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Abstract. We consider online algorithms. Typically the model is in-
vestigated with respect to competitive ratio. In this paper, we explore
two-way automata as a model for online algorithms. We focus on quan-
tum and classical online algorithms. We show that there are problems
that can be solved more efficiently by two-way automata with quan-
tum and classical states than classical two-way automata in the case of
sublogarithmic memory (sublinear size) even if classical automata get
advice bits.
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1 Introduction

Online algorithms are a well-known computational model for solving optimiza-
tion problems. The peculiarity is that the algorithm reads an input piece by piece
and should return an answer piece by piece immediately, even if the answer can
depend on future pieces of the input. The algorithm should return an answer for
minimizing (maximizing) an objective function (the cost of the output). There
are different methods to define the effectiveness of online algorithms [13, 17], but
the most standard is the competitive ratio [40, 28]. Typically, online algorithms
have unlimited computational power. At the same time, it is quite interesting
to solve online minimization problems in the case of a big input stream such
that the stream cannot be stored completely in the memory. As the algorithms,
we can consider Turing machines with restricted memory or two-way automata
with non-constant size (a number of states). In the paper, we focus on two-way
automata. Streaming algorithms or one-way automata as online algorithms were
considered in [9, 26, 14, 33, 32, 34, 30]. We focus on quantum online algorithms.
This model was introduced in [33] and discussed in [1]. In the case of one-way
streaming algorithms, it is known that quantum online streaming algorithms
can be better than classical ones [33, 30]. Another model that was considered by
researchers is quantum online streaming algorithms with repeated test [43].

In this paper, we explore quantum online algorithms that have the only
restriction on memory but have no restriction on access to already taken input
variables. We mean two-way automata as online algorithms. This model is more



close to the general model of online algorithms comparing to online streaming
algorithms or online streaming algorithms with repeated test. The question of
comparing quantum and classical models was explored for streaming algorithms
(OBDDs and one way automata)[25, 3, 4, 21, 37, 31, 6, 7, 36, 2, 23, 24, 22], and for
two-way automata [8]. We use these results as a base for our results.

Moreover, we are interested in an advice complexity measure [35, 12, 15, 20,
19, 16]. In this case, an online algorithm gets some bits of advice about an input.
A trusted Adviser sending these bits knows the whole input and has unlimited
computational power. Deterministic and randomized online algorithms with ad-
vice are considered in [27, 35, 10]. If we consider online streaming algorithms with
advice, then the quantum model can be better than classical ones [33, 32, 34].
We compare the power of quantum online algorithms and classical ones in the
case of two-way automata. This question was not investigated before. Typically,
term “Adviser” is used in online algorithms theory; and term “Oracle” in the
case of other models.

We use the “Black Hats Method” for constructing hard online minimization
problems[32, 34]. We present problems for a separation between the power of
quantum and classical two-way automata using this method. Suppose that al-
gorithms use only o(log n) bits of memory (no(1) states) in the case of exponen-

tial expected working time and o
(
(log n)0.5−α

)
bits of memory (no(logn)

−(0.5+α))

states) in the case of polynomial expected working time, where n is the length
of an input, 0 < α < 0.5. For both cases (exponential and polynomial working
time), we have two results:

– There is a special online minimization problem that has a two-way automa-
ton with classical and quantum states with better competitive ratio than
any two-way classical (probabilistic or deterministic) automata, even if the
classical ones have a non-constant number of advice bits.

– For the same problem, a two-way automaton with classical and quantum
states has a better competitive ratio than any deterministic online algorithm
with unlimited computational power has.

We consider problems that are based on “Black Hats Method” [32, 34]; Palin-
drome and Unitary equality languages from [8].

The paper is organized as follows. We present definitions in Section 2. Black
Hats Method is described in Section 3. A discussion on two-way automata with
quantum and classical states vs. classical ones is given in Section 4.

2 Preliminaries

An online minimization problem consists of a set I of inputs and a cost
function. Each input I ∈ I is a sequence of requests I = (x1, . . . , xn). Further-
more, a set of feasible outputs (or solutions) is associated with each I; an output
is a sequence of answers O = (y1, . . . , yn). The cost function assigns a positive
real value cost(I,O) to a feasible input I and a feasible output O. For each in-
put I, we call any feasible output O for I that has the smallest possible cost (i.
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e., that minimizes the cost function) an optimal solution for I. The goal is the
searching for the optimal solution for I.

