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Abstract
A sparse language is a formal language such that the number of strings of length n is bounded by a
polynomial function of n. We create a class with the opposite definition, that is a class of languages
that are dense instead of sparse. We define a dense language on m as a formal language (a set of
binary strings) where there exists a positive integer n0 such that the counting of the number of
strings of length n ≥ n0 in the language is greater than or equal to 2n−m where m is a real number
and 0 < m ≤ 1. We call the complexity class of all dense languages on m as DENSE(m). We prove
that there exists an NP–complete problem that belongs to DENSE(m) for every possible value of
0 < m ≤ 1.

2012 ACM Subject Classification Theory of computation Complexity classes; Theory of computa-
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1 Summary

In computational complexity theory, a sparse language is a formal language (a set of strings)
such that the complexity function, counting the number of strings of length n in the language,
is bounded by a polynomial function of n. The complexity class of all sparse languages is
called SPARSE. SPARSE contains TALLY , the class of unary languages, since these
have at most one string of any one length.

Fortune showed in 1979 that if any sparse language is coNP–complete, then P = NP (this
is Fortune’s theorem) [5]. Mahaney used this to show in 1982 that if any sparse language
is NP–complete, then P = NP [6]. A simpler proof of this based on left-sets was given by
Ogihara and Watanabe in 1991 [7]. Mahaney’s argument does not actually require the sparse
language to be in NP , so there is a sparse NP–hard set if and only if P = NP [6].

We create a class with the opposite definition, that is a class of languages that are dense
instead of sparse. We show there is a sequence of languages that are in NP–complete, but
their density grows as much as we go forward into the iteration of the sequence. The first
element of the sequence is a variation of the NP–complete problem known as HAM–CYCLE
[8]. The next element in the sequence is constructed from this new version of HAM–CYCLE.
Indeed, each language is created from its previous one in the sequence. Since the density
grows according we move forward into the sequence, then there exists a language so much
dense such that its density tends to 0 when the bit-length n of the binary strings tends to
infinity. However, this incredible dense language is still NP–complete.

2 Basic Definitions

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite strings
over Σ [1]. A Turing machine M has an associated input alphabet Σ [1]. For each string w

in Σ∗ there is a computation associated with M on input w [1]. We say that M accepts w if
this computation terminates in the accepting state, that is M(w) = “yes” [1]. Note that M

fails to accept w either if this computation ends in the rejecting state, that is M(w) = “no”,
or if the computation fails to terminate [1].
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The language accepted by a Turing machine M , denoted L(M), has an associated alphabet
Σ and is defined by

L(M) = {w ∈ Σ∗ : M(w) = “yes”}.

We denote by tM (w) the number of steps in the computation of M on input w [1]. For n ∈ N
we denote by TM (n) the worst case run time of M ; that is

TM (n) = max{tM (w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [1]. We say that M runs in polynomial
time if there is a constant k such that for all n, TM (n) ≤ nk + k [1]. In other words, this
means the language L(M) can be accepted by the Turing machine M in polynomial time.
Therefore, P is the complexity class of languages that can be accepted in polynomial time
by deterministic Turing machines [4]. A verifier for a language L is a deterministic Turing
machine M , where

L = {w : M(w, c) = “yes” for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time
verifier runs in polynomial time in the length of w [1]. A verifier uses additional information,
represented by the symbol c, to verify that a string w is a member of L. This information
is called certificate. NP is also the complexity class of languages defined by polynomial
time verifiers [8]. If NP is the class of problems that have succinct certificates, then the
complexity class coNP must contain those problems that have succinct disqualifications [8].
That is, a “no” instance of a problem in coNP possesses a short proof of its being a “no”
instance [8].

A function f : Σ∗ → Σ∗ is a polynomial time computable function if some deterministic
Turing machine M , on every input w, halts in polynomial time with just f(w) on its tape
[9]. Let {0, 1}∗ be the infinite set of binary strings, we say that a language L1 ⊆ {0, 1}∗

is polynomial time reducible to a language L2 ⊆ {0, 1}∗, written L1 ≤p L2, if there is a
polynomial time computable function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗,

x ∈ L1 if and only if f(x) ∈ L2.

An important complexity class is NP–complete [4]. A language L ⊆ {0, 1}∗ is NP–complete if

L ∈ NP , and
L′ ≤p L for every L′ ∈ NP .

If L is a language such that L′ ≤p L for some L′ ∈ NP–complete, then L is NP–hard
[4]. Moreover, if L ∈ NP , then L ∈ NP–complete [4]. A principal NP–complete problem is
HAM–CYCLE [4].

