
EasyChair Preprint
№ 5578

Collaborative Situated Agents for Baseline
Logistics Problems on the Packet-World Testbed

Georgios Kouros, Gregoris Malekos, Bolat Tleubayev and
Victor Van Wymeersch

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 20, 2021



Collaborative Situated Agents for Baseline Logistics
Problems on the Packet-World Testbed

Georgios Kouros, Gregoris Malekos, Bolat Tleubayev, Victor Van Wymeersch
Faculty of Engineering Science, KU Leuven

Leuven, Belgium
georgios.kouros@student.kuleuven.be, gregoris.malekos@student.kuleuven.be,

bolat.tleubayev@student.kuleuven.be, victor.vanwymeersch@kuleuven.be

Abstract—Multi-Agent Systems (MAS) enable the efficient
solution of complex real world problems with flexibility and ro-
bustness to system perturbations. However, the implementation of
these systems is nontrivial and requires careful consideration into
software design principles, in support of the attractive properties
of MAS. To this end, three key problems within MAS have been
solved in this paper, namely autonomous navigation, energy man-
agement, and multi-agent coordination and cooperation. Grid
search, gradient methods, and protocol-based communication are
proposed as a means to enable autonomous situated agents to
tackle the aforementioned tasks. The solutions are implemented
on Packet-World (PW), a testbed for experimentation with situated
MAS, meant to be used to investigate and evaluate different
perception, decision making, and communication aspects among
agents that are situated in a virtual environment. The proposed
solutions are evaluated with regard to total energy consumption
and/or number of cycles for completing a run averaged across
batch runs.

Index Terms—multi-agent systems, Packet-World, situated
agents, grid search, gradients, protocol-based communication

I. INTRODUCTION

Increasingly complex industrial systems require flexible,
robust, decentralized dynamic control solutions. Multi Agent
Systems (MAS) are software systems that provide a solution
fulfilling all of these requirements [1]. These systems are
composed of multiple singular agents that work together to
solve intricate problems beyond the scope of a single agent’s
capabilities. To develop these system solutions it is pertinent
to be able to test MAS research and developments before they
are applied. To this end a open-source development platform
Packet World is used for the development of these MAS. Here
the agents are required to move around in a grid-based world,
communicate and coordinate to pick up and deliver various
packages to defined locations [2].

This paper focuses on the development of techniques to
control agent behaviour, coordination of an agent energy
management systems, and communication between multiple
agents.

Section II gives an introduction to PW, its components
and general architecture. Section III contains a description
of the problems that this assignment is aimed to solve,
while Section IV presents the proposed solutions. The paper
concludes with a listing of related work and a final discussion
in Sections V and VII, respectively. For clarity discussions

on future work or possible implementation improvements are
located within the individual parts of Section IV.

II. PACKET WORLD

Packet-World [2] with regard to its pattern language on the
domain of situated multi-agent systems and the various aspects
of this pattern language are presented in the following section.

A. Packet World Concepts and Characteristics

PW is based on the Situated Agents pattern that promotes
module reuseability and decoupling of independent processes.
Agents, ongoing-activities, and the environment are the three
main abstractions of this system. The environment is observ-
able by the agents and contains processes that regulate states
and interactions. The agents can act independently based on
their local perception of the environment and goals. They
can communicate with each other through messages to form
collaborations to jointly complete tasks when needed.

The environment of PW is a multi-layered grid, where each
layer is assigned to a different entity (eg. agent, packet, flags)
and has its own constraints (eg. one packet per cell). The state
of the world consists of the combined grid layers and agents
perceive only the layers that are relevant to them.

The perception module maps the local state of the environ-
ment to a percept for the agent. Percepts change the internal
knowledge held by the agent of it’s environment. Percepts
are provided by three subsystems, sensing, interpreting and
filtering. Sensing allows the agent to focus on a specific per-
ception ability to gain information of the world, for example
through sight or smell. Sensory information is translated into
percepts through internal knowledge descriptions of the world.
Finally, percepts can then be filtered to exclude unnecessary
information not relevant to the agents’ intended search.