Let us define an online algorithm for this problem as an algorithm which
gets requests xi from I = (x1, . . . , xn) one by one and should return answers yi
from O = (y1, . . . , yn) immediately, even if an optimal solution can depend on
future requests. A deterministic online algorithm A computes the output
sequence A(I) = (y1, . . . , yn) such that yi is computed from x1, . . . , xi. We say
that a deterministic online algorithm A is c-competitive if there exists a non-
negative constant α such that, for every n and for any input I of size n, we have:
cost(I, A(I)) ≤ c · cost(I,Opt(I)) +α, where Opt is an optimal offline algorithm
for the problem and c is the minimal number that satisfies the inequality. Also
we call c the competitive ratio of A. If α = 0, c = 1, then A is optimal.

An online algorithm A with advice computes an output sequenceAφ(I) =
(y1, . . . , yn) such that yi is computed from φ, x1, . . . , xi, where φ is the mes-
sage from the adviser, who knows the whole input. A is c-competitive with
advice complexity b = b(n) if there exists a non-negative constant α such
that, for every n and for any input I of size n, there exists some φ such that
cost(I, Aφ(I)) ≤ c · cost(I,Opt(I)) + α and |φ| ≤ b ; |φ| is a length of φ.

A randomized online algorithm R computes an output sequence Rψ(I) =
(y1, . . . , yn) such that yi is computed from ψ, x1, . . . , xi, where ψ is the content
of the random tape, i. e., an infinite binary sequence, where every bit is chosen
uniformly at random and independently of all the others. By cost(I,Rψ(I)) we
denote the random variable expressing the cost of the solution computed by R
on I. R is c-competitive in expectation if there exists a constant α > 0 such
that, for every I, E [cost(I,Rψ(I))] ≤ c · cost(I,Opt(I)) + α.

We use two-way automata for online minimization problems as online algo-
rithms with restricted memory. Let us give definitions of automata.

A two-way deterministic automaton working on inputs of length/size
m ≥ 0 (2DA) D is a 6-tuple D = (Σ,Γ, S, s1, δ, Result), where (i) Σ is an input
alphabet; (ii) Γ is an output alphabet; (iii) S = {s1, . . . , sd} is the set of states
(d can be a function in m), s1 ∈ S is the initial state; (iv) Results : S → Γ
is a function that transforms a state to an output symbol; (v) δ : S × Σ →
S × {←, ↓,→} is a transition function. Any given input u ∈ Σm is placed on a
read-only tape with a single head as ¢u1u2 . . . um$�, where ui ∈ Σ is the i-th
symbol of u, ¢ is a left end marker and $, � are right end markers. When D is in
s ∈ S and reads ui ∈ Σ on the tape, the automaton switches to state s′ ∈ S and
updates the head position with respect to a ∈ {←, ↓,→} if δ(s, ui) → (s′, a).
If a = “ ← ” (“ → ”), then the head moves one square to the left (the right),
and, it stays on the same square, otherwise. The transition function δ must be
defined to guarantee that the head never leaves ¢u$� during the computation.
Moreover, if the automaton reaches the second endmarker � in a state s, then
D finishes the computation and returns Result(s) as a result.

The probabilistic counterpart of 2DA, denoted 2PA, can choose from more
than one transition in each step such that each transition is associated with a
probability. Thus, 2PAs can be in a probability distribution over the determinis-
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tic configurations (the state and the position of the head forms a configuration)
during the computation. The total probability must be 1, i.e., the probability of
outgoing transitions from a single configuration must be 1. Thus, a 2PA returns
some result for each input with some probability. For v ∈ Γ , a 2PA returns a
result v for an input, with bounded-error if the 2PA returns the result v with
probability at least 1/2 + ε for some ε ∈ (0, 1/2].

Let us use these models for online minimization problems. A 2DA for online
minimization problems A computes the output sequence A(I) = (y1, . . . , yn)
where yi is a result of computation A on the input ¢x1, . . . , xi$�, such that A
starts from a state s that is the final state for computing yi−1, and the input
head observes x1. A 2PA, a 2DA with advice and a 2PA with advice for
online minimization problems have similar definitions, but with respect to
definitions of corresponding models of online algorithms.