A simple graph is an undirected graph without multiple edges or loops [4]. An instance of
the language HAM–CYCLE is a simple graph G = (V, E) where V is the set of vertices and
E is the set of edges, each edge being an unordered pair of vertices [4]. We say (u, v) ∈ E

is an edge in a simple graph G = (V, E) where u and v are vertices. For a simple graph
G = (V, E), a simple cycle in G is a sequence of distinct vertices ⟨v0, v1, v2, ..., vk⟩ such that
(vk, v0) ∈ E and (vi−1, vi) ∈ E for i = 1, 2, ..., k [4]. A Hamiltonian cycle is a simple cycle of
the simple graph which contains all the vertices of the graph. A simple graph that contains a
hamiltonian cycle is said to be hamiltonian; otherwise, it is nonhamiltonian [4]. The problem
HAM–CYCLE asks whether a simple graph is hamiltonian [4].



F. Vega 3

3 Results

▶ Definition 1. A dense language on m is a formal language (a set of binary strings) where
there exists a positive integer n0 such that the counting of the number of strings of length
n ≥ n0 in the language is greater than or equal to 2n−m where m is a real number and
0 < m ≤ 1. The complexity class of all dense languages on m is called DENSE(m).

▶ Definition 2. A formal language (a set of binary strings) is in DENSE(0) if for every
possible value of 0 < m ≤ 1, then the language is always in DENSE(m).

In this work, we are going to represent the simple graphs with an adjacency-matrix [4].
For the adjacency-matrix representation of a simple graph G = (V, E), we assume that
the vertices are numbered 1, 2, . . . , |V | in some arbitrary manner. The adjacency-matrix
representation of a simple graph G consists of a |V | × |V | matrix A = (ai,j) such that ai,j = 1
when (i, j) ∈ E and ai,j = 0 otherwise [4]. In this way, every simple graph of k vertices could
be represented by a binary string of k2 bits.

Observe the symmetry along the main diagonal of the adjacency matrix in this kind of
graph that is called simple. We define the transpose of a matrix A = (ai,j) to be the matrix
AT = (aT

i,j) given by aT
i,j = aj,i. Hence the adjacency matrix A of a simple graph is its own

transpose A = AT .

▶ Definition 3. The language NON–SIMPLE contains all the graph that are represented by
an adjacency-matrix A such that A ̸= AT or there is some ai,j = 1 where i = j.

▶ Lemma 4. NON–SIMPLE ∈ P .

Proof. Given a binary string x, we can check whether x is an adjacency-matrix which is
not equal to its own transpose in time O(|x|2) just iterating each bit ai,j in x and checking
whether ai,j ̸= aj,i or ai,j = 1 when i = j where | . . . | represents the bit-length function
[4]. ◀

▶ Definition 5. The language HAM–CYCLE’ contains all the binary strings z such that
z = xy, the bit-length of x is equal to (⌊

√
|z|⌋)2 and x ∈ HAM–CYCLE or x ∈ NON–SIMPLE

where y could be the empty string when | . . . | and ⌊. . .⌋ represent the bit-length function and
the floor function respectively.

▶ Lemma 6. HAM–CYCLE’ ∈ NP–complete.

Proof. Given a binary string z such that z = xy and the bit-length of x is equal to (⌊
√

|z|⌋)2,
we can decide in polynomial time whether x /∈ NON–SIMPLE just verifying when x = xT

and ai,i = 0 for all vertex i. In this way, we can reduce in polynomial time a simple graph
G = (V, E) of k vertices encoded as the binary string x such that when x has k2 bits and
x /∈ NON–SIMPLE then

x ∈ HAM–CYCLE if and only if xy ∈ HAM–CYCLE’

where y could be the empty string. In this way, we can reduce in polynomial time each
element of HAM–CYCLE to some element of HAM–CYCLE’. Therefore, HAM–CYCLE’ is
in NP–hard. Moreover, we can check in polynomial time over a binary string z such that
z = xy and the bit-length of x is equal to (⌊

√
|z|⌋)2 whether x ∈ HAM–CYCLE or x ∈

NON–SIMPLE since HAM–CYCLE ∈ NP and NON–SIMPLE ∈ NP because of P ⊆ NP

[8]. Consequently, HAM–CYCLE’ is in NP. Hence, HAM–CYCLE’ ∈ NP–complete. ◀



4 Dense Complete Set For NP

▶ Lemma 7. HAM–CYCLE’ ∈ DENSE(1). This would mean the existence of a sufficiently
large positive integer n′

0 such that all the binary strings of length n ≥ n′
0 which belong to

HAM–CYCLE’ are more than or equal to 2n−1 elements.