From local knowledge of the world, agents make decisions
on which actions to perform to achieve goals with minimal
energy requirements. This decision making process is repre-
sented using a free-flow tree. Role and situated commitment
extensions enable social behavior. The tree nodes receive
information internally, through the agents’ knowledge and
externally from perceptions. Nodal activity is passed down the
tree to leaves where an action is selected. In the free-flow trees
agents have sub-trees dedicated to cooperation-, individual-,



and battery recharging-based roles. Commitments define the
relationships between roles.

Communication happens with the help of protocol steps,
which are tuples (conditions, effects). Some conditions must
be satisfied for an agent to send a message and some effects
result from the protocol step being applied. There is a finite
number of different messages which the agents can send to one
another. Via those messages they can request the help of other
agents to solve tasks cooperatively and answer other agent’s
requests for help. Information relevant to the tasks can also be
shared in this way.

Advanced agent collaboration has been built into PW.
Agents using explicit and implicit messaging can collaborate
in many ways, such as letting other agents know where
packets/goals are or setting up chains to move packets along
faster. Some tasks, such as moving large packets, specifically
require agent cooperation. For these tasks, messaging allows
agents to collaborate in a timely manner.

B. Real-world applications

In this subsection some potential future industry applica-
tions of MAS are laid out in order to outline the relevance of
MAS research to real-world problems.

In a MAS of autonomous taxis serving a city, each taxi
is represented as an agent that is tasked with picking up
and dropping off passengers. Taxis have to work together to
transport large groups of passengers that sometimes might not
fit into one taxi. The goal is to transport as many passengers as
possible within the day while minimising total travel distance
and fuel consumption. Gradient fields can be used to attract
agents to areas with higher demand, or for refueling purposes.

A MAS of waiters serving people in a restaurant. The layout
of the restaurant can be modelled within the PW grid with
waiters acting as agents. Agent tasks may include taking
orders, serving food, cleaning tables, represented as differently
colored packets, or even cooperation for service of a big table
of customers.

III. PROBLEM DESCRIPTIONS

A. Autonomous behaviour of single agents

Within PW individual agents are, among several others,
required to be able to autonomously perceive the environment,
navigate the terrain, pick up and drop off packages, move to
recharge stations when their battery level is low, coordinate
and collaborate with other agents etc. The most fundamental
of these responsibilities is the ability to independently, as
a single agent, perceive and navigate the environment to
deliver packages to the drop-off points/destinations. The soft-
ware architecture defining the agents’ autonomous behaviour
needs to achieve this goal in the most effective way while
maintaining the benefits of multi-agent systems in general,
such as flexibility and adaptability. To this end, the aim is to
program optimised agent behaviours using the well-established
architectural software pattern of situated agents.

B. Coordination of agents to manage energy

Creating agents that eventually are able to perform all the
tasks required of them in PW does not pose a great challenge.
A more challenging goal is to introduce energy constraints
and program agents that are able to perform the tasks while
ensuring no agent runs out of energy. To do this, the agents’
behaviour when tackling their tasks must be optimised to
avoid unnecessary energy wasting. Additionally, it is required
to set up a system for agents to coordinate and manage
energy consumption/charging. In MAS, agents coordinate and
communicate directly with each other, avoiding the large
overhead costs of being coordinated by a central authority
which would keep track of everything and introduce a single
point of failure in the system. There are two main methods
for agents to coordinate [2]. The first, which is explicit, is
direct messaging with requests/answers between agents. The
second, which is implicit, is the use of gradient fields within
the PW environment which inform agents of the existence of
goals/charging points to them. In both cases the aim is for
the agents to act as a coordinated unit rather than a sum of
individuals competing to complete the same tasks.