Let us define the quantum counterparts of the models. You can read more
about quantum computation and quantum automata in [7, 38, 8]. Quantum de-
vices manipulate quantum states. A quantum state can be described by a 2q-
dimensional vector from Hilbert space over the field of complex numbers. Here
q is a number of quantum bits (qubits). A unitary transformation is applying
2q × 2q (left) unitary matrices of complex numbers. Let us describe the mea-
surement process. Suppose that an automaton is in a distribution of quantum
states |ψ〉 = (v1, . . . , v2q ) before a measurement and measures the i-th qubit.
Suppose states with numbers a01, . . . , a

0
2q−1 correspond to the 0 value of the i-th

qubit, and states with numbers a11, . . . , a
1
2q−1 correspond to the 1 value of the

qubit. Then the result of the measurement of the qubit is 1 with probability

pr1 =
∑2q−1

j=1 |va1j |
2 and 0 with probability pr0 = 1 − pr1. If the algorithm mea-

sures z qubits on the j-th step, then it gets number γ ∈ {0, . . . , 2z − 1} as a
result of the measurement.

A quantum online algorithm Q computes the output sequence Q(I) =
(y1, . . . , yn) such that yi depends on x1, . . . , xi. The algorithm uses quantum
memory, and can apply unitary transformations to quantum memory and mea-
sure qubits several times during a computation. Note that a quantum com-
putation is a probabilistic process. Q is c-competitive in expectation if there
exists a non-negative constant ξ such that, for every I, E [cost(I,Q(I))] ≤
c · cost(I,Opt(I)) + ξ.

Let us consider a two-way automaton with quantum and classical
states (2QCA), which is a 9-tuple M = (Q,S,Σ, Γ, θ, δ, v1, s1, Result), where
(i) Q and S are sets of quantum and classical states respectively; (ii) θ and
δ are quantum and classical transition functions; (iii) v1 ∈ Q and s1 ∈ S are
initial quantum and classical states; (iv) Σ is an input alphabet and Γ is an
output alphabet; (v) Results : S → Γ is a function that obtain output symbol
by a state. The function θ specifies the evolution of the quantum portion of the
internal state: for each pair (s, x) ∈ S×Σ, θ(s, x) is an action to be performed on
the quantum portion of the internal state of M . Each action θ(s, x) corresponds
to either a unitary transformation or an orthogonal measurement. The function
δ specifies the evolution of the classical part of M (i.e., the classical part of the
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internal state and the tape head). In a case θ(s, x) is a unitary transformation,
δ(s, x) is an element of S × {←, ↓,→} specifying a new classical state and a
movement of the tape head. In a case θ(s, x) is a measurement, δ(s, x) is a
mapping from the set of possible results of the measurement to S × {←, ↓,→}
(again specifying a new classical state and a tape head movement, this time one
such pair for each outcome of the observation). It is assumed that δ is defined so
that the tape head never moves left when scanning the left end-marker ¢, and
never moves right when scanning the right end-marker �. Other restrictions and
behavior are similar to 2DA. We can define 2QCA for online minimization
problems in the same way as for 2DA for online minimization problems. The
2QCA model is similar to 2QCFA model from [8] but the size (the number of
states) of 2QCA can depend on the length of the input m. The same difference
between 2DA and 2DFA, 2PA and 2PFA.

In the paper we use the terminology for branching programs [41] and algo-
rithms. We say that an automaton computes Boolean function fm if for any
input X of length m, the automaton returns result 1 iff f(X) = 1. Additionally,
we use the terminology on memory from algorithms. We say that an automaton
has s bits of memory if it has 2s states.

3 Two-Way Automata for Black Hats Online
Minimization Problem

Let us describe the “black hats method” from [32, 34] that allows us to construct
hard online minimization problems. In the paper we discuss a Boolean function
f , but in fact we consider a family of Boolean functions f = {f1, f2, . . . }, for
fm : {0, 1}m → {0, 1}. We use notation f(X) for fm(X) if the length of X is m
and it is clear from the context.

