
EasyChair Preprint
№ 8064

High-Performance Real-Time Systems Design
from Cloud to Embedded Edge

Matteo Andreozzi and Girish Shirasat

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 24, 2022



High-performance real-time systems design from
cloud to embedded edge

Matteo Maria Andreozzi
Arm

Cambridge, United Kingdom
matteo.andreozzi@arm.com

Girish Shirasat
Arm

Cambridge, United Kingdom
girish.shirasat@arm.com

Abstract—Real-time computer systems are rapidly evolving
into high-performance heterogeneous systems where co-location
of multiple workloads can improve utilisation and re-use of
system resources. This, however, comes at the cost of perfor-
mance degradation due to interference on shared resources,
and increased uncertainty. Resource sharing critically increases
the need for predictively and deterministically managing the
systems’ resources. This will become a crucial property of future
computing systems following the cloud-native design paradigm,
in order to predict worst-case execution times (WCET) for their
dynamic real-time workloads before their deployment to the
embedded edge. In this work, we’ll cover the impact of interfer-
ence on shared resources in heterogeneous compute platforms,
and we’ll define the Arm terminology and the principles for
high performance real-time. We will also cover system software
architectures that are being envisioned in initiatives such as
SOAFEE (Scalable Open Architecture for Embedded Edge [2])
to address the need to enable mixed critical workloads and the
orchestration of it from cloud to embedded edge.

Index Terms—real-time, Arm, high-performance, mixed-
criticality, QoS, SOAFEE

I. INTRODUCTION

In computer-science, a radical shift towards heterogeneous
compute platforms is happening now, accelerated by the rise
of Machine Learning and thus dedicated accelerators, and the
plateauing of the Moore’s law applied to CPU compute power.
In the real-time computing landscape, this shift has given
rise to high-performance real-time applications. On high-
performing, heterogeneous systems co-location of multiple
mixed criticality workloads on the same SoC can dramatically
improve the utilisation of system resources, enabling resource
sharing (e.g., IO devices, hardware accelerators, etc.) and
improving the efficiency of data sharing across workloads.

However, co-location also comes at the cost of potential
performance degradation, both average and worst-case, due
to interference on shared resources, and increased uncertainty
in terms of workload execution time. Both the academia
and industry have been investigating the impact of shared
resource contention on real-time and mixed critical software,
on hardware requestors (e.g., CPU, GPU, other hardware
accelerators) and on memory bandwidth availability, resources
access latency, and jitter [12], [13], [14]. The advent of
larger integrated platforms which will run real-time workloads
alongside GPOS workloads now calls for those systems to
being able to provision their resources in a quantifiable and

predictable way. This becomes crucial to determine acceptable
worst-case execution times (WCET) for real-time workloads
and to ensure smooth and responsive operation of the GPOS
workloads running alongside them.

To aid compartmentalise traffic streams on shared resources,
silicon hardware designers and manufacturers have introduced,
primarily in the infrastructure market, technology that allows
memory transactions to be labelled and then subsequently
confined to partitions of shared resources: Arm, MPAM [3],
and Intel, CAT [7] . In this paper, we introduce our key
design principles, methodology and metrics for designing
high-performance real-time systems. We will also look at the
role software plays in achieving such systems.

II. ARM HIGH-PERFORMANCE REAL-TIME
DESIGN PRINCIPLES

This section describes the foundation concepts and theory
behind designing Arm-based high-performance real-time sys-
tems.

A. Real-Time Performance Metrics
Power consumption, performance (typically average or peak

performance), and chip area are widely utilized design met-
rics considered when designing a computing system. Such
metrics are typically obtained through measurement under
a set of conditions representative of the intended system
production deployment operations (platform target workloads).
When designing real-time systems, additional performance
metrics should be considered, such as quantifying how much
the system allows confident computation of worst-case ex-
ecution times (WCET) for each of the real-time workloads
it is being designed to execute [1]. Typically, the degree
of uncertainty on computing the WCET that characterizes
current high-performance real-time compute platforms makes
classical methods of computing the WCET unfeasible (such
as analytical) [6]. We therefore advocate the adoption of
the following empirical performance metrics: i) Worst-case
measured performance and ii) Time-predictability, defined as
the quotient between the best-case measured performance and
the worst-case measured performance.

