
EasyChair Preprint

№ 468

Anomaly Detection and Diagnosis for

Container-based Microservices with Performance

Monitoring

Qingfeng Du, Tiandi Xie and Yu He

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 30, 2018



Anomaly Detection and Diagnosis for
Container-based Microservices with

Performance Monitoring

Qingfeng Du, Tiandi Xie, and Yu He

School of Software Engineering, Tongji University, Shanghai, China
{du cloud, xietiandi, rainlf}@tongji.edu.cn

Abstract. With emerging container technologies, such as Docker, mi-
croservices -based applications can be developed and deployed in cloud
environment much agiler. The dependability of these microservices be-
comes a major concern of application providers. Anomalous behaviors
which may lead to unexpected failures can be detected with anomaly de-
tection techniques. In this paper, an anomaly detection system(ADS) is
designed to detect and diagnose the anomalies in microservices by moni-
toring and analyzing real-time performance data of them. The proposed
ADS consists of a monitoring module that collects the performance data
of containers, a data processing module based on machine learning mod-
els and a fault injection module integrated for training these models. The
fault injection module is also used to assess the anomaly detection and
diagnosis performance of our ADS. Clearwater, an open source virtual
IP Multimedia Subsystem, is used for the validation of our ADS and
experimental results show that the proposed ADS works well.

Keywords: Anomaly detection · Microservices · Performance monitor-
ing · Machine learning.

1 Introduction

At present, more and more Web applications are developed in microservice design
for better scalability, flexibility and reliability. An application in microservice ap-
proach consists of a collection of services which is isolated, scalable and resilient
to failure. Each service can be seen as an application of its own and these ser-
vices expose their endpoints for communicating with other services. With the
adoption of a microservice architecture, a lot of benefits can be got. For example,
software can be released faster, and teams can be smaller and focus on their own
work.

To generate enough isolated resources for such a number of services, the
following virtualization techniques are widely used. Virtual Machines(VMs) are
traditional ways of achieving virtualization. Each created VM has its own oper-
ating system(OS). Container is another emerging technology for virtualization
which is gaining popularity over VMs due to its lightweight, high performance,
and higher scalability[1]. And the created containers share host OS together.



2 Qingfeng Du et al.

The development of virtualization technologies, especially container technol-
ogy, has contributed to the wide adoption of microservice architecture in recent
years. And the service providers start to put greater demands on the dependabil-
ity of these microservices. Service Level Agreements (SLAs) are usually made
between service providers and users for specifying the quality of the provided
services. They may include various aspects such as performance requirements
and dependability properties[2]. And severe consequences may be caused by a
violation of such SLAs.

Anomaly detection can help us identify unusual patterns which do not con-
form to expected patterns and anomaly diagnosis can help us locate the root
cause of an anomaly. As anomaly detection and diagnosis require large amount
of historic data, service providers have to install lots of monitoring tools on their
infrastructure to collect real-time performance data of their services.

At present, there are two main challenges faced by these microservice providers.
Firstly, for container-based microservices, what metrics should be monitored.
Secondly, even if all the metrics are collected, how to evaluate whether the be-
haviors of the application are anomalous or not.

In this paper, an anomaly detection system(ADS) is proposed and it can
address these two main challenges efficiently. The proposed ADS gives a proto-
type for service providers to detect and diagnose anomalies for container-based
microservices with performance monitoring.

The paper is organized as follows: Section II reviews the technical background
and some widely used anomaly detection techniques. Section III first presents our
ADS and its three main components. Section IV presents the implementation of
the proposed ADS in detail. Section V provides validation results of the proposed
ADS on the Clearwater case study. Section VI concludes the contribution and
discusses the future work.

2 Background and Related Works

2.1 Backgroud

Microservice architecture is a cloud application design pattern which shifts the
complexity away from the traditional monolithic application into the infrastruc-
ture[3]. In comparison with a monolithic system, microservices-based arhitech-
ture creates a system from a collection of small services, each of which is iso-
lated, scalable and resilient to failure. Services communicate over a network using
language-agnostic application programming interfaces (API).

Containers are lightweight OS-level virtualizations that allow us to run an
application and its dependencies in a resource-isolated process. Each component
runs in an isolated environment and does not share memory, CPU, or the disk
of the host operating system(OS)[4]. With more and more applications and ser-
vices deployed on cloud hosted environments, microservice architecture depends
heavily on the use of container technology.