Suppose we have a Boolean function f and integers k, r, w, t > 0, where k mod
t = 0. Then an online minimization problemBHt

k,r,w(f) is the following. We have
k guardians and k prisoners. They stay one by one in a line like G1P1G2P2 . . . ,
where Gi is a guardian, Pi is a prisoner. The prisoner Pi has an input Xi of length
mi and computes a function fmi(Xi). The prisoner paints his hat black or white
with respect to the result 1 or 0. Each guardian wants to know the parity of a
number of following black hats. So, Gi wants to compute fmi(Xi)⊕· · ·⊕fmk(Xk).
We split sequential guardians into t blocks. The cost of a block is r if all guardians
of the block are right; and w, otherwise. Let us define the problem formally:

Definition 1 (Black Hats Method). We have a Boolean function f . Then an
online minimization problem BHt

k,r,w(f), for integers k, r, w, t > 0, where k mod
t = 0, is the following. Suppose we have an input I = (x1, . . . , xn) and k integers

m1, . . . ,mk > 0, where n =
∑k
i=1(mi+1). Let I = 2 X1 2 X2 2 X3 2 . . . 2 Xk,

where Xi = (xi1, . . . , x
i
mi) ∈ {0, 1}

mi , for i ∈ {1, . . . , k}. Let O be a sequence of
answers that corresponds to the input I. Let O′ = (y1, . . . , yk) be answer variables
corresponding to input variables with value 2 (in other words, output variables
for guardians). An answer variable yj corresponds to an input variable xij , where
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ij = j +
∑j−1
r=1mr. Let gj(I) =

⊕k
i=j fmi(Xi). We separate all answer variables

yi to t blocks of length z = k/t. The cost of the i-th block is ci. Here ci = r if
yj = gj(I) for j ∈ {(i− 1)z+ 1, . . . , i · z}; and ci = w, otherwise. The cost of the
whole output is costt(I,O) = c1 + · · ·+ ct.

We can show that any 2DA using s bits of memory cannot solve BHt
k,r,w(f)

if there is no 2DA computing the function f using s bits of memory.

Theorem 1. Let s be a positive integer. Suppose a Boolean function f is such
that no 2DA for f uses at most s bits of memory. Then there is no c-competitive
2DA for BHt

k,r,w(f) using s bits of memory, where c < w/r.

Proof. Let us consider any 2DA A for the BHt
k,r,w(f) problem that uses at most

s bits of memory. Suppose that A returns y1 as an answer of the first guardian.
Let us prove that there are two parts of the input X0

1 , X
1
1 ∈ {0, 1}m1 such that

A returns the same value y2 for both, but f(X0
1 ) = 0, f(X1

1 ) = 1.
Assume that there is no such triple (y2, X

0
1 , X

1
1 ). Then, we can construct a

2DA A′ that uses s bits of memory and has the following property: A′(X ′1) =
A′(X ′′1 ) iff f(X ′1) = f(X ′′1 ), for any X ′1, X

′′
1 ∈ {0, 1}m1 . The automaton A′

emulates the automaton A. Therefore, A′ computes f or ¬f . In the case of ¬f ,
we can construct A′′ such that A′′(X1) = ¬A′(X1). It is a contradiction with the
claim of the theorem. By the same way, we can show existence of similar triples
(yi+1, X

0
i , X

1
i ) for i ∈ {2, . . . , k}.

Let us choose σi = yi ⊕ 1 ⊕
⊕k

j=i+1 σj , for i ∈ {1, . . . , k}. Let us con-
sider an input IA = 2Xσ1

1 2 . . . 2Xσk
k . An optimal offline solution is (g1, . . . , gk)

where gi =
⊕k

j=i σj . Let us prove that gi 6= yi for each i ∈ {1, . . . , k}. We have

σi = yi⊕1⊕
⊕k

j=i+1 σj . Therefore, yi = σi⊕1⊕
⊕k

j=i+1 σj = 1⊕
⊕k

j=i σj = 1⊕gi,
so yi = ¬gi. Hence, all answers are wrong and costt(IA, A(IA)) = tw. So the com-
petitive ratio c cannot be less than tw/(tr) = w/r. �

The similar result holds for probabilistic two-way automata.

Theorem 2. Let s be a positive integer. Suppose a Boolean function f is such
that no 2PA uses at most s bits of memory and computes f with bounded error.
Then there is no c-competitive in expectation 2PA using s bits of memory and
solving BHt

k,r,w(f) with bounded error, where c < 2−z + (1− 2−z)w/r.

