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Abstract. Recently, by exploiting asymmetric learning mechanism, asym-
metric hashing methods achieve superior performance in image retrieval.
However, due to the discrete binary constraint, these methods typically
rely on a special optimization strategy of discrete cyclic coordinate de-
scent (DCC), which is time-consuming since it must learn the binary
codes bit by bit. To address this problem, we propose a novel deep super-
vised hashing method called Fast Deep Asymmetric Hashing (FDAH),
which learns the binary codes of training and query sets in an asymmetric
way. FDAH designs a novel asymmetric hash learning framework using
the inner product of the output of deep network and semantic label re-
gression to approximate the similarity and minimize the discriminant re-
construction error between the deep representation and the binary codes.
Instead of using the DCC optimization strategy, FDAH avoids using the
quadratic term of binary variables and the binary code of all bits can
be optimized simultaneously in one step. Moreover, by incorporating the
semantic information in binary code learning and the quantization pro-
cess, FDAH can obtain more discriminative and efficient binary codes.
Extensive experiments on three well-known datasets show that the pro-
posed FDAH can achieve state-of-the-art performance with less training
time.
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1 Introduction

As one of the most popular approximate nearest neighbor (ANN) [1] search
techniques, hashing has attracted considerable attention in different scenarios,
including sketch retrieval [21], large-scale clustering [26] and objective recog-
nition [25]. By encoding data through a set of binary codes, hashing methods
can reduce the memory storage and speed up retrieval with efficient pairwise
comparison of Hamming distance.

With the rapid development of machine learning, learning-based hashing has
become a hot topic, because it can greatly improve the retrieval performance by
learning the hashing function from a large number of data. Generally, learning-
based hashing methods can be categorized into unsupervised and supervised
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methods. Unsupervised hashing methods, including Spectral Hashing (SH) [23],
Binary Reconstructive Embedding (BRE) [11], Iterative Quantization (ITQ)
[6], Jointly Sparse Hashing (JSH) [13], aim at constructing hash functions by
exploiting inherent structures of data. On the other hand, supervised hashing
methods fully exploit labeled information to obtain more discriminative binary
codes, such as Supervised Discrete Hashing (SDH) [20], Fast Supervised Discrete
Hashing (FSDH) [7] and Column Sampling Based Discrete Supervised Hashing
(COSDISH) [10]. However, the above-mentioned hashing methods learn hash
functions based on hand-crafted features, which cannot perform feature learning
to generate more effective binary codes. To address this problem, some hash-
ing methods based on deep neural network have been proposed [24, 12, 3, 22,
4]. Some representative deep hashing methods including Deep Pairwise Super-
vised Hashing (DPSH) [15], Deep Supervised Discrete Hashing (DSDH) [14] and
Deep Discrete Supervised Hashing (DDSH) [8] integrate deep feature learning
and hash code learning into a end-to-end framework and then obtain a great
retrieval performance.

Due to the high computation cost, most deep hashing methods will select a
subset from the dataset for training, which cannot fully utilize the supervised
information. Therefore, some deep asymmetric hashing methods have been pro-
posed [19, 9, 27]. One of the representative methods is Asymmetric Deep Super-
vised Hashing (ADSH) [9]. By treating query set and training set in an asymmet-
ric way, ADSH can fully exploit the supervised information during the iterative
learning procedure. However, because of using discrete cyclic coordinate descent
(DCC) algorithm [20], ADSH still needs high computation cost to solve discrete
optimization with the increasing length of binary codes. Meanwhile, ADSH does
not fully exploit the semantic information of data in binary codes learning and
the quantization process, resulting in inevitable information loss. To address
these problems, this paper proposes a novel deep hashing method called Fast
Deep Asymmetric Hashing (FDAH) for image retrieval, which learns the binary
codes of training and query sets in an asymmetric way. Specifically, we use the
commonly-used objective function of asymmetric hashing and assume that the
binary codes of training set can be obtained by regressing their semantic labels.
As such, we can avoid using the quadratic term of binary variables and solve
the discrete optimization with a closed-form solution instead of DCC algorithm.
Moreover, we consider the accumulated quantization error and incorporate the
semantic information in quantization process, which can reduce the inevitable
information loss and obtain more discriminative and efficient binary codes. Ex-
tensive experiments on three well-known datasets show that the proposed FDAH
can achieve state-of-the-art performance with less training time.

