGas Methane Partnership (OGMP 2.0), a
parternship launched by the United Nations Envi-
ronment Program (UNEP) with the support of the
European Commission, which provide a frame-
work for methane emissions reporting and for
their efforts to reduce them. The European Com-
mission is working on a new regulation which will
provide standards about measurement, reporting

and immediate reduction of emission.
GRTgaz has thousands of asset which includes gas
delivery units, each containing several pipes, gas
pressure regulator(s), filter(s), shutoff valve(s),
safety relief valve(s), manual valves... The leak
detection campaign on the gas delivery units then
requires significant resources and a lot of time.
To improve the campaign efficiency, field data
processing methods based on AI (Artificial Intel-
ligence) are investigated for analysing ”methane
emissions” influencing factors, that is, internal and
external parts of an asset acting on the rate of gas
leaks Brissaud et al. (2010).

Available field data are: knowledge about
the industrial assets, maintenance activities per-
formed for repairing the “external leak” failure
modes, and up-to-date results of the methane leak
detection campaign. A major issue is the charac-
teristics of the input data, notably regarding the
assets. In fact, these factors can be binary (i.e.
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yes or no), numerical (e.g. size, pressure. . . ) or
textual (e.g. manufacturer, position. . . ). In addi-
tion, most of the factors are not known for all
the assets (i.e. incomplete data) and erroneous
values are inevitable (bad filling of the database),
which limits the application of certain statistical
approaches Brissaud et al. (2019). Considering
only the assets for which the factors are fully
known and confident would eliminate a larger
part of the park, making the reduction of methane
emission inefficient. It is therefore required that
the proposed methods can deal efficiently with
these constraints.

2. Methodology

2.1. Data and target variables

The used data represents around 30,000 items
(regulators, filters, safety relief valves, shutoff
valves and pipes), each of them has up to 30
given features, an observation period from 1 to 15
years where a certain number of failures (notably
for the ”external leakage” failure mode) is ob-
served. Each type of these items is analysed sep-
arately with two models: XGBoost Cox survival
and Bayesian Network. In XGBoost Cox survival,
the target variable is the ”mean time to failure”
(MTTF) which is the observation time divided by
the number of leaks. If an item has 0 observed
leak, then the target variable is ”right truncated”
(or censored) and equal to the observation time.
At the opposite, the Bayesian models do not han-
dle censored data. Therefore, in the supervised
Bayesian model, the target is the ”leak rate”,
which is the total number of leaks divided by
the observation time. Moreover, this ”leak rate” is
normalized to handle the heterogeneous scales of
values.

2.2. XGBoost Cox Survival

Cox proportional hazards model Cox (1972), is
essentially a regression model commonly used in
medical research for investigating the association
between the survival time of patients and one
or more predictor variables. The purpose of the
model is to evaluate simultaneously the effect of
several factors on survival time. In other words, it

allows us to examine how specified factors influ-
ence the rate of a particular event happening (e.g.
death, failure...) at a particular point in time. This
rate is commonly referred to as the hazard rate (in
our case, this is a ”leakage rate”). Predictor vari-
ables (or features) are usually termed covariates in
the survival-analysis literature.

The Cox model is expressed by the hazard func-
tion denoted by h(t). Briefly, the hazard function
can be interpreted as the risk of ”failing” (in our
case, the risk of leaking) at time t. It can be
expressed as follow:

h(t) = h0(t)× exp(b1x1 + b2x2 + ...+ bpxp)(1)

Where:

• t represents the survival time (in our case, the
”time to failure”, where the failure is a leakage)

• h(t) is the hazard function determined by a set
of p covariates (x1, x2, ...xp)

• the coefficients (b1, b2, ..., bp) measure the im-
pact of covariates.

• h0(t) is called the baseline hazard. It corre-
sponds to the value of the hazard at time t if
all the xi are equal to zero.

XGBoosta is a scalable machine learning sys-
tem for tree boosting, available as an open source
package. Its impact has been widely recognized
in a number of machine learning and data mining
challenges Chen and Guestrin (2016). XGBoost
handles efficiently the missing data, hence no im-
putation method is needed. It has many learning
objectives, here we use ”Cox survival regression”.
For right censored survival time data (i.e. when
no leak is observed during the observation time),
the MTTF is ”coded” by a negative value. The
predictions are the Risk score which is the haz-
ard ratio: HR = exp(marginal prediction) in
the proportional hazard function h(t) = h0(t) ×
HR. The Concordance Index or C− index

is used as an evaluation metric for this model. It
is a generalization of the area under the ROC

curve (AUC) that can take into account censored
data. It represents the global assessment of the

ahttps://xgboost.ai/
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model discrimination power which is the model’s
ability to correctly provide a reliable ranking of
the survival times based on the individual risk
scores Uno et al. (2011).The C− index is not
implemented in XGBoost, it is computed with the
following formula:

C-index =

∑
i,j 1Tj<Ti

· 1ηj>ηi
· δj∑

i,j 1Tj<Ti
· δj

(2)

With:

• ηi, the risk score of a unit i
• 1Tj<Ti = 1 if Tj < Ti else 0
• 1ηj>ηi

= 1 if ηj > ηi else 0
• δj = 0,1 is a binary event indicator

Similarly to the AUC, C-index = 1 corresponds
to the best model prediction, and C-index = 0.5
represents a random prediction.
For the interpretability of the results, a Shapley
additive explanations (SHAP)b library is used as a
complement of XGBoost Scott and Su-In (2017).
Starting from a mean value, the SHAP value
represents the positive or negative effect of each
factor (given the value of this factor). Dedicated
graphs show the average impact of each factor on
the target, and the impact of each value of the
factors.

2.3. Bayesian Network

Bayesian networks Jouffe and Conrady (2020)
are implemented by BayesiaLab, a commercial
software tool. The 10th version, issued in 2021,
is used for the present study. Both discrete (in-
cluding binary and textual) and continuous values
are handled. However, continuous values need to
be discretized. A genetic algorithm is used to
automatically perform this task (nine other algo-
rithms are also available, plus a manual mode).
Moreover, when discrete values are numerous for
a given factor, they need to be aggregated into
smaller numbers of “sets” (e.g. about five values,
depending on the quantity of data). Missing values
are inferred by a structural Expectation Maximiza-
tion (EM) algorithm, the set of observations is
supplemented with one weighted observation per

bhttps://shap.readthedocs.io/en/latest/index.html

combination of the states of the jointly unobserved
variables. Each weight equals the posterior joint
probability of the corresponding state combina-
tion. (other algorithms, including entropy-based,
static or dynamic imputations are also available).

First, unsupervised structural learning is per-
formed, using the maximum spanning tree al-
gorithm. It is by far the quickest Unsupervised
Structural Learning Algorithm. It only relies on
two passes: The first pass consists of computing
the a priory weight of all binary relationships
between all variables. The second pass constructs
the Maximum Weight Spanning Tree of those re-
lationships.
Five other algorithms are also available. This tool
is very convenient for investigating the relation-
ships between factors. Each factor is depicted by
a node and it is linked to the “most dependant”
other factors by arrows. An “automatic mapping”
allows drawing a planar network where the size of
each node is proportional to its force (i.e. degree
of dependency with linked nodes). In addition,
the variable clustering can group the factors in
“classes”, which constitutes kinds of “families”
where factors are strongly dependant.

Second, supervised learning is performed, us-
ing the naive Bayes algorithm (seven other algo-
rithms are also available). A Naive Bayes network
has a predefined structure in which the “target
node” is the parent of all the other nodes. This
structure implies that the target node is the cause
of all the other nodes and that the knowledge
of its value makes each node independent of the
others. Meaning that this approach models the
relationship of each factor with a selected “target”
which is, in our case, the leak rate. Then, it is
possible to depict the total or direct (i.e. marginal)
effect of the factors on the “target”, using var-
ious illustrations: networks, curves, histograms,
graphs. . . Finally, the inference is used to esti-
mate the leak rate based on the factors. Despite
these strong assumptions, which are unjustifiable
in most cases, the small number of probabilities to
estimate makes this structure very robust, with a
short learning time.
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3. Results and Analysis

3.1. XGBoost Cox Survival

In this section we present the main results only for
gas pressure regulators. Starting with XGBoost
Cox survival, Fig.1 represents the risk score of
each item as function of the MTTF. Negative
values represent right censored data (items that
did not leak during the observation time), the risk
score of these items is close to zero as expected.
On the other hand, the risk score of the items with
MTTF > 0 is an exponential inversely propor-
tional to the MTTF. The C− index of this model
is 0.93.

Fig. 1. Risk factor calculated by XGBoost for each
item as function of the MTTF (negative values represent
censored data).

We use SHAP to better understand the results of
the model. Fig.2 shows the global feature impor-
tance plot, where the global importance of each
feature is taken to be the mean absolute value
for that feature over all the given samples. Note
that features starting with ”S ” are the ones re-
lating to the ”site” where the asset is installed,
and not to the asset itself. For the first four most
important features we show the individual SHAP
dependence plots in the figures below. They il-
lustrate the effect that a single feature has on
the predictions made by the model, every dot is
an item, and the vertical dispersion shows that
the same value for a feature can have a different
impact on the model’s output for different items.
This means there are non-linear interaction effects

Fig. 2. Feature importance SHAP bar plot.

in the model between that feature and the other
features. As mentioned before, XGBoost handles
missing values, they are represented in SHAP by
grey ticks attached to the y-axis. Fig.3 shows how
the model output varies by the regulator position
value. The position R1L1 represents the highest
risk, this is expected since the first regulators (R1)
of the first line (L1) are the ones that operate the
most.