Anomaly detection is the identification of items, events or observations which
do not conform to an expected pattern or other items in a dataset[5]. In a normal



Anomaly Detection for Container-based Microservices 3

situation, the correlation between workloads and application performance should
be stable and it fluctuates significantly when faults are triggered[6].

2.2 Related Work

With widely adoptions of microservice architecture and container technologies,
performance monitoring and performance evaluation become a hot topic for
the containers’ researchers. In [7], the authors evaluated the performance of
container-based microservices in two different models with the performance data
of CPU and network. In [8][9], the authors provided a performance comparison
among a native Linux environment, Docker containers and KVM(kernel-based
virtual machine). They drew an conclusion that using docker could achieve per-
formance improvement according to the performance metrics collected by their
benchmarking tools.

In [2], the authors presented their anomaly detection approach for cloud ser-
vices. They deployed a cloud application which consisted of several services on
several VMs and each VM ran a specific service. The performance data of each
VM was collected and then, processed for detecting possible anomalies based
on machine learning techniques. In [6], the authors proposed an automatic fault
diagnosis framework called FD4C. The framework was designed for cloud ap-
plications and in the state-of-the-art section, the authors presented four typical
periods in their FD4C framework including system monitoring, status charac-
terization, fault detection and fault localization. In [10][11][12], the authors paid
attention to the system performance. To detect anomalies ,they built models
with historical performance metrics and compared them with online monitored
ones. However, these methods require domain knowledge (e.g. the system inter-
nal structure). Although these papers only focus on VM-level monitoring and
fault detection, they give us much food for thought and methods can be used in
container-based microservices similarly.

This paper is aimed at creating an ADS which can detect and diagnose
anomalies for container-based microservices with performance monitoring. The
proposed ADS consists of three modules: a monitoring module that collects the
performance data of containers, a data processing module which detects and
diagnoses anomalies, and a fault injection module which simulates service faults
and gathers datasets of performance data representing normal and abnormal
conditions.

3 Anomaly Detection System

This section overviews our anomaly detection system. There are three modules
in our ADS. Firstly, the monitoring module collects the performance monitoring
data from the target system. Then, the data processing module will analyze
the collected data and detect anomalies. The fault injection module simulates
service faults and gathers datasets of performance monitoring data representing
normal and abnormal conditions. The datasets are used to train machine learning



4 Qingfeng Du et al.

models, as well as to validate the anomaly detection performance of the proposed
ADS.

For the validation of our ADS, a target system composed of several container-
based microservices is deployed on our container cluster. The performance moni-
toring data of the target system are collected and processed for detecting possible
anomalies.

Usually, a user can only visit the exposed APIs from upper application and
can not access the specific service deployed on the docker engine or VM directly.
Thus, our ADS is not given any a priori knowledge about the relevant features
which may cause anomalous behaviors. The proposed ADS has to learn from the
performance monitoring data with machine learning models itself.

3.1 Monitoring Agent

A container-based application can be deployed not only on a single host but
also on multiple container clusters[13]. Each container cluster consists of several
nodes(hosts) and each node holds several containers. For applications deployed
in such container-based environments, performance monitoring data should be
collected from various layers of an application(e.g., node layer, container layer
and application layer). Our work is mainly focused on the container monitoring
and microservice monitoring.

Container monitoring Different services can be added into a single container,
but in practice, it’s better to have many small containers than a large one. If
each container has a tight focus, it’s much easier to maintain your microservices
and diagnose issues. In this paper, container is defined as a group of one or more
containers constituting one complete microservice, it’s same as the definition of
pod in Kubernetes. By processing the performance data of a container, we can
tell whether the container works well.

Microservice monitoring In this paper, a container contains only one specific
microservice and a microservice can be deployed in several containers at the
same time. By collecting the performance data of all the related containers,
we can obtain the total performance data of a specific microservice. And we
can also know whether a microservice is anomalous by processing these service
performance data.

3.2 Data Processing

Data processing tasks Data processing helps us to detect and diagnose anoma-
lies. Carla et al defined an anomaly as the part of the system state that may
lead to an SLAV[2]. We use the same definition of anomaly as stated in Carla’s
work. An anomaly can be a CPU hog, memory leak or package loss of a container
which runs a microservice because it may lead to an SLAV. In our work, there
are two main tasks: classify whether a microservice is experiencing some specific
anomaly and locate the anomalous container when an anomaly occurs.