2 The Proposed Method

In this paper, boldface uppercase letters are used to denote matrices, e.g., X, and
boldface lowercase letters are used to denote vectors, e.g., x. Xij denote The i-th
row and j-th column element of matrix X. The Frobenius norm and transpose
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Fig. 1: The overview of FDAH

of matrix X are defined as ‖X‖F and XT , respectively. Furthermore, the binary
function is presented by sgn(·), which outputs +1 for positive numbers and -1
for negative number. The Hadamard product is presented by �. I and 1 indicate
an identity matrix and a matrix with all elements equaling to 1.

Suppose that the training set X = {xi}ni=1 includes n training samples, and
the corresponding labels matrix are denoted by Y = {yi}ni=1 ∈ {0, 1}c×n, where
c is the number of classes and Yji = 1 if xi belongs to the j-th class. Meanwhile,
the query set is denoted as Q = {qj}mj=1 including m query samples, which are
randomly sampled from the training set. The purpose of our designed model
FDAH is to learn the binary codes B = {bi}ni=1 ∈ {−1,+1}l×n for the whole
training set and U = {uj}mj=1 ∈ {−1,+1}l×m for the query set, respectively,
where l is the length of binary codes.

2.1 The Idea and Model Formulation

Our method FDAH integrates deep feature learning and binary code learning
into an end-to-end framework. The overview of FDAH framework is shown in Fig
1. The deep feature learning adopts a CNN model from [2], i.e., CNN-F model.
Furthermore, the objective function of FDAH mainly contains two significant
parts: deep asymmetric hashing part and discriminative quantization process
part.

Deep Asymmetric Hashing. We attempt to learn the binary codes B of
the whole training set X and the binary codes U of the query set Q. Therefore,
we consider the commonly-used objective function [16] of asymmetric hashing,
that is:

min
B,Θ

J1 =

n∑
i=1

m∑
j=1

||bTi uj − cSij ||2

s.t. B ∈ {−1,+1}c×n,U ∈ {−1,+1}c×m
(1)

where S is the asymmetric semantic similarity matrix. Specifically, Sij = +1 if
xi and qj belong to the same class, Sij = −1, otherwise.
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To make full use of asymmetry, we attempt to directly learn the binary
codes B of training set while the binary codes U of query set can be generated
by training a deep hashing function. Thus, we set U = sgn(F (Q; Θ)), where
F (Q; Θ) is the output of the feature learning part, and Θ is the parameters of
the neural network. Due to the non-differentiability of sgn(·) function, we decide
to use tanh(·) function to replace the sgn(·) function for ease of optimization.

Moreover, because of the quadratic term of binary variables, the natural idea
to solve the discrete optimization of the binary codes B is to use the discrete
cyclic coordinate descent (DCC) algorithm, which is time-consuming. To tackle
this problem, inspired by [7], we assume that the binary codes B of training set
can be learned by regressing their semantic labels, i.e., B = sgn(WTY), where
W ∈ Rc×l is regression matrix. It is worth noting that integrating semantic
information into the representation learning can generate more discriminative
and efficient binary codes. Then we relax the sgn(·) function with its signed
magnitude in our objective function. We can rewrite (1) as follows:

min
B,Θ

J1 = γ1

n∑
i=1

m∑
j=1

||(WTyi)
T tanh[F (qj ;Θ)]− cSij ||2 (2)

where γ1 is a hyper-parameter.
Discriminative Quantization Process. Due to the relaxed strategy, we

need to consider the accumulated quantization error in the binary code learning
procedure. Thus, For the binary codes B of training set, we impose a discriminant
term to keep B and WTY as close as possible. Besides, we adopt an asymmetric
graph regularization term [17] to minimize the distance between network outputs
tanh[F (qj ;Θ)] and the binary codes:

min
B,Θ

J2 = γ2

n∑
i=1

m∑
j=1

1

τj
||bi − tanh(F (qj ; Θ))||2Aij

+ γ3

n∑
i=1

||bi −WTyi||2

s.t. B ∈ {−1,+1}c×n

(3)

where γ2, γ3 are hyper-parameters, and τj is the total number of data points
that have the same class with qj , which is designed to avoid class-imbalance
effect. A ∈ Rn×m is an asymmetric affinity matrix, and if xi and qj belong
to the same class, Aij = 1. Otherwise, Aij = 0. As can be seen from (3), we
take full advantage of semantic information in the quantization process, which
can improve the discriminative capabilities of the network model and reduce the
inevitable information loss.