B. Sources of uncertainty
The reason for high uncertainty in determining the WCET is

typically down to specific sources of uncertainty. The sources



of uncertainty we consider in the following affect the ability
to predict or even precisely measure the timing characteristics
of real-time systems:

• Workload input data or events: they cause uncertainty
when influencing the software control flow or the amount
of computation performed by it. In this case we say that
the workload is data-variant. For example, conditional
branches based on values provided by or calculated from
input data can lead to different paths of execution. Also
the depth of loops or recursions may depend on the
content or size of the input data.

• Hardware state: state of the hardware resources at begin-
ning of execution. Examples are initial cache contents or
memory controller row buffer content.

• Interference: deviation in performance caused by work-
loads that contend for the same shared resources, alter
the initial hardware state for other workloads or both.

C. Shared resources and interference channels

As interference arises from contention between workloads,
on accessing or using shared resources, co-location of work-
loads on high-performance system is prone to be affected by
such contention, which calls for its accurate quantification.
Each hardware shared resource can exhibit one or more
interference channel, each one corresponding to a place in
the resource where a specific type of contention can happen.
The following are examples of potential resource interference
channels:

• Internal hardware buffers between pipeline stages: a
congested buffer may result in a general resource stall,
delaying the service provided by the resource.

• Arbitration policies: they govern which workload has
access to the resource at any given time. Biased poli-
cies (e.g., strict priority ones) or generally non-work-
conserving ones can cause starvation of workload request
flows

III. QUALITY OF SERVICE (QOS)

Solutions that address the need for predictively and deter-
ministically managing shared resources are collectively named
Quality of Service (QoS). We define here the QoS principles
for architecting and designing a QoS-enabled computing sys-
tem capable of delivering differential performance treatment
to its users (workloads).

Principle 0 - There is no controllability of a system
without observability.

A system where QoS controls are successfully deployed
should provide a consistent monitoring infrastructure which
can sample the system and provide feedback on the function-
ing of such controls. It also allows and enable software to
discover which shared resources are utilised by a workload.

Principle 1 – QoS is a system-level feature:
A QoS-enabled system should orchestrate its resources in

a consistent way, so that the system’s users (workloads) are
provisioned with certain Levels of Service (memory access

bandwidth and latency, compute time, peripheral access, etc.)
consistent throughout.

Principle 2 - QoS is quantifiable and predictable:
The set of guarantees a QoS-enabled system can provide

should be clear and the level of service that the system will
guarantee to its user should be predictable based on system
configuration and other conditions.

These principles should be considered both for individual
hardware components design and when approaching the whole
system design and integration, including software stack and
functions. [4]

IV. APPLICATION MODEL

In high-performance real-time systems, hardware should be
configurable and configured to provide service guarantees to
a certain mix of software, and software should be enabled
to manage and monitor the resources of known hardware.
We here adopt a workload analysis process, the data-flow
model [8], aimed at identifying the QoS requirements of the
applications to be deployed on a target system. The data-
flow model allows to identify the resources (processing nodes
and data paths) which are involved in the execution of such
workloads. Those resources will be the ones requiring their
service to be characterised, and resource management when
contended upon.

We start with capturing use cases requirements, as this is
fundamental to enable correct resource provisioning. Work-
loads should have specific goals. A well-characterised work-
load is one for which we can specify its QoS requirements and
identify a range of QoS values over which it can operate and
meet said goals. A generic QoS Framework can manage differ-
ent types of guarantees, all contributing to various workloads’
goals, for instance performance, power, or precision. In the
following, we look at leveraging QoS controls to enforce real-
time guarantees, i.e., those referring to the timing properties
of a real-time workload.

Realtime workloads are typically composed of a collection
of entities (program code, devices, data streams) that co-
operate in a non-trivial way. Workloads might have elements
and functions which are dependent on external events or
input, computations which might be triggered dynamically,
and which might be unpredictable both in terms of activation
time and duration. [5] For such systems, it is generically
unfeasible to statically compute any concept such as ”antic-
ipated peak or average load” by means of classic real-time
compute approaches such as static computation graph analysis.
Therefore, to define key timing parameters and constraints, we
break workloads down by means of the Data-Flow model.

The Data-Flow model we adopt consists of Processing
Nodes, compute elements which react to events, that can
produce and/or receive data, and can be either software (e.g.,
threads) or hardware entities (peripherals), and Data Paths,
which can either be physical links such as network intercon-
nections or software communication structures, and enable
connecting Processing Nodes to provide their service to the



workload, but are not directly providing it to the workload
itself.