Proof. OEIS A000088 gives some number of graphs on n unlabeled points [10]. For 8 points
there are 12346 so just over half the graphs on 8 points are Hamiltonian [10]. For 12 points,
there are 152522187830 Hamiltonian graphs out of 165091172592 which would claim that
over 92% of the 12 point graphs are Hamiltonian [10]. For n = 2 there are two graphs,
neither of which is Hamiltonian [10]. For n < 8 over half the graphs are not Hamiltonian
[10]. It does not seem surprising that once n gets large most graphs are Hamiltonian [10].

Choosing a graph on n vertices at random is the same as including each edge in the
graph with probability 1

2 , independently of the other edges [2]. You get a more general
model of random graphs if you choose each edge with probability p [2]. This model is known
as Gn,p [2]. It turns out that for any constant p > 0, the probability that Gn,p contains a
Hamiltonian cycle tends to 1 when n tends to infinity [2]. In fact, this is true whenever
p > c×log n

n for some constant c. In particular this is true for p = 1
2 , which is our case [2].

For all the binary strings z such that z = xy and the bit-length of x is equal to (⌊
√

|z|⌋)2,
the amount of elements of size |z| in HAM–CYCLE’ is equal to the number of binary strings
x ∈ HAM–CYCLE or x ∈ NON–SIMPLE of size (⌊

√
|z|⌋)2 multiplied by 2|z|−(⌊

√
|z|⌋)2

. Since
the number of Hamiltonian graphs increases as much as we go further on n, it does not
seem surprising either that once n gets large most binary strings belong to HAM–CYCLE’.
Moreover, the amount of binary strings which have some bit-length k2 and belongs to
NON–SIMPLE is considerably superior to the amount of strings with the same bit-length
which are valid simple graphs. Actually, we can affirm for a sufficiently large positive integer
n′

0, all the binary strings of length n ≥ n′
0 which belong to HAM–CYCLE’ are indeed more

than or equal to 2n−1 elements. In this way, we show that HAM–CYCLE’ ∈ DENSE(1). ◀

▶ Definition 8. We will define a sequence of languages HAM–CYCLE’k for every possible
integer 1 ≤ k. We state HAM–CYCLE’1 as the language HAM–CYCLE’. Recursively,
from a language HAM–CYCLE’k, we define HAM–CYCLE’k+1 as follows: A binary string
xy complies with xy ∈ HAM–CYCLE’k+1 if and only if x and y are binary strings, x ∈
HAM–CYCLE’k or y ∈ HAM–CYCLE’k such that |x| = ⌊ |xy|

2 ⌋ where | . . . | represents the
bit-length function and ⌊. . .⌋ is the floor function.

▶ Lemma 9. For every integer 1 ≤ k, HAM–CYCLE’k ∈ NP .

Proof. This is true for k = 1 as we see in Lemma 6. Every string xy which belongs to
HAM–CYCLE’2 complies with x ∈ HAM–CYCLE’1 or y ∈ HAM–CYCLE’1 such that |x| =
⌊ |xy|

2 ⌋. Moreover, every string xy which belongs to the language HAM–CYCLE’3 complies
with x ∈ HAM–CYCLE’2 or y ∈ HAM–CYCLE’2 such that |x| = ⌊ |xy|

2 ⌋. Furthermore,
we can extend this property for every positive integer k > 3 in HAM–CYCLE’k. Indeed,
HAM–CYCLE’k is in NP for every integer 1 ≤ k, since the verification of whether the two
substrings are indeed elements of HAM–CYCLE’k−1 can be done in polynomial time with
the appropriated certificates using the induction on k. ◀

▶ Theorem 10. For every integer 1 ≤ k, HAM–CYCLE’k ∈ NP–complete.

Proof. This is true for k = 1 by the Lemma 6. Let’s assume it is valid for some positive
integer 1 ≤ k′. Let’s prove this for k′ + 1. We already know the adjacency-matrix of n2

zeros represents a simple graph of n vertices which does not contain any edge. This kind
of a simple graph does not belong to HAM–CYCLE’1. As a consequence, this string will
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not belong to any HAM–CYCLE’k′ , because its substrings of a quadratic length are also
adjacency-matrix of only zeros. Suppose, we have an instance y of HAM–CYCLE’k′ . We
can reduce y in HAM–CYCLE’k′ to zy in HAM–CYCLE’k′+1 such that

y ∈ HAM–CYCLE’k′ if and only if zy ∈ HAM–CYCLE’k′+1

where the binary string z is exactly a sequence of ⌊ |zy|
2 ⌋ zeros. We can do this since we

already know z /∈ HAM–CYCLE’k′ . Certainly, if the membership zy ∈ HAM–CYCLE’k′+1 is
true, z /∈ HAM–CYCLE’k′ and |z| = ⌊ |zy|