C. Collaboration of agents with each other

The assignment of tasks in a MAS can be complex and
difficult to manage. Often tasks cannot be completed by
individual agents without the help of other agents. Moreover,
agents often operate in large dynamic environments where
the number of agents able to do work changes along with
their goals. Due to this complexity and scale, centralised
task assignment lacks the flexibility needed in MAS where
the ability to rapidly switch task assignments between agents
for optimal coordination and execution on a system level is
crucial. Various methods exist to tackle this problem of task
assignment, namely environment-based, and protocol-based.
Environment-based task assignment involves populating agent
environments with various gradient fields to attract them to
goals and repulse them from each other. Protocol-based task
assignment is more focused on messaging, where tasks send
out requests for work towards all agents in the system and the
agent response with the best proposal is selected for the task.
Both methods allow for task reallocation, either by the update
of gradient fields, or through new task requests allowing the
methods to cope with variations in the system.

IV. PROBLEM SOLUTIONS

A. Autonomous behaviour of single agents

Agent behaviours were tackled in three distinct steps,
building up in complexity. Starting from the aimless random
wandering behaviour, agents were programmed to pick up
and drop off packets should they reach the appropriate tiles.
These are tiles adjacent to either packets to pick-up or drop-
off destinations for packet delivery. In the second phase we
refactor the wander behaviour according to the situated agent
architectural pattern as shown in figure 1. In particular, the
refactoring included the distribution of behaviours to distinct
classes and the development of behaviour change classes that



switch from one behaviour to the other in a cyclical fashion
as seen in figure 2. This transitioning between behaviours is
described in more detail in section IV-A1. In the third and final
phase, the wandering behaviour of the agents is optimised to
improve packet delivery time and energy consumption through
goal-oriented navigation. Specifics of this improvement are
covered in section IV-A2 below.

1) Design: The design selection process involved analysis
of two types of MAS architectures, namely Belief-Desire-
Intention (BDI) by Rocha et al. [1] and Situated Agents [2].
We compared how would the BDI fit to our problem against
the Situated Agent architectural pattern. One advantage of
the BDI pattern was its focus on distributed autonomous
behaviour. However, in the end, we settled on the Situated
Agent architectural pattern [3] due to its innate suitability
to Packet-World and its capabilities for agent-to-agent com-
munication and coordination and agent independence(agents
maintain their own behaviour and state). Also, its distributed
architecture comprised of knowledge, perception, decision
making, and communication components in each agent, en-
abled us to easily create, test, and assess increasingly more
complex behaviours.

The design of the software architecture for the agent be-
haviour follows the form as presented in Figure 1. In this
free-flow tree of a single there are two distinct behaviours,
GetPacket and DeliverPacket.

Fig. 1. Action selection free-flow tree of situated agents. Original diagram
from Weyns et al. [2] .

Concretely the behaviour change pattern consists of two
distinct classes BChangeGet2Del and BChangeDel2Get to
change agent behaviours from getting packets to delivering
packets and visa-versa, based on the conditions presented in
Table I. This software architecture pattern improves agent
behavioural flexibility, allowing for additional behaviours such
as ”Recharge” to easily be incorporated into the existing
code structure in the future. Furthermore, according to the
situated agent action selection free-flow tree in Fig. 1, the
two implemented behaviours can be hierarchically subdivided
into smaller behaviours. For example, split GetPacket could
be divided to LookForPacket, GoToPacket, PickUpPacket with
corresponding behaviour changes.

2) Implementation: Implementation of the code follows
directly the design as described above. However, in the fi-
nal implementation an optimisation has been incorporated to

Fig. 2. Agent behaviour change classes.

improve the efficiency and performance of the agent packet
collection and delivery. Instead of wandering to boxes and
drop off points randomly, agents directly move to collect
closest packets and drop them off at the closest drop off points
with the same color. The agents always select the packets
that are closest to them, provided that they are within their
perception field. If the agents cannot find any packets within
their perception field they perform random movements until
they find one. The same approach is used for destinations,
although, when a destination is found, it is stored in the
agent’s memory in order to avoid redundant searches. One
potential future improvement would be to replace this random
exploration with a targeted one that takes into account which
parts of the environment the agents have already visited. This
idea could be implemented quite using flags [2] placed suitably
to prevent agents to re-explore already cleared areas.