According to Bikash S., et. Al [8] we can define QoS
as resource management of the end-to-end allocation and
scheduling of resources to workloads, based on their QoS
requirements, such as:

• Each processing node N satisfies its local constraints
• Each data path P satisfies the timing constraints of all

nodes N it connects, when activated
The mapping of use-cases onto the system’s shared re-

sources N – processing nodes and P – data paths, leads to
the identification of interference channels where monitoring
and control is needed to preserve data-flow isolation for such
use-cases. This is easily identified as the set of N, P which
appear in more than one dataflow.

A system capable of delivering high-performance real-time,
in which QoS-based resource management is implemented to
mitigate interference on its shared resources, should define
its following characteristics: Granularity, Resource Monitoring
and Resource Control.

A. Granularity

A system providing real-time can do so at different levels
of coarseness with respect to how it identifies the users
of its resources, i.e., the system granularity. A system’s
granularity is defined as the finest resolution at which the
system – as whole – can identify users of its shared resources
(the set of N and P), both for monitoring and control purposes.

B. Resource Monitoring

Monitoring of data paths and processing nodes provides
insight into which shared resources are utilised by workloads,
by what extent, and what causes interference on them. It also
supports the implementation of control loops in the system by
providing feedback to software to adapt its schedule or operate
resource controls. A monitoring infrastructure should enable
observation of all data paths and processing nodes involved in
the computation of the system workloads. A real-time system
can provide, for each identified path P, monitoring capabilities
to observe performance characteristics that are specific to each
shared resource, for instance:

• Path traversal latency: the end-to-end latency of the path
from input to output. Could be punctual, or aggregated
over a time window, with standard deviation and average
jitter over the same time window.

• Path utilization: the amount of path capacity in use at
any given time.

• Path bandwidth: i.e., amount of information transferred
over the path in a time window.

For each identified processing node N, the monitoring infras-
tructure can also provide:

• Node utilization: information processed/time unit as a
proportion of the node maximum capacity

• Node access latency: the wait time a user experiences
before obtaining compute service from the node, either

punctual or aggregated as average over a time window,
standard deviation, and average jitter over the same time
window

C. Monitor Characterization

Monitors can be characterized in terms of invasiveness,
precision, frequency, measurement lag:

• Invasiveness: expressed as absolute delta or tolerance
variance on the observed values due to perturbation
caused by the monitor on the observed metric

• Precision (resolution): expressed as minimum detectable
unit of measurement

• Frequency: maximum measurement collection frequency
(max between sampling frequency and interrogation fre-
quency) at which fresh measurement (not replicas of past
values) can be obtained from the monitor

• Measurement Lag: maximum measurement collection
delay (max between sampling collection and availability
to interrogation)

D. Resource Control

A Resource Control infrastructure should enable consistent
regulation of all data paths P and processing nodes N identified
in the data-flow analysis of the system workloads. Examples
of resource controls are:

• Path traversal latency control: maximum input (access)
to output (exit) latency for the path

• Path bandwidth control: minimum amount of data
guaranteed transferrable by a resource user over a defined
time window

• Path utilization control: minimum amount of resource
guaranteed to a resource user, expressed as a proportion
of the total available resource.

E. Resource Control Characterisation

Similarly, controls can also be characterised in terms of
transitory, precision and frequency:

• Transitory: maximum time over which the control con-
verges to a new steady state (regulates as intended) after
receiving input. Measured as time difference between the
time a new input is submitted to the control to the time
the control produces a stable and updated output

• Precision (resolution): minimum configurable unit of
control

• Frequency: maximum number of (re)configurations per
unit of time

F. Shared Resources Characterisation

Real-time computing systems are designed to execute work-
loads where data processed by computing nodes (N) and
data flowing between them through paths (P) requires service
guarantees. Some form of arbitration - implicit or explicit –
will regulate how users are granted access to those shared
resources. The execution time of a workload depends upon
the forward progress of the shared resourced used by its data
flow. The forward progress of a shared resource depends on



the arbitration points they contain. Arbitration points can be
managed by Resource Controls. Characterisation of the shared
resources consists in specifying what level of service those
resources provide to their users based on their arbitration
policies and configuration.

For example, the above could be about
• Resource-specific attributes such as local scheduling poli-

cies or resource access rules, including configuration
options and effects on the policies.

• Resource concurrent access and interference properties
Resource type and performance characteristics, scheduling

policies, cost/performance functions will all contribute to
resource-specific characterisation. A resource can be charac-
terised when its service curve is known, e.g., when, given
a user resource access pattern, its level of service can be
predictably determined [1]. This means given a specific input
into the resource, and a set configuration for its operable
controls, it is possible to know a-priori what will be the
measurable outcome of key resource metrics.