Proof. (Sketch) The proof is similar to deterministic case but we can guess un-
known bits with probability 0.5. �

There is a bound on the competitive ratio in the case of unlimited computa-
tional power for a deterministic online algorithm.

Theorem 3 ([32]). Claim 1. There is no c-competitive deterministic online
algorithm A computing BHt

k,r,w(f), for c <
(
b(t+ 1)/2c ·w + (t− b(t+ 1)/2c

)
·

r)/(tr).
Claim 2. There is no c-competitive deterministic online algorithm A for

BH1
k,r,w(f), for c < w/r.
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Theorem 4. Let us consider a Boolean function f . Suppose we have a 2QCA
R that computes f with bounded error ε using s classical bits and s quantum bits
of memory, where 0 ≤ ε < 0.5. Then there is a 2QCA A for BHt

k,r,w(f) that
uses at most s+O(1) classical bits and at most s+ 1 quantum bits of memory,
and has expected competitive ratio c ≤

(
0.5(1− ε)z−1 · (r − w) + w

)
/r.

Let us consider the model with advice.
In the following properties of BHt

k,r,w(f) problem, we show that if the model
has not enough memory, then the problem can be interpreted as the “String
Guessing, Unknown History” (2−SGUH) problem from [11]. The problem is the
following. On each step, an algorithm should guess the next input bit.

The following result for the 2−SGUH is known:

Lemma 1 ([11]). Consider an input string of length k for 2−SGUH, for some
positive integer k. Any online algorithm that is correct in more than αk charac-
ters, for 0.5 ≤ α < 1, needs to read at least (1 + (1− α) log2(1− α) + α log2 α) k
advice bits.

Using this result for 2−SGUH, we can show the following properties of
BHt

k,r,w(f) problem with respect to two-way automata with advice for online
minimization problems.

Theorem 5. Let s be a positive integer. Suppose a Boolean function f is such
that no 2DA uses at most s bits of memory and computes f . Then there is no
c-competitive 2DA that uses s − b bits of memory and b advice bits, and solves
BHt

k,r,w(f), where c < (hr + (t − h)w)/(tr), h = bv/zc, z = k/t, v is such that
b = (1 + (1− v/k) log2(1− v/k) + (v/k) log2(v/k)) k, 0.5 · k ≤ v < k.

We have a similar situation in a probabilistic case. We use a function δx :
R→ {0, 1} in the claim of the following theorem: δx = 1 iff x 6= 0.

Theorem 6. Let s be a positive integer. Suppose a Boolean function f is such
that no 2PA uses at most s bits of memory and computes f . Then there is no
c-competitive in expectation 2PA that uses s−b bits of memory and b advice bits,
and solves BHt

k,r,w(f) with bounded error, where c ≥ (hr + δu · (2u−zr + (1 −
2u−z)w)+(t−h−δu)(2−zr+(1−2−z)w))/(tr), for h = bv/zc, z = k/t, u = v−hz,
v is such that b = (1 + (1− v/k) log2(1− v/k) + (v/k) log2(v/k)) k, 0.5k ≤ v <
k.

Proof. (Sketch). The idea of the proof is similar to the proof of Theorem 5, but
here we can guess all “unknown” guardians with probability 0.5. �

4 Application

Let us discuss applications of Black Hats Method. We present examples of prob-
lems that allow us to show benefits of quantum computing.
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Exponential Expected Working Time. Let us consider exponential ex-
pected working time for two-way automata.

In this case, we analyze the palindrome Boolean function. The Boolean func-
tion Pal : {0, 1}m → {0, 1} is the following. Pal(X) = 1 if X = XR; and
Pal(X) = 0, otherwise. Here X = (x1, . . . , xm), XR = (xm, . . . , x1) is a reversed
X. It is known that there is a 2QCFA that recognizes the palindrome language
[8]. 2QCFA is 2QCA with a constant size of memory. At the same time, we can
show a lower bound for 2PA that is based on lower bounds from [18, 29, 5, 35,
39]. Therefore, we have the following results:

Lemma 2. The following two claims are true: 1. There is a 2QCA that uses
quantum and classical memory of constant size that works in exponential expected
time and computes Pal with bounded error. 2. No 2PA uses o(log n) bits of
memory that works in exponential expected time and computes Pal with bounded
error, where n is the length of the input.