To establish the best direction to walk in, agents calculate
the distance from their current position to their target locations,
such as packets or drop-off points. Two distance metrics were
utilized namely, Manhattan and Euclidean distances. From the
distance measurement agents take the best step, closest to the
target destination, if possible. To prevent agents getting stuck
when facing obstacles in the path to their desired locations,
possible moves are ranked according to the shortest distance
to the target location. Should the shortest move be blocked,
the agent will take the second best step towards it’s goal. If
the second best step is infeasible, it will take the third, etc.
The results of this optimisation can be seen in the following
section IV-A3.

3) Test results: Figure 3 shows the improvement in the
speed it takes the agents to collect 60 packets of different
colours in the PW environment. The optimised walking be-
haviours based on Manhattan and Euclidean distance measures
are able to collect all 60 packets in 668, and 333 cycles, respec-
tively. The Euclidean distance measure provides more than 41x
improvement in speed when compared to the random walk.
Moreover, since Euclidean distance measures the shortest path
agents exploit diagonal movements, improving efficiency over
the Manhattan distance measure. The total energy consumption
to collect the 60 packets before and after behaviour optimisa-
tion is 983440 and 18065 units, respectively, a 54x decrease in
total energy consumption. This improvement is illustrated in
figure 3 in which the number of delivered packets are plotted
against the Packet-World cycles for a typical run in each of
the three walking behaviours.



Fig. 3. Performance increase of optimised agent behaviour.

B. Coordination of agents to manage energy

Agent coordination to tackle energy management requires
agents to be able to communicate either implicitly or explicitly,
as well as agents to be aware of the location of charging
stations in their vicinity. For agents to locate charging sta-
tions, gradient fields were implemented to guide them to the
stations. The gradient value of each tile in the Grid-World
was calculated using the Manhattan distance from the agent
to the closest charging station, taking into consideration any
obstacles like walls.

A messaging system allowing direct communication be-
tween agents was set up to manage priority in charging, which
aimed to avoid agents running out of energy while waiting
for another agent to finish charging. Locating and navigating
to packages and goals was done in the same fashion as in
section IV-A with some minor improvements detailed bellow.

Fig. 4. Agent behaviour change classes with the added Charge behaviour.

1) Design: The design decisions made were based on the
most intuitive ways to tackle each problem. As proposed by
Weyns et Al. [2], a system of gradients was used to lead
agents to the battery charging points. Once agents were below
a certain battery threshold they would switch to charging mode
and use this gradient field to navigate towards the closest
charging station. The threshold used was dynamic depending
on the distance of the agent from charging points as well
as on whether or not the agent was carrying a packet. This
allowed agents to be aware of whether they have enough
charge remaining to complete their current task first, or if
they needed to abort it in order to go recharge straight away.

Navigation was based on the Euclidean distance measure as it
provided a 2x decrease in energy consumption when compared
to the Manhattan distance measure as highlighted in figure 3.

Finally direct messaging was used when an agent was in
urgent need of recharging. If an agents battery level was
below a critical threshold they would send out a request to
take priority in charging. In case another agent was using the
charger, they would check whether their own battery level is
above a certain yield-threshold. If both of these criteria were
fulfilled the agent currently using the charging station would
vacate it and give priority to the agent with the critically
low battery level, while remaining in standby mode until the
charging station was freed again.

2) Implementation: To implement the behaviours described
above a new behaviour was added named Charge as presented
in figure 4. This behaviour was activated when agents needed
to move towards the closest charging point to recharge their
batteries. In addition, four behaviour change classes were
added. These classes allowed the agents to transition between
getting packages, delivering packages and charging. The ac-
tivation of these behaviour changes occurs based on three
conditions as presented in Table II.

Priority of charging in cases where an agent needed to
use the charging port urgently was implemented using agent
messaging, as detailed in section IV-A1.