2 ⌋, then y ∈ HAM–CYCLE’k′ also holds according
to the Definition 8. Since this reduction remains in polynomial time for every positive integer
1 ≤ k′, then we show that HAM–CYCLE’k′+1 is in NP–hard. Moreover, HAM–CYCLE’k′+1
is also in NP–complete, because of the Lemma 9. ◀

▶ Theorem 11. For every integer 1 ≤ k, if the language HAM–CYCLE’k is in DENSE(k′)
for every instance of bit-length n′ ≥ n0, then HAM–CYCLE’k+1 is in DENSE( k′

2 ) for every
instance of bit-length n′ ≥ 2 × n0.

Proof. If the language HAM–CYCLE’k is in DENSE(k′) for every instance of bit-length
n′ ≥ n0, then for every integer n ≥ n0 the amount of elements of size n+i in HAM–CYCLE’k+1
(where i ≥ n0 and i = ⌊ n+i

2 ⌋) is greater than or equal to

2i−k′
× 2n + 2n−k′

× (2i − 2i−k′
).

This is because there must be more than or equal to 2i−k′ elements of size i in HAM–CYCLE’k
which are prefixes of the binary strings of size n + i in the language HAM–CYCLE’k+1. We
multiply that amount by 2n since this is the number of different combinations of suffixes
with length n in the binary strings of size n + i. Moreover, there must be more than or equal
to 2n−k′ elements of size n in HAM–CYCLE’k which are suffixes of the binary strings of
size n + i in HAM–CYCLE’k+1. We multiply that amount by (2i − 2i−k′) since this is the
number of different combinations of prefixes with length i in the binary strings of size n + i

just avoiding to count the previous prefixes twice. If we join both properties, we obtain the
sum described by the formula above.

Indeed, this formula can be simplified to

2n+i−k′
+ 2n+i−k′

× (20 − 2−k′
)

and extracting a common factor we obtain

2n+i−k′
× (1 + (1 − 2−k′

))

which is equal to

2n+i−k′
× (2 − 1

2k′ ).

Nevertheless, for every real number 0 < k′ ≤ 1 we have that

(2 − 1
2k′ ) ≥ 2 k′

2 .

Certainly, if we multiply both member of the inequality by 2k′ , we obtain

(2k′+1 − 1) ≥ 2k′+ k′
2



6 Dense Complete Set For NP

Figure 1 Plot the function f(x) on the interval [-3, 3]

which is equivalent to

2k′
× (2 − 2 k′

2 ) ≥ 1

that it is true for every real number 0 < k′ ≤ 1. We can check in the Figure 1 that the
function f(x) = 2x × (2 − 2 x

2 ) is greater than or equal to 1 over the interval [0, 1]. Thus

2n+i−k′
× (2 − 1

2k′ ) ≥ 2n+i−k′
× 2 k′

2

where

2n+i−k′
× 2 k′

2 = 2n+i−(k′− k′
2 ) = 2n+i− k′

2 .

Since there are more than or equal to 2n′−( k′
2 ) elements of the language HAM–CYCLE’k+1

with length n′ ≥ 2 × n0 therefore, we show that HAM–CYCLE’k+1 is in DENSE(k′

2 ) for
every instance of bit-length n′ ≥ 2 × n0. ◀

▶ Lemma 12. HAM–CYCLE’k ∈ DENSE( 1
2k−1 ) for every instance of bit-length n ≥

2k−1 × n′
0, where the constant n′

0 is the positive integer used in the Definition 1 and Lemma
7 for HAM–CYCLE’.

Proof. According to the Lemma 7, HAM–CYCLE’1 is in DENSE(1) for every instance
of bit-length n ≥ 20 × n′

0 = n′
0. Consequently, due to Theorem 11, HAM–CYCLE’2 is in

DENSE( 1
2 ) for every instance of bit-length n ≥ 21 × n′

0. Moreover, HAM–CYCLE’3 is
in DENSE( 1

4 ) for every instance of bit-length n ≥ 22 × n′
0 and so forth . . . and thus, for

every language HAM–CYCLE’k, we have that HAM–CYCLE’k ∈ DENSE( 1
2k−1 ) for every

instance of bit-length n ≥ 2k−1 × n′
0. ◀

▶ Definition 13. We will define a language HAM–CYCLE’∞ as follows: A binary string x

complies with x ∈ HAM–CYCLE’∞ if and only if we obtain that x ∈ HAM–CYCLE’k and
2k−1 × n′

0 ≤ |x| < 2k × n′
0 where | . . . | represents the bit-length function and the constant n′

0
is the positive integer used in the Definition 1 and Lemma 7 for HAM–CYCLE’.