Anomaly Detection for Container-based Microservices 5

Data processing models Anomaly detection techniques are based on ma-
chine learning algorithms. There are mainly three types of machine learning al-
gorithms: supervised, unsupervised and semi-supervised. All of these algorithms
can be applied to classify the behaviors of the target system with performance
monitoring data.

To detect different types of the anomalies which may lead to SLAVs, super-
vised learning algorithms are used. In our ADS, supervised learning algorithm
consists of two phases, shown in Fig. 1 and Fig. 2.

Fig. 1 shows the training phase. It demonstrates how classification models
are created. Firstly, samples of labelled performance data representing different
service behaviors are collected and stored in a database. These samples are called
training data. Then, data processing module trains the classification models with
these training data. To simulate actual users requests, a workload generator is
deployed. To collect more performance data in different types of errors, a fault
injection module is deployed and it will inject different faults into containers.
With more samples collected, the model will be more accurate.

The second phase is the detection phase. Once the model is trained, some
real-time performance data can be collected and transferred to data processing
module as inputs, and the data processing module can detect anomalies occurring
in the system with the trained model. For the validation of the data processing
module, some errors will be injected to the target system, and then the data
processing module uses the real-time performance data to detect these errors.

The anomaly of a service is often caused by the anomalous behaviors of one or
more containers belong to this service. To find out whether the anomaly is caused
by some specific container, time series analysis is used. If several containers run
a same microservice, they should provide equivalent services to the users. The
workload and the performance of each container should be similar. For this
reason, if an anomaly is detected in a microservice, the time series data of all
the containers running this microservice will be analyzed. The similarity among
the data will be measured and the anomalous container will be found.

Fig. 1. Training phase, offline.



6 Qingfeng Du et al.

Fig. 2. Detection phase, online.

3.3 Fault Injection

Fault injection module is integrated for collecting the performance data in var-
ious system conditions and training the machine learning models. To simulate
real anomalies of the system, we write scripts to inject different types of faults
into the target system. Four types of faults are simulated based on the resources
they impact: high CPU consumption, memory leak, network package loss and
network latency increase.

This module is also used to assess the anomaly detection and diagnosis per-
formance of our ADS. As shown in Fig. 2, after the classification models are
trained, the fault injection module injects same faults to the target system, and
real-time performance data are processed by the data processing module. The
detection results are used for the validation.

4 Implementation

This section presents the implementation of the three modules of the proposed
anomaly detection system.

Fig. 3. Implementation of the ADS.



Anomaly Detection for Container-based Microservices 7

A prototype of the proposed ADS is deployed on a virtualized platform called
Kubernetes. As shown in Fig. 3, the platform is composed of several VMs. VMs
are connected through an internal netowrk. A target system in microservice
architecture is deployed on the platform for the validation and the target system
consists of several containers running on different VMs. The monitoring module
installs a monitoring agent on each VM for collecting real-time performance data
and stores the collected data in a time-series database called InfluxDB. The data
processing module gets the data from the database and executes processing tasks
with the data. The fault injection module and the workload generator work by
executing bash scripts on another VM.

4.1 Monitoring module

As shown in Fig. 3, a monitoring agent is deployed on each of the VM. In a
monitoring agent, several open-source monitoring tools are used for collecting
and storing performance metrics of the target system such as cAdvisor and
Heapster. CAdvisor collects resource usages and performance monitoring data
of all the containers while Heapster groups these data and stores in a time series
database called InfluxDB. The metrics in table 1 are collected for each service
and container including CPU metrics, memory metrics and network metrics.

Table 1. Monitoring metrics

Metric name Description

cpu/usage Cumulative CPU usage on all cores.
cpu/request CPU request (the guaranteed amount of resources) in millicores.
cpu/usage-rate CPU usage on all cores in millicores.
cpu/limit CPU hard limit in millicores.
memory/usage Total memory usage.
memory/request Memory request (the guaranteed amount of resources) in bytes.
memory/limit Memory hard limit in bytes.
memory/working-set Total working set usage. Working set is the memory

being used and not easily dropped by the kernel.
memory/cache Cache memory usage.
memory/rss RSS memory usage.
memory/page-faults Number of page faults.
memory/page-faults-rate Number of page faults per second.
network/rx Cumulative number of bytes received over the network.
network/rx-rate Number of bytes received over the network per second.
network/rx-errors Cumulative number of errors while receiving over the network.
network/rx-errors-rate Number of errors while receiving over the network per second.
network/tx Cumulative number of bytes sent over the network.
network/tx-rate Number of bytes sent over the network per second.
network/tx-errors Cumulative number of errors while sending over the network.
network/tx-errors-rate Number of errors while sending over the network.