The dynamic threshold used by agents for switching from
their current task, say delivering a packet, to moving to
recharge meant that agents can more accurately judge how
much power is required to reach a charging station and avoid
running out of power whilst getting there. Multiple threshold
checks are done at each timestep by each agent to avoid
running out of battery while remaining efficient. For example,
agents attempting to deliver a package compute (1) how much
energy is required to reach the charging station with and
without carrying their current package (based on the agents
gradient field value) and (2) how much energy is required to
deliver the package (based on euclidean distance and energy
consumption per step) and then return to the closest charging
station without a package in hand. Thereby agents can decide
on the best approach to take, which is often to deliver the
package and then recharge without a package in hand. Agents
were implemented to carry packages to charging stations if
possible to avoid creating obstacles and impassable walls.
However, when agents estimated that they would not reach
a charge with a margin of battery remaining they would drop
their packages and go to charge empty handed as this requires
less energy to move.

To take into account the existence of gradient fields the
walking behaviour of agents were extended. As in section
IV-A2, agents always take the best step towards their goals
given obstacles that may be in their way. However, for
agents following gradient fields non-optimal movements were
allowed when faced with obstacles allowing agents to avoid
getting stuck in gradient field local minimums.

3) Test results: To assess the performance of our agents,
a batch run of 100 runs was made on the energy-1 and



energy-2 environments. Figures 5 and 6 respectively show
histograms of the total consumed energy by the agents at
the end of each run. As can be seen the consumed energy
is bounded within certain limits and does not show a big
variation over the runs. This is especially true for the energy-1
environment where the energy consumption remained constant
on the vast majority of runs. The agents are quite stable
due to the removal of random elements in their behaviour,
they always make informed choices and thus their behaviour
does not alter significantly between runs. The average energy
consumed for energy1 was 9529.35 units and the total cycles
taken to complete the tasks were 228.21 over all 100 runs. For
the energy 2 environment those values were of 54868.3 units
and 886.82 cycles respectively. Future work should include a
behaviour allowing agents to drop packages in clusters around
other packages if they have critically low battery instead of in
random locations. This would decrease the variance in energy
consumption between runs, as in some cases agents can create
walls of packages on the way to charging stations.

Fig. 5. Energy consumption on energy1 over 100 runs.

Fig. 6. Energy consumption on energy2 over 100 runs.

C. Collaboration of agent with each other

In the agent collaboration task three agents of three distinct
colours are present, each able to pick up packages corre-
sponding to their colour. Walls in the environment limit agent

G2D

G2AG

G2CG

G

CG2CD

CG2AG

CG2G

CG

AG2D

AG2G

AG

CD2G

CD2CG

CD

D2G

D2AG

D2CG D

Legend 
 
G: GetPacket 
 
D: DeliverPacket 
 
CG: ClearGet 
 
CD: ClearDeliver 
 
AG: AssistGetPacket 

Fig. 7. Agent behaviours and behaviour changes for task III, enabling agents
to clear their paths and assist other agents with theirs.

movements and packets are placed such that agents require
other agents to help them in clearing the paths to their re-
spective package drop off points. In this situation cooperation
is required between agents to achieve the global goal of
delivering all packets in the environment. The environment
upon initialisation is illustrated in figure 9(a) below.

1) Design: Upon tackling the problem of agent coordina-
tion and task delegation, two basic approaches were consid-
ered. A field-based approach and a protocol-based approach.

Field based approaches rely on implicit communication
through the adaption of environment. Environments can be
adapted by agents by populating the grid-world with gradi-
ents, placing flags, or releasing pheromones as described by
Weyns et al. [2]. These changes made to the environment are
perceived by agents. From these environmental signals agents
can then decide how to act. For example, when navigating
down narrow corridors an agent might know to avoid paths
with other agents pheromones as two agents going down the
same corridor might lead them to getting stuck. Alternatively,
agents may send out repulsive gradients signalling to other
agents that they are in the vicinity as described by Weyns et
al. [3].

Protocol-based approaches rely on explicit means of com-
munication such as direct messaging. When an agent requires
the help of another agent the agent sends a message with a
request. The other agent can then either accept or decline the
request based on their priorities.