V. STANDARD HARDWARE RESOURCE MONITORS AND
CONTROLS

The Armv8.4-A Memory System Resource Partitioning and
Monitoring (MPAM) extension of the Arm Architecture define
mechanisms to provide traffic flows identification throughout
the system, and monitoring and control interfaces for MPAM-
enabled system resources. MPAM enhances the system mem-
ory request and responses with identifiers (PARTID and PMG)

• Partition Identifiers (PARTID) that identify the flow that
generated a particular request for the purpose of moni-
toring and control

• Performance Monitoring Group (PMG) property of PAR-
TIDs, which can be used for the purpose of finer grain
monitoring

MPAM enables operating systems or other software entities
to assign a PARTID to parts of a workload, and to monitor
and control their usage of the MPAM-enabled system shared
resources.

A. Monitoring Interfaces

MPAM provides two standard monitoring interfaces, both
of which are optional:

• Cache-storage usage monitors that report the cache utili-
sation for a given PARTID and PMG

• Memory-bandwidth usage monitors that report the num-
ber of bytes transferred for a given PARTID and PMG

Monitors can be configured to filter requests by type, for
example read or write, and by a choice of PARTID and PMG
or PARTID only.

B. Control Interfaces

MPAM provides 6 types of standard control interfaces, all
of which are optional:

• Cache-portion partitioning
• Cache maximum-capacity partitioning

• Memory-bandwidth portion partitioning
• Memory-bandwidth minimum and maximum partitioning
• Memory-bandwidth proportional-stride partitioning
• Priority partitioning
Cache-portion partitioning subdivides a cache resource into

several portions of equal and fixed size. Cache maximum-
capacity partitioning limits the ability of a flow to occupy
more than a configurable fraction of the cache capacity. Cache
maximum-capacity partitioning can be combined with cache-
portion partitioning, for example to restrict the ability of a
single flow to occupy all the capacity of cache portions that
have been made available to multiple flows.

Memory-bandwidth portion partitioning subdivides memory
bandwidth into several portions (quanta). Memory-bandwidth
minimum and maximum partitioning allow setting of a mini-
mum guaranteed and maximum permitted memory bandwidth
that is applied to a flow in the presence of contention.
Memory-bandwidth proportional-stride partitioning is based
on a configurable stride for each flow, permitting a flow to
consume bandwidth in proportion to its own stride relative to
the strides of other flows that are competing for bandwidth.

Priority partitioning provides a way for resources to expose
partition-based configuration of internal arbitration policies.
These can be used by system software for fine-grained control
over scheduling and arbitration policies in the memory system.

VI. CLOUD NATIVE SOFTWARE ARCHITECTURES
FOR MIXED CRITICAL WORKLOADS - SOAFEE

In the software defined embedded systems of the future,
cloud-native design patterns are being considered to enable
an agile DevOps environment for accelerated software fea-
ture deployments and increased developer efficiency [11].
As complex system designs get enabled with the resource
controls to provide a defined QoS required by an application
workload, the cloud native system software architectures and
corresponding infrastructure needs to provide the ability to
express the workload’s spatial and temporal requirements ,
configure the system to achieve these requirements which
includes configuring the the resource controls described in this
paper and orchestrate them across the distributed embedded-
compute system best suited to achieve those requirements.
This is a complex problem to solve because the existing cloud-
native infrastructure does not cater to mixed critical workload
development and there are no standards-based configuration
model or solution for mixed critical workload orchestration.

To enable complex features like mixed critical workload
orchestration, the QoS features described in this paper need
to be advertised in a standardized way from hardware to
firmware through constructs like ACPI/DT and then feed into
the operating system before exposing the platform capabilities
to an orchestrator like Kubernetes. Once the scheduler in the
orchestrator is aware of the system capabilities that includes
the general compute attributes like CPU core count, frequency,
amount of RAM, etc., along with real-time hardware capabili-
ties like MPAM, it should then configure the system attributes
using standardized interfaces and data models to satisfy the



application required service level agreements before deploying
the workload into the most appropriate compute element in the
system.

There are several technology issues that need to be solved to
address the above orchestrator usage scenario. We are listing
a few below, including:

• Standardized firmware interfaces for real-time system
features from hardware to firmware to operating system.