8 Qingfeng Du et al.

4.2 Data processing module

The data processing module executes the two tasks for each service as discussed
in Section III. The classification models are trained with four algorithms included
in library scikit-learn. The results are shown in Section V.

– Support Vector Machines (configured with kernel=linear)

– Random Forests (configured witih max depth=5 and n estimators=50)

– Naive Bayes

– Nearest Neighbors (configured with k=5)

After the detection phase, the anomalous service and the type of the anomaly
can be got(e.g. CPU hog in Service A). Next, the anomalous containers should be
diagnosed. If there is only one container running the anomalous service, it can be
diagnosed as the anomalous container directly. However, if several containers are
running the anomalous service, an algorithm is needed to diagnose the anomalous
one. Clustering of time series data is a good solution and some algorithms can
be used easily[14][15]. However, clustering needs a large amount of data, and
people seldom deploy such a number of containers. In this case, we assume that
there is only one anomalous container at the same time.

The distance between two temporal sequences x = [x1, x2, ..., xn] and y =
[y1, y2, ..., yn] can be computed via Euclidean distance very easily. However, the
length of the two given temporal sequences must be the same. DTW algorithm
is a better choice to measure the similarity between two temporal sequences. It
finds an optimal alignment between two given sequences, warps the sequences
based on the alignment, and then, calculates the distance between them. DTW
algorithm has been successfully used in lots of fields such as speech recognition
and information retrieval.

In this paper, DTW algorithm is used to measure the similarity between the
time series performance data of the given containers. Once an anomalous metric
in a service is detected, the time series data of all the containers running that
service will be analyzed by the algorithm. And the most anomalous container
which has the maximal distance from the others will be found.

4.3 Fault injection module

An injection agent is installed on each container of a service. Agents are run
and stopped through an SSH connection and they simulate CPU faults, memory
faults and network faults by some software implementations.

CPU and memory faults are simulated using a software called Stress. Network
latency and package loss are simulated using a software called Pumba.

Injection procedures are designed after the implementation of the injection
agents. To create a dataset with various types of anomalies in different containers,
an algorithm is designed and shown in 1. After the injection procedure is finished,
the collected data are used to create anomaly datasets.



Anomaly Detection for Container-based Microservices 9

Algorithm 1 Fault injection procedure.

Input: container list, fault type list, injection duration, pause time, workload
1: GenerateWorkload(workload)
2: for container in container list do
3: for fault type in fault type list do
4: injection =

Injection(fault type, injection duration)
5: inject in container(container, injection)
6: sleep(pause time)
7: end for
8: end for

5 Case Study

5.1 Environment description

Kubernetes is an open-source system for automating deployment, scaling, and
management of containerized applications. The target system(Clearwater) runs
on a kubernetes platform which consists of three VMs(which are rain-u2, rain-u3
and rain-u4). Each VM has 4 CPUs, a 8 GB memory and a 80 GB disk. VMs are
connected through a 100 Mbps network. A monitoring agent is installed on each
of the VM. The installed monitoring tools include cAdvisor, Heapster, InfluxDB
and Grafana.

Clearwater is an open source implementation of IMS (the IP Multimedia
Subsystem) designed from the ground up for massively scalable deployment in
the Cloud to provide voice, video and messaging services to millions of users[16].
It contains six main components, namely Bono, Sprout, Vellum, Homer, Dime
and Ellis. On our kubernetes platform, each container runs a specific service
and can be easily scaled out. In this paper, our work is focused on Sprout, Cas-
sandra and Homestead constituting the Call/Session Control Functions(CSCF)
together, and we perform experimentations for these three services.

5.2 Clearwater experimentations

First of all, Clearwater is deployed on our kubernetes platform. All the services
are running in containers and the number of the replica of component homestead
is set to three. It means there will be three containers running the same service
homestead. The performance data of a service is the sum of all the containers
running this service.