Both approaches have advantages and disadvantages, how-
ever it was deemed more pragmatic for agents to directly
communicate with each other instead of indirect communi-
cation by leaving markers on the environment. The large
perception fields present within this task meant that agents did
not struggle to find one another when in need of help. This
greatly simplified the approach and made for more efficient,
direct task solving.

The basic principles of this design approach is as follows.
Initially agents wander around looking for drop-off locations
and packets corresponding to their colour. When a goal or
packet is found in their perception field, a breadth first search
is used to find the shortest path to the target. If on this path to
their drop-off point is blocked by a packet which the agent is
unable to pick up, the agent would find an appropriate agent
for help. When the correct agent is found (corresponding to the



colour of the packet blocking their path) the agent then directly
messages the agent for help. The message sent requesting
assistance contains the location of the packet to be moved.
The process of searching for optimal paths to drop-off points
and messaging agents for assistance is repeated until all the
packages are delivered in the packet world.

2) Implementation: One of the vital components of the
implemented system is Breadth First Search (BFS) inside
an agents perceptive field, used for the establishment of the
optimal path towards a package drop-off point and for retrieval
of packets. Such a search scheme ensures that agents do not
get trapped behind obstacles when using standard distance
measures when walking. On Figure 8 you can see each step
of the search depicted as different color. The optimal path is
towards the agents goal is given by the green arrows. BFS was
chosen over other search algorithm for its relative simplicity
and optimality, as it always returns the shortest path to a
desired position in the presence of obstacles or non-walkable
cells such as walls and environment boundaries such that there
are no collisions. The BFS is computed for each agent at each
timestep of the simulation, which is computationally tractable
since agent perceptive fields are not too large. If the perception
fields of the agents were too large, the more complicated A*
search could be implemented as it is both faster and has less
memory requirements.

Fig. 8. Breadth First Search scheme.

Figure 7 shows all the behaviours of agents along with their
corresponding behaviour change classes that are implemented.
The conditions for each behaviour change is presented in
Table III. The abbreviation of each behaviour is listed below
along with a description of its functionality:

• G - GetPacket: Agents wander around the environment
until they find and pick up a packet corresponding to
their colour. The agents always choose the packets that
are closest to them.

• D - DeliverPacket: Agents perform BFS to find the
optimal path towards their destination and attempt to
navigate towards it to drop off the packet they are holding.

• CG - ClearGet: When a package is blocking the agent
they either get the packet to clear the path themselves

if possible or if another colour packet blocks the path,
the agent finds another agent of the corresponding colour
through random wandering and messages them for help
along with the location of the packet to be moved. For
the messaging to occur, the two agents must be withing
each other’s perceptive fields.

• AG - AssistGet: Is the action taken by agents when they
have agreed to assist another agent to clear their path.
The request comes in the form of a message containing
the location and color of the blocking packet and the ID
of the agent requested to handle it so that an agent can
recognize whether a request is intended for them or not.
Then the agent goes to pick up that packet and deliver
it to its destination. If the agent was already holding a
packet, then they drop it out of they way before going to
provide assistance.

• CD - ClearDeliver: An agent transitions to this behaviour
when it has picked up a packet that was blocking the path
to their destination. In this case the agent either delivers
that packet if the destination is cleared or drops it out of
the way and then attempts again to clear the path on their
own or by asking for assistance.

3) Test results: From this behaviour change diagram and
implementation agents are then able to solve the problem of
task delegation in this complex environment, and effectively
coordinate their actions to deliver all the packets. Figure 9
shows four stages during run-time with (a) corresponding
to environment initialisation and (d) the termination of the
program. In (b) one can see that the red and blue agents have
successfully cleared the green agents path to it’s goal. In (c)
agents have worked together in clearing all the paths to all the
agents’ respective drop-off locations.