Overall Framework. Finally, by integrating J1 and J2 into a jointly frame-
work, we obtain the final objective function of FDAH as follow:

min
B,Θ

J = J1 + J2 s.t. B ∈ {−1,+1}c×n (4)
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2.2 Optimization Algorithm

In this part, we will solve the minimization problem (4) by using an iterative
algorithm.

Given B and W, Update Θ. For simplicity, we define zj = F (qj ; Θ) and
ũi = tanh(F (qj ; Θ)). From (4), we rewrite the problem as:

min
Θ

J = γ1tr(Ũ
T (WTY)(WTY)T Ũ− 2ŨTWTYS̃)

+ γ2tr(ŨŨT − 2BÃŨT ) (5)

where S̃ = cS and Ãij = 1
τj

Aij . We can update Θ by using back-propagation

(BP) algorithm [18]. Thus, we can compute the gradient of Z:

∂J

∂Z
= [2γ1((WTY)(WTY)T Ũ− 2WTYS̃)

+ 2γ2(Ũ−BÃ)]� (1− Ũ� Ũ)

(6)

Given Θ and B, Update W. From (4), By taking the partial derivative
with respect to W to be zero, we obtain:

W = (YYT )−1(γ1YSŨT + γ3YBT )(γ1ŨŨT + γ3I)−1 (7)

Given Θ and W, Update B. By expanding the objective function (4) and
discarding the constant terms, we derive the following maximization problem:

max
B

tr(γ2B
T ŨÃT + γ3B

TWTY)

s.t. B ∈ {−1,+1}c×n
(8)

Thus, B can be solved with a closed-form solution as follows:

B = sgn(γ2ŨÃT + γ3W
TY) (9)

The same training strategy in ADSH [9] is adopted in our method. Specifi-
cally, we repeat the learning procedure for several times and each time we ran-
domly sample a query set. After training, the learned neural network can be used
to generate the binary codes of testing samples, i.e., btest = sgn(F (xtest; Θ)),
where xtest is a testing sample and btest is its corresponding binary codes.

3 Experiments

In this part, we evaluate the proposed FDAH and baselines on three datasets:
Fashion-MNIST, CIFAR-10 and NUS-WIDE.
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Table 1: The MAP (%) results with varying bits on three datasets. The best
results are shown in bold face.

Method
Fashion-MNIST CIFAR-10 NUS-WIDE

12 24 32 48 12 24 32 48 12 24 32 48

LSH 22.46 24.56 27.35 33.08 15.21 15.68 14.40 16.27 39.44 41.87 41.07 45.68
SH 35.56 31.57 31.84 29.46 20.27 18.27 17.94 17.53 41.91 41.00 40.63 43.21

BRE 33.85 42.90 42.41 44.33 18.26 21.26 23.13 23.80 46.03 47.49 46.68 51.72
ITQ 36.94 39.68 40.23 40.31 21.76 19.03 19.85 20.53 53.53 53.70 53.17 53.88

SDH 62.91 79.10 80.43 80.14 54.02 66.94 67.40 68.33 64.86 65.45 65.10 67.10
FSDH 77.70 79.86 80.69 81.10 60.95 65.73 66.38 68.41 57.64 58.21 67.19 58.33

DPSH 77.81 79.97 80.72 82.16 69.01 72.70 71.38 73.35 68.43 71.39 72.32 72.88
DSDH 79.67 81.58 82.40 82.59 72.02 77.41 79.86 80.72 67.18 69.34 70.13 70.12
DDSH 77.32 84.82 85.82 85.91 71.37 81.08 81.73 81.94 65.95 68.81 68.86 69.42
ADSH 91.36 93.35 93.93 94.22 87.06 91.20 92.93 93.46 76.70 80.28 81.23 83.16

FDAH 94.18 94.19 94.39 94.48 93.66 93.32 93.59 94.31 78.77 80.34 80.65 81.66
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Fig. 2: Experimental results in (a) Precision, (b) Recall, and (c) F-measure of
different methods on CIFAR-10 dataset.
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Fig. 3: Experimental results in (a) Precision, (b) Recall, and (c) F-measure of
different methods on Fashion-MNIST dataset.