▶ Lemma 14. HAM–CYCLE’∞ ∈ NP .

Proof. We can calculate the value of k from some binary string x that is approxim-
ately ⌈log2( |x|

n′
0
)⌉, where ⌈. . .⌉ is the ceiling function. In this way, we should know if
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x ∈ HAM–CYCLE’∞, then x ∈ HAM–CYCLE’k. However, for every positive integer
k, we can check in polynomial time whether x ∈ HAM–CYCLE’k just splitting the bin-
ary string x into the following substrings x = x1x2x3 . . . x2k−1 and verifying later whether
x1 ∈ HAM–CYCLE’1 or x2 ∈ HAM–CYCLE’1 or x3 ∈ HAM–CYCLE’1 and so forth . . .

until we finally check whether x2k−1 ∈ HAM–CYCLE’1 where 2k−1 is polynomially bounded
by the bit-length string |x|. Indeed, the language HAM–CYCLE’∞ is in NP , because
the verification of whether the whole string or a polynomially amount of substrings are
indeed elements of HAM–CYCLE’1 can be done in polynomial time with the appropriated
certificates. ◀

▶ Theorem 15. HAM–CYCLE’∞ ∈ NP–complete.

Proof. We already know the adjacency-matrix of n2 zeros represents a simple graph of n

vertices which does not contain any edge. This kind of a simple graph does not belong to
HAM–CYCLE’1. Suppose, we have an instance y of HAM–CYCLE’1. We can reduce y in
HAM–CYCLE’1 to zy in HAM–CYCLE’∞ such that

y ∈ HAM–CYCLE’1 if and only if zy ∈ HAM–CYCLE’∞

where z is a binary string of a sequence of zeros such that 2k−1 × n′
0 ≤ |zy| < 2k × n′

0 and the
membership in zy ∈ HAM–CYCLE’k implies that y ∈ HAM–CYCLE’1, where the constant
n′

0 is the positive integer used in the Definition 1 and Lemma 7 for HAM–CYCLE’. We claim
that the bit-length of zy is polynomially bounded by |y|. Certainly, the bit-length of z is
polynomially bounded by 2k−1 × n′

0 and |y| since k ≈ ⌈log2( |zy|
n′

0
)⌉, where ⌈. . .⌉ is the ceiling

function. The previous expression would be equivalent to 2k ≈ |y|+2k−1×n′
0

n′
0

which means
that |y|

2k×n′
0

≈ 1. In this way, we show that HAM–CYCLE’∞ is in NP–hard. Moreover, we
demonstrate that HAM–CYCLE’∞ is also in NP–complete, because of the Lemma 14. ◀

▶ Lemma 16. HAM–CYCLE’∞ ∈ DENSE(0).

Proof. When k tends to infinity, then 1
2k−1 tends to 0. In this way, we obtain that

HAM–CYCLE’k ∈ DENSE(0) as a consequence of the Lemma 12. Actually, HAM–CYCLE’∞
contains the elements of the languages HAM–CYCLE’k into the interval of the binary strings
between the bit-length 2k−1 ×n′

0 ≤ n < 2k ×n′
0. Those elements will have a bit-length greater

than 2k−1 × n′
0 and by the Lemma 12 the density in the interval would be DENSE( 1

2k−1 ).
Therefore, the proof is done. ◀

4 Discussion

When a language is sparse, then its complement is in DENSE(0) [6]. Indeed, the sparse
languages are called sparse because there are a total of 2n strings of length n, and if a
language only contains polynomially many of these, then the proportion of strings of length
n that it contains rapidly goes to zero as n grows (which means its complement should be in
DENSE(0)) [6]. In addition, according to Theorem 15, the complement of this language
HAM–CYCLE’∞ must be in coNP-complete, because of the complements of the NP-complete
problems are complete for coNP [8]. In 1999, Jin-Yi Cai and D. Sivakumar, building on work
by Ogihara, showed that if there exists a sparse P-complete problem, then LOGSPACE = P

[3]. We might extend the proof of this paper to show the same result on P . Certainly,
we might only need to find some P-complete which belongs to DENSE(1) because the
P-completeness is closed under complement [8]. Indeed, the other steps of that possible proof
might be similar to the arguments that we follow in this paper.
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