(a) (b)

(c) (d)

Fig. 9. Task delegation execution in packet world

Despite the implementation of the BFS, and protocol-based



task delegation, the global solution is still not always reliable.
Figure 10 illustrates this over 50 runs on PW. Although most
runs finished in under 1500 cycles, a considerable amount
of runs took far longer, with some requiring even more than
5000 cycles. This inefficiency is mainly due to random agent
wandering when searching for an agent to help and in agents
waiting for their paths to be cleared by others. This ineffi-
cient behaviour could be improved by memorising the last
seen locations of agents and various environmental markers.
Information like flag locations would mean that agents could
easily return to ”memorised” locations and avoid wandering
behaviour, allowing agents to indirectly communicate despite
not seeing one another. Additionally, future work could also
include the prioritisation of tasks among agents which would
improve task efficiency.

Fig. 10. Cycles taken histogram in batch run of collaboration task.

V. RELATED WORK

The field of Multi-Agent Systems (MAS) has received a
significant amount of attention from the scientific community
over the course of the last decades. Numerous classification
approaches and design patterns were presented by a multitude
of researchers. So, to gain valuable insights about the field,
we have studied several significant works.

“An introduction to multiagent systems” by Wooldridge [4]
provides us with an important notion on the place of MAS
in the scientific world. This is done through presentation of
the history of trends in computational science, followed by an
examination of various scenarios, purposes, and objections to
MAS. This paper does a good job of explaining the relevance
of MAS solutions such as the ones seen in this paper in the
future of logistics and robotics.

Rocha, Boavida-Portugal, and Gomes [1] give a detailed
introduction into MAS, by presenting a general overview,
classification criteria, and key characteristics of the field.

A work done by Juziuk, Weyns, and Holvoet [5] on the
literature review of MAS design patterns provided us with
important ideas on how to approach the development process
of the project. In their work, they stress the importance of
a systematic approach to the design and present a detailed
overview of existing design patterns in the field of MAS. The
goal of the paper is to increase the accessibility of knowledge

for practitioners in the field about design patterns. Following
a systemic approach such as the one recommended allowed
us to reuse large parts of our code on all three tasks solved.
This also allows for the agent be further developed with more
behaviours being added to the current patterns.

The main focus of Rao and Georgeff’s [6] work was to
explore a particular type of agents, Belief-Desire-Intention
(BDI) agents. In their paper the authors laid a foundation for
BDI agents from different perspectives and considered various
implementations of such agents. Overall, the study presents a
new paradigm for the development of MAS.

Weyns et Al. [7] provide a good interpretation of the
environment as middleware in MAS. The middleware inter-
pretation of the environment allows it to easily incorporate
elements such as gradient fields and messaging which facilitate
easy agent communication/coordination even between differ-
ent types of agents.

VI. FUTURE WORK

Although all three presented problems were solved success-
fully, there is still much room for improvement to optimise
these solutions in terms of turns it takes to complete the tasks
and the resulting energy consumption. Furthermore, those
two latter approaches failed to perform on the optional more
challenging environments. In hindsight, integrating Breadth-
First- Search-based navigation on the energy management
task would have easily allowed the agents to navigate around
walls in the energy-3 environment. The maze environment,
on the other hand, presents an even bigger challenge and we
hypothesized that it could have been solved using a stigmergic
approach [2], such as flags or pheromones.

Approaches that include inter-agent information sharing
about the explored world with the use of either direct mes-
saging or flag placing for example could prove useful. Also,
a predefined pattern through which to explore the environ-
ment in search of packets which would replace the random
step exploration behaviour could greatly improve the overall
performance of the solution. Some forms of indirect means
of communication such as pheromones, flags or gradient
placement could also be used to improve agent coordination
when it came to the tasks requiring explicit cooperation.

The logical next step in this work would be to unify all the
different behaviours presented in this paper in order to create
a MAS able to tackle an environment that involves all the
challenges faced in the three different parts combined. Such
an agent would be one step closer to a solution which could
eventually be implemented in real-life logistics situations.

VII. DISCUSSION AND CONCLUSION

In this paper we described three important topics or prob-
lems in MAS, namely the autonomous behaviour of single
agents, the coordination of agents to manage energy and
collaboration between agents. Within each of these areas
designs are proposed and solutions implemented successfully
solving the problems. From these respective solutions various
key observations have been made.