3.1 Datasets and Experimental Settings

The Fashion-MNIST includes 70,000 images which belong to 10 classes. From
each class, we randomly select 6,000 images for training and the rest 1,000 images
for testing. The CIFAR-10 contains 60,000 images from 10 classes. From each
class, we randomly select 5,900 images for training and the rest 100 iamges for
testing. The NUS-WIDE is a multi-labeled dataset which includes 21 classes,
and we select more than 190,000 images for training and 2,100 for testing.

We compare our proposed method with some traditional hashing methods
including LSH [5], SH [23], BRE [11], ITQ [6], SDH[20], FSDH [7] and some
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Fig. 4: The MAP results versus different hyper-parameters (a) γ1 and (b) the
size of query set m on CIFAR-10 and Fashion-MNIST datasets

representative deep methods including DPSH [15], DSDH [14], DDSH [8], ADSH
[9]. For traditional hashing methods, we use the whole training set to learn the
hashing function, and we first obtain deep features extracted by CNN-F model
pre-trained on the ImageNet. For deep hashing methods, DPSH, DSDH and
DDSH select 5,000 images from training set on Fashion-MNIST and CIFAR-10
datasets, and 10,500 images from training set on NUS-WIDE dataset for training.
ADSH and our proposed FDAH select 2,000 imgaes on CIFAR-10 and Fashion-
MNIST, and 5,000 images on NUS-WIDE as query set. For fair comparison,
all the deep hashing methods iterate 150 times for convergence and apply the
same network model [2], i.e., CNN-F model. The learning rate is tuned from
{10−2, ..., 10−6} and the batch size is 128. For FDAH, we set γ1 = 10−3, γ2 = 10,
and γ3 = 1. Mean average precision (MAP), Precision rate, Recall rate and F-
measure rate are adopted to evaluate the retrieval performance.

Table 2: The MAP (%) results and training time (in minute) of different methods
with varying bits on CIFAR-10 dataset

Method 12bits 24bits 32bits 48bits

DPSH-A
92.01 92.95 93.16 92.95

334.2m 337.5m 348.1m 368.3m

DSDH-A
92.94 93.83 93.65 94.25

327.4m 350.6m 362.2m 391.6m

DDSH-A
75.89 86.79 90.85 93.36

276.2m 282.1m 292.7m 310.8m

ADSH
87.06 91.20 92.93 93.46
24.7m 30.9m 35.8m 47.6m

FDAH
93.66 93.32 93.59 94.31
10.5m 11.5m 11.7m 12.1m
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3.2 Discussion

The MAP results of different methods are presented in Table 1. Obviously, by
integrating feature learning and binary codes learning into a end-to-end frame-
work, deep hashing methods can achieve better retrieval performance than tradi-
tional methods. We can find that the deep asymmetric hashing methods ADSH
and our proposed FDAH can greatly outperform other deep symmetric hashing
methods such as DPSH, DSDH and DDSH. The reason is that deep asymmetric
methods can fully utilize the supervised information of the whole training set
with the asymmetric learning mechanism. Compared with ADSH, FDAH can
obtain a better performance in most cases since FDAH incorporates the seman-
tic information in binary codes learning and the quantization process. ADSH can
obtain higher accuracy with the increasing length of binary codes on NUS-WIDE
dataset. The results on precision, recall and F-measure of different methods on
CIFAR-10 and Fashion-MNIST datasets are shown in Fig. 2 and Fig. 3. As the
figure shows, FDAH can always outperform the other methods on precision,
recall and F-measure, which can be always around 90%.

Deep asymmetric hashing methods ADSH and FDAH adopt the whole train-
ing set for training to obtain high retrieval performance with the asymmetric
mechanism. Therefore, we further test other deep hashing methods which uti-
lize the whole training set. Table 2 shows the MAP results and training time
of different methods on CIFAR-10. DPSH-A, DSDH-A and DDSH-A denote the
corresponding deep hashing methods which utilize the whole training set. As
Table 2 shows, DPSH-A, DSDH-A and DDSH-A obtain similarly high retrieval
performance with much more training time. Because of using DCC algorithm,
ADSH also need much training time as the length of binary codes increases. By
using a closed-form solution instead of DCC algorithm, our proposed FDAH can
achieve highest accuracy with less and steady training time.

Fig. 4 shows the sensitivity to hyper-parameters of the proposed FDAH on
CIFAR-10 and Fashion-MNIST datasets. We shows the MAP results by tuning
one of the parameters and fixing others. From Fig. 4 (a), we can see that FDAH
obtains the best performance when γ1 = 10−3. Fig. 4 (b) presents the MAP
results