Then, two datasets(dataset A and dataset B) are collected with the help of
the fault injection module. The injection procedures are shown in Table 2. By
combining the two datasets together, a third dataset can be obtained as dataset
C. After being standardized and labelled, a dataset has a structure as shown in
Table 3.

Since these three services constitute the CSCF function together, there will
be some relationships among their performance data. And the question whether



10 Qingfeng Du et al.

we can detect the anomalies with the performance data of only one service
comes. To answer this question, each dataset is divided to three smaller datasets
according to the service, and the classification algorithms are also executed on
these datasets for the validation. The structure of the divided dataset is shown
in Table 4.

Table 2. Fault injection procedures

Experiment Injection procedures

container list = {sprout,cassandra,homestead1}
fault type = {CPU, memory,latency,package loss}

dataset A injection duration = 50min
pause time = 10min
workload = workloadA(5000 calls per second)

container list = {sprout,cassandra,homestead1}
fault type = {CPU, memory,latency,package loss}

dataset B injection duration = 30min
pause time = 10min
workload = workloadB(8000 calls per second)

Table 3. Dataset structure

Time Cassandra Cassandra other Homestead Sprout label
CPU Mem metrics metrics metrics

2018-05-08T09:21:00Z 512 70142771 ... ... ... nomal
2018-05-08T09:21:30Z 350 120153267 ... ... ... cass mem leak
2018-05-08T09:22:00Z 322 70162617 ... ... ... sprout cpu hog

Table 4. Service dataset structure

Time Cassandra CPU Cassandra Mem other metrics label

2018-05-08T09:21:00Z 512 70142771 ... nomal
2018-05-08T09:21:30Z 350 120153267 ... cass mem leak
2018-05-08T09:22:00Z 322 70162617 ... sprout cpu hog

As we inject four different types of faults to three different services, there
will be 12 different labels. We also collect the data in a normal condition and in
a heavy workload, thus, there are 14 different labels totally in these datasets.



Anomaly Detection for Container-based Microservices 11

5.3 Validation results

Detection of anomalous service Four widely used algorithms are compared
in this paper for training the classification models of our datasets, which are
Support Vector Machine(SVM), Nearest Neighbors(kNN), Naive Bayes(NB) and
Random Forest(RF). The purpose of these classifiers is to find out the anomalous
service with the monitored performance data.

There are 757 records in dataset A, 555 records in dataset B, and 1312
records in dataset C. For each of the dataset, 80 percent of the records are used
as training set to train the classification model and the rest 20 percent are used
as test set to validate the model. The validation results are shown in Table 5
and 6.

Regarding the validation results in Table 5, the detection performance of
the anomalous service is excellent for most of the classifiers with measure values
above 0.9. For dataset A, all of the four classifier give excellent validation results.
For dataset B, three of these classifiers give wonderful results except SVM. For
dataset C, the performance of Random Forest and Nearest Neighbors still look
excellent. These results shows that the dataset created by our ADS is meaningful,
and both of the Random Forest and Nearest Neighbors classifiers have excellent
detection performance.

To answer the question whether anomalies can be detected from the per-
formance data of only one related service, we performed same experiments on
the three divided datasets from dataset C. The classification results of the di-
vided datasets(shown in Table 6) are not as good as the results using the entire
dataset. However, Nearest Neighbors classifier still gives satisfying results on all
of the three divided datasets. SVM seems to be the worst because it doesn’t
perform well on datasets with multiple classes. Consequently, Nearest Neighbors
classifier is recommended if you have to use a dataset with only one service.

Table 5. Validation results of three datasets

Dataset Measure kNN SVM NB RF

Precision 0.93 0.95 0.95 0.95
A Recall 0.93 0.92 0.93 0.92

F1-score 0.93 0.93 0.93 0.92

Precision 0.98 0.75 0.98 0.99
B Recall 0.97 0.82 0.97 0.99

F1-score 0.97 0.77 0.97 0.99

Precision 0.96 0.82 0.83 0.93
C Recall 0.96 0.80 0.79 0.91

F1-score 0.96 0.78 0.78 0.91

Diagnosis of anomalous container The network latency anomaly of con-
tainer homestead-1 is used for the validation. As discussed previously, there are