TABLE I
BEHAVIOUR CHANGE CONDITIONS TRUTH TABLE FOR TASK I.

Condition BChangeGet2Del BChangeDel2Get

hasPacket True False

TABLE II
BEHAVIOUR CHANGE CONDITIONS TRUTH TABLE FOR TASK II.

Condition BChangeCharge2Del BChangeCharge2Get BChangeDel2Charge BChangeDel2Get BChangeGet2Charge BChangeGet2Del

hasPacket True False True- False False True
needsCharging False True True False True False

TABLE III
BEHAVIOUR CHANGE CONDITIONS TRUTH TABLE FOR TASK III.

Condition AG2D AG2G CD2CG CD2G CG2AG CG2CD CG2G D2AG D2CG D2G G2AG G2CG G2D

hasPacket True False - False True True True - - False - - True
pathBlocked - - True False False - False - True False - True False
receivedRequest False False False False False False False True True False True False False

When dealing with the autonomous behaviour of single
agents, transitioning from a randomized grid traversal to a
more sophisticated and targeted agent behaviour leads to a
substantial improvement of the performance of the system.
Total energy consumption and duration for completing the
delivery of all packets is minimized significantly. However,
this improvement is far from optimal. Employing selfish
competitive agents results in the generation of conflicts and
deadlocks between agent goals, among other problems. Two
or more agents might target the same packet, but only one
will pick it up, while the other will have gone towards that
packet for nothing, resulting in a considerable waste of time
and energy.

The problem of energy management while delivering pack-
ets requires several considerations such as battery gradient
fields and communication. Gradient fields are an adequate way
of guiding agents to charging points, although they provide
no information about whether this charging port is currently
being used or not. A basic system of messaging allows agents
to never run out of battery by informing each other in case
one urgently requires to charge so that the other agents may
yield that agent priority. Messaging strategies such as these,
the use of gradient fields, and optimised movement can help
ensure that agents do not run out of power during simulations.
Estimations of the energy required to complete tasks improve
agent efficiency and help avoid the problem of agents running
out of power on the way to charging stations.

While messaging can help manage battery demands and let
critically low agents have preference to chargers, it by itself
does not mean explicit agent coordination. True coordination
and cooperation between agents is essential for completing
tasks that cannot be completed by single agents. Agent coordi-
nation and task delegation highlight importance of integrating
structured communication between the agents, enabling them
to minimize their energy consumption and cooperate to solve

complex tasks that cannot be solved individually. Indirect
messaging between agents, through the placement of markers
on the environment, can further improve cooperation and
overall MAS efficiency as agents can then respond to agent
requests despite not being in range to directly communicate.

REFERENCES

[1] Jorge Rocha, Inês Boavida-Portugal, and Eduardo Gomes. Introductory
chapter: Multi-agent systems. In Multi-Agent Systems. IntechOpen, 2017.

[2] Danny Weyns, Alexander Helleboogh, and Tom Holvoet. The packet-
world: a test bed for investigating situated multi-agent systems. In
Software Agent-Based Applications, Platforms and Development Kits:,
Whitestein Series in Software Agent Technologies and Autonomic Com-
puting, pages 383–408. 2005.

[3] Danny Weyns. Architecture-based design of multi-agent systems. 2010.
[4] Michael Wooldridge. An introduction to multiagent systems. John wiley

& sons, 2009.
[5] Joanna Juziuk, Danny Weyns, and Tom Holvoet. Design patterns for

multi-agent systems: A systematic literature review. In Agent-Oriented
Software Engineering, pages 79–99. Springer, 2014.

[6] Anand S Rao, Michael P Georgeff, et al. Bdi agents: From theory to
practice. In ICMAS, volume 95, pages 312–319, 1995.

[7] Tom Holvoet Danny Weyns, Alexander Helleboogh and Michael Schu-
macher. The agent environment in multi-agent systems: A middleware
perspective. 2009.