• Standardized software interfaces from OS to automotive
middleware and orchestrators

• Virtual development environment in cloud to enable
mixed critical workload development and deployment in
production system [10]

• Rich ecosystem of commercially supported and where
appropriate functionally safe / certified software compo-
nents.

The SOAFEE SIG was launched to bring together major
ecosystem players, including OEMs, Tier 1s, CSPs, OSVs and
ISVs, SIPs and other technology providers to address some
of these complex infrastructure issues. SOAFEE SIG will
deliver a cloud native architecture that is enhanced for mixed-
critical automotive applications and an open-source reference
implementation that enables commercial and non-commercial
offerings. [2].

VII. CONCLUSIONS

The paper presented an overview of our approach to design-
ing Arm-based systems for high-performance real-time, with
attention to workload decomposition and system-level require-
ments. We have also briefly summarized the Arm architectural
support and the complementary software initiative SOAFEE.
In follow-up contributions we will expand on our real-time
verification methodology and on details pertaining hardware
and software support for mixed criticality real-time workloads.

VIII. ACKNOWLEDGMENTS

We would like to acknowledge here the contributions of:
Frances Conboy, Sam Danyo, Adrian Herrera, Jan-Peter Lars-
son, and Andriani Mappoura. We also thank the University
of Pisa research group led by Prof. Giovanni Stea for their
continued and valued research collaboration relationship with
our team.

REFERENCES

[1] Alan Burns and Robert I. Davis. 2017. A Survey of Research into Mixed
Criticality Systems. ACM Comput. Surv. 50, 6, Article 82 (November
2018), 37 pages. DOI:https://doi.org/10.1145/3131347

[2] SOAFEE Initiative, http://soafee.io
[3] Arm® Architecture Reference Manual Supplement Memory System

Resource Partitioning and Monitoring (MPAM), for Armv8-A, available
online at https://developer.arm.com/docs/ddi0598/latest

[4] F. Rehm et al., ”The Road towards Predictable Automotive High
- Performance Platforms,” 2021 Design, Automation & Test in Eu-
rope Conference & Exhibition (DATE), 2021, pp. 1915-1924, doi:
10.23919/DATE51398.2021.9473996.

[5] M. Andreozzi et al., ”Heterogeneous Systems Modelling with Adaptive
Traffic Profiles and Its Application to Worst-Case Analysis of a DRAM
Controller,” 2020 IEEE 44th Annual Computers, Software, and Applica-
tions Conference (COMPSAC), 2020, pp. 79-86, doi: 10.1109/COMP-
SAC48688.2020.00020.

[6] Marco Paolieri et al., 2009. Hardware support for WCET analysis
of hard real-time multicore systems. In Proceedings of the 36th an-
nual international symposium on Computer architecture (ISCA ’09).
Association for Computing Machinery, New York, NY, USA, 57–68.
DOI:https://doi.org/10.1145/1555754.1555764

[7] Intel Cache Allocation Technology, https://software.intel.com/en-
us/articles/introduction-to-cache-allocation-technology

[8] B. Sabata et al, ”Taxomomy of QoS Specifications,” in Object-Oriented
Real-Time Dependable Systems, IEEE International Workshop on, New-
port Beach, CA, 1997 pp. 100. doi: 10.1109/WORDS.1997.609931 url:
https://doi.ieeecomputersociety.org/10.1109/WORDS.1997.609931

[9] Matteo Andreozzi et al., A MILP approach to DRAM access worst-
case analysis, Computers & Operations Research, Volume 143, 2022,
105774, ISSN 0305-0548, https://doi.org/10.1016/j.cor.2022.105774.

[10] Girish Shirasat et al., “Accelerating Software-Defined Vehicles
through Cloud-To-Vehicle Edge Environmental Parity” ,
https://soafee.io/blog/2022/sdv with cloud/

[11] Girish Shirasat “Cloud Native Approach to the Software Defined
Car”, https://community.arm.com/arm-community-blogs/b/embedded-
blog/posts/cloud-native-approach-to-the-software-defined-car

[12] Mohamed Hassan and Rodolfo Pellizzoni. ”Bounding DRAM interfer-
ence in COTS heterogeneous MPSoCs for mixed criticality systems”.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 37(11):2323–2336, 2018.

[13] F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo.
”Modeling and analysis of bus contention for hardware accelerators
in FPGA SoCs.” 32nd Euromicro Conference on Real-Time Systems
(ECRTS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[14] D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo. ”A holistic mem-
ory contention analysis for parallel real-time tasks under partitioned
scheduling”. In Proceedings of the 26th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS 2020), 2020.