12 Qingfeng Du et al.

Table 6. Validation results of three services in dataset C

Service Measure kNN SVM NB RF

Precision 0.91 0.48 0.61 0.89
Cassandra Recall 0.89 0.35 0.51 0.75

F1-score 0.90 0.33 0.50 0.76

Precision 0.92 0.27 0.56 0.71
Homestead Recall 0.90 0.36 0.48 0.72

F1-score 0.91 0.28 0.46 0.69

Precision 0.88 0.31 0.47 0.85
Sprout Recall 0.86 0.33 0.46 0.78

F1-score 0.86 0.28 0.42 0.79

three containers running the service homestead. As a microservice application,
the workload and the performance data of these three containers should be simi-
lar. Thus, the container with the furthest distance from others will be considered
as the anomalous container. A python program is implemented to help us diag-
nose the anomalous container, and it gets the latest 20 performance data from
the InfluxDB, calculates the distance and shows the result as shown in Fig. 4.

Fig. 4. Diagnosis of the anomalous container.

6 Conclusion and future work

In this paper, we analyzed the performance metrics for container-based microser-
vices, introduced two phases for detecting anomalies with machine learning tech-
niques, and then, proposed an anomaly detection system for container-based
microserivces. Our ADS relies on the performance monitoring data of services



Anomaly Detection for Container-based Microservices 13

and containers, machine learning algorithms for classifying anomalous and nor-
mal behaviors, and the fault injection module for collecting performance data in
various system conditions.

In future, a more representative case study in microservice architecture will
be studied. Currently, the fault injection module only focused on some specific
hardware fault, and in future, some complicated injection scenarios can be added
in this module.

References

1. Vindeep Singh and et al. Container-based microservice architecture for cloud ap-
plications. Computing, Communication and Automation (ICCCA), 2017.

2. Carla Sauvanaud and et al. Anomaly detection and diagnosis for cloud services:
Practical experiments and lessons learned. Journal of Systems and Software,
139:84–106, 2018.

3. Grzegorz Dwornicki Rusek, Marian and Arkadiusz Orowski. A decentralized sys-
tem for load balancing of containerized microservices in the cloud. International
Conference on Systems Science. Springer, Cham, 2016., 2016.

4. Nane. Kratzke. About microservices, containers and their underestimated impact
on network performance. arXiv preprint arXiv:1710.04049(2017)., 2017.

5. A.; Kumar V. Chandola, V.; Banerjee. Anomaly detection: A survey. ACM Com-
puting Surveys., 2009.

6. Tao Wang, Wenbo Zhang, Chunyang Ye, and et al. Fd4c: Automatic fault diag-
nosis framework for web applications in cloud computing. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 46(1):61–75, 2016.

7. Marcelo Amaral, Jorda Polo, and et al. Performance evaluation of microservices
architectures using containers. In Network Computing and Applications (NCA),
2015 IEEE 14th International Symposium on, pages 27–34. IEEE, 2015.

8. A. Ferreira W. Felter and et al. An updated performance comparison of virtual
machines and linux containers. Technical Report RC25482(AUS1407-001), IBM,
2014.

9. J. Kjallman R. Morabito and M. Komu. Hypervisors vs. lightweight virtualization:
A performance comparison. IEEE International Conference on Cloud Engineering,,
2015.

10. Z. Zheng Y. Zhang and M.R. Lyu. An online performance prediction framework for
service-oriented systems. IEEE Transactions on Systems, Man, and Cybernetics,
2014.

11. Haibo Mi, Huaimin Wang, and et al. Toward fine-grained, unsupervised, scalable
performance diagnosis for production cloud computing systems. IEEE Transac-
tions on Parallel and Distributed Systems, 24(6):1245–1255, 2013.

12. Shigang Zhang, Krishna R Pattipati, and et al. Dynamic coupled fault diagnosis
with propagation and observation delays. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 43(6):1424–1439, 2013.

13. Claus. Pahl. Containerization and the paas cloud. IEEE Cloud Computing, 2015.
14. T Warren Liao. Clustering of time series dataa survey. Pattern recognition,

38(11):1857–1874, 2005.
15. Yanping Chen, Keogh, and et al. The ucr time series classification archive, July

2015. www.cs.ucr.edu/~eamonn/time_series_data/.
16. Clearwater. Project clearwater. http://www.projectclearwater.org/.