Proof. The first claim follows from the result for the language version of Pal [8],
let us prove the second claim. It is known from [18, 29] that if a 2PA recognize a
language or computes a Boolean function f , then the following property holds:
N(f) ≤ (C1 · log T )C2·d2 log2 d, where C1, C2 = const, T is expected time, d is
the size (the number of states) of the automaton. N(f) is a number of Myhill-
Nerode classes in a language version and the number of subfunctions in a Boolean
functions version. The number of subfunctions is analogue of number of Myhill-
Nerode classes, you can read more in [35, 42, 41]. Additionally, it is easy to see
that N(Pal) ≥ 2n/2.

The memory of the automaton is o(log n) = o(0.5 log n − log log n). There-

fore, d = o(
√
n/(log n)2) = o

( √
n/(logn)

log(n/ logn)

)
. Hence d2 log d = o(n/ log n). If T is

exponential, then we can replace C1 log T by C3 ·n for some constant C3. Finally,
we obtain that (C1 · log T )C2·d2 log2 d = 2o(n) < 2n/2. Therefore, by lower bounds
[18, 29], 2PAs with o(log n) bits of memory cannot compute the function. �

Let us consider theBHPaltk,r,w = BHt
k,r,w(Pal) problem. Recall thatBHt

k,r,w(f)
is a black hat problem for k guardians, t blocks of guardians, the cost r for a
right answer of a block, the cost w for a wrong answer of a block, z = k/t and
k mod t = 0. Let us discuss the properties of the BHPaltk,r,w problem:

Theorem 7. Suppose P t = BHPaltk,r,w, t ∈ {1, . . . , k}, k = (log2 n)O(1), v is
such that b = (1 + (1− v/k) log2(1− v/k) + (v/k) log2(v/k)) k, 0.5k ≤ v < k,
all automata work in exponential expected time; then

1. There is no c-competitive 2DA that uses s = o(log n) bits of memory and
b advice bits, and solves P t, where c < C1 = w/r, b = o(z/ log z).

2. There is no deterministic online algorithm with unlimited computational
power computing P 1 that is c-competitive, for c < C1 = w/r.

3. There is no c-competitive in expectation 2PA that uses o(log n) bits of
memory and solves P t, where c < C3 = 2−z + (1− 2−z)w/r.
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4. There is no c-competitive 2DA that uses s = o(log n) bits of memory and

b advice bits, and solves P t, where c < C2 = hr+(t−h)w
tr , h = bv/zc.

5. No 2PA uses s = o(log n) bits of memory, b advice bits and solves P t that
is c-competitive in expectation for h = bv/zc, u = v − hz,

c < C4 = hr+δu·(2u−zr+(1−2u−z)w)+(t−h−δu)(2−zr+(1−2−z)w)
tr .

6. There is a 2QCA Q that uses a constant number of classical and quantum
bits of memory and solves P t. The algorithm Q has expected competitive ratio
c ≤ ((1− ε)z−1 · 0.5 · (r − w) + w)/r < C1, C2, C3, C4, for some ε: 0 < ε < 0.5.

Proof. Let us consider Claim 1 of the theorem. Due to Lemma 2, no 2DA with
o(log n) computes P t. Hence, because of Theorem 5, Claim 1 is true. Claim 2
follows from Theorem 3. Let us consider Claim 3 of the theorem. Due to Lemma
2, no 2PA with o(log n) computes P t with bounded error. Therefore, because
of Theorem 2, Claim 3 is true. Claim 4 follows from Lemma 2 and Theorem 5.
Claim 5 follows from Lemma 2 and Theorem 6. Claim 6 follows from Lemma 2
and Theorem 4. �

This theorem gives us the following important results. (i) There is a 2QCA
with a constant size of memory for BHPal1k,r,w that has a better competitive
ratio than any 2DA or 2PA with sublogarithmic memory and sublogarithmic
number of advice bits (Claims 1, 3, 4, 5 and 6 of Theorem 7); any deterministic
online algorithm without restriction on memory (Claims 2 and 6 of Theorem 7).
(ii) If we increase the number of advice bits for 2DA or 2PA for BHPaltk,r,w, then
the competitive ratio becomes smaller, in the case of sublogarithmic memory and
1 < t ≤ k/2. At the same time, the competitive ratio is still larger than for a
2QCA (Claims 4, 5 and 6 of Theorem 7).