Fig. 3. SHAP dependence plot, showing how the
model output varies by the position value.

Fig.4 shows how the model output varies by
the manufacturer value. It is observed that man-
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Fig. 4. SHAP dependence plot, showing how the
model output varies by the manufacturer value.

ufacturer ”R” is more subject to leaks than other
manufacturers. Fig 5 and Fig 6 show how the
model output varies by the manufacturing year
and the commissioning year of each item respec-
tively. Younger regulators have a lower leak risk,
however the risk is plateaued when they are older
then thirty years.

Fig. 5. SHAP dependence plot, showing how the
model output varies by the manufacturing year value.

3.2. Bayesian Networks

The Bayesian network models bring another in-
sight to the problem. Starting with the unsuper-
vised structural learning (i.e, no selected target)
which can find any kind and any number of

Fig. 6. SHAP dependence plot, showing how the
model output varies by the commissioning year value.

probabilistic relationships between variables in a
data set. Fig.7 shows the result of the ”Maxi-
mum Weight Spanning Tree” learning algorithm
which consists of computing the prior weight

of all binary relationships between all variables,
then constructs the Maximum Weight Spanning
Tree of those relationships. It is a practical ba-
sis for performing variable clustering. As we can
see, seven different variable clusters were formed,
shown by different colors. The size of each node
is proportional to its force. We observe ”families”
of correlated features, such as those relating to
the dimensions (in yellow), to the age of assets
(in purple), and to the architecture of the unit (in
pink).

Then with supervised learning, we attempt to
find the best probabilistic characterization of the
Target Node (leak rate), (i.e, producing a useful
predictive model). We used the Naive Bayes net-
work since it has a predefined structure in which
the Target Node is the parent of all the other nodes.
This structure implies that the Target Node is the
cause of all the other nodes and that the knowledge
of its value makes each node independent of the
others. Fig.8 shows the mapping of this model, the
variables are ordered by their direct effect on the
target.

To check if the results of the Naive Bayes model
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Fig. 7. Unsupervised Bayesian mapping showing the
relation between variables.

are compatible with the XGBoost Cox Survival
model, we check the direct effect of the position
and manufacturer variables on the leak rate. First
we fix all the other variables probabilities to the
mean, then we select the position and the manu-
facturer values with the highest risk in XGBoost
model: R1L1 and R (see Fig.9 and Fig.10 left),
the rate value shows an increase of 0.856 and
0.393 respectively. We do the same for the low-
est risk values (R2L2 and Other) (see Fig.9 and
Fig.10 right). The rate value shows a decrease of
1.799 and 0.793 respectively. These results are
compatible with XGBoost Survival model, since
the features values follows the same order (from
the least to the most leaking).

BayesiaLab curve analysis shows the correla-
tion between the target and each variable. Fig.11
shows the correlation of the commissioning and
manufacturing year with the leak rate, older reg-
ulators have a higher leak rate, which is compati-
ble with the XGBoost Survival Cox model result,
however, the plateau effect is only observed when
considering a ”mean effect” between the commis-
sioning and manufacturing years.

Fig. 8. Supervised Bayesian mapping showing the ef-
fect of variables on the target.

Fig. 9. Naive Bayes direct effect of position on the
leak rate (rates have been normalized).

Fig. 10. Naive Bayes direct effect of manufacturer on
the leak rate (rates have been normalized).

4. Conclusion

In this paper we have tested the use of two ma-
chine learning models on field data, to analyse
the influencing factors of leak rate. The result of
the investigation of the two models shows that
both are efficient to analyse the leak factors of the
assets, and to identify those that are most likely to
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Fig. 11. Naive Bayes model correlation between
Commissioning and Manufacturing year with the leak
rate.

leak, even with data of different nature (discrete,
continuous. . . ) and missing values.

Bayesian networks implemented by BayesiaLab
are very convenient because of a dedicated soft-
ware tool that can perform all the suitable analysis
and provide illustrations of the results. However,
it is a commercial tool. XGBoost is also powerful.
It is an open-source library, but it requires more
experience in data handling and programming. To
get illustrations of the results, a SHAP library is
required.

Considering the identification of the assets that
are most likely to leak, the two methods do not
provide the same results. However, because of
a ”risk-based” approach, these results should be
only considered as indicators for optimizing a
policy of methane emission reduction. Therefore,
the results of both methods are used for further
campaigns of gas leak detection. The feedback
collected in the following months will then be
used for evaluating the actual ”success rate” of
each method for the identification of ”leaky as-
sets”.
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