Polynomial Expected Working Time. Let us consider the polynomial ex-
pected working time for two-way automata. For this case, we analyze the UEQ
Boolean function. The Boolean function UEQ : {0, 1}m → {0, 1} is the follow-
ing. UEQ(X) = 1 iff #1(X) = #0(X), where #j(X) is the number of symbols
j in X. It is known that there is a 2QCFA that recognizes the language version
of UEQ in polynomial time [8]. At the same time, we can show a lower bound
that is based on lower bounds from [18, 29, 35]. Therefore, we have the following
results:

Lemma 3. The following two claims are true. 1.There is a 2QCA that uses
quantum and classical memory of constant size that works in exponential expected
time and computes UEQ with bounded error. 2.No 2PA uses o

(
(log n)0.5−α

)
bits of memory that works in polynomial expected time and computes UEQ with
bounded error, where n is the length of input, 0 < α < 0.5.

Proof. The first claim follows from [8], the proof of the second claim is similar
to the proof of Lemma 2. �
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Let us consider the BHUEQtk,r,w = BHt
k,r,w(UEQ) problem. Recall that the

problem is a black hat problem for k guardians, t blocks of guardians, the cost r
for a right answer of a block, the cost w for a wrong answer of a block, z = k/t
and k mod t = 0. Let us discuss the properties of the BHUEQtk,r,w problem:

Theorem 8. Suppose P t = BHUEQtk,r,w, t ∈ {1, . . . , k}, k = (log2 n)O(1), v
is such that b = (1 + (1− v/k) log2(1− v/k) + (v/k) log2(v/k)) k, 0.5k ≤ v < k,
all automata work in polynomial expected time, 0 < α < 0.5; then

1. There is no c-competitive 2DA that uses s = o
(
(log n)0.5−α

)
bits of mem-

ory and b advice bits, and solves P t, where c < C1 = w/r, b = o(z/ log z).

2. There is no deterministic online algorithm with unlimited computational
power computing P 1 that is c-competitive, for c < C1 = w/r.

3. There is no c-competitive in expectation 2PA that uses o
(
(log n)0.5−α

)
bits

of memory and solves P t, where c < C3 = 2−z + (1− 2−z)w/r.

4. There is no c-competitive 2DA that uses s = o
(
(log n)0.5−α

)
bits of mem-

ory and b advice bits, and solves P t, where c < C2 = hr+(t−h)w
tr , h = bv/zc.

5. No 2PA using s = o
(
(log n)0.5−α

)
bits of memory, b advice bits and solving

P t that is c-competitive in expectation for h = bv/zc, u = v − hz,
c < C4 = hr+δu·(2u−zr+(1−2u−z)w)+(t−h−δu)(2−zr+(1−2−z)w)

tr .

6. There is a 2QCA Q that uses a constant number of classical and quantum
bits of memory and solves P t. The algorithm Q has expected competitive ratio
c ≤ ((1− ε)z−1 · 0.5 · (r − w) + w)/r < C1, C2, C3, C4, for some ε: 0 < ε < 0.5.

Proof. The proof is similar to the proof of Theorem 7. The claims follow from
Lemma 3 and all theorems from Section 3. �

This theorem gives us the following important results: (i) There is a 2QCA
for BHUEQ1

k,r,w with constant size of memory and polynomial expected time
that has a better competitive ratio than any 2DA or 2PA with the size of mem-
ory less than o

(√
log2 n

)
and the number of advice bits less than o

(√
log2 n

)
,

and works in polynomial time (Claims 1, 3, 4, 5 and 6 of Theorem 8); any de-
terministic online algorithm without restriction on memory (Claims 2 and 6 of
Theorem 8). (ii) If we increase the number of advice bits for 2DA or 2PA for
BHUEQtk,r,w, then the competitive ratio becomes smaller, in the case of sublog-
arithmic memory and 1 < t ≤ k/2. At the same time, the competitive ratio is
still larger than for a 2QCA (Claims 4, 5 and 6 of Theorem 8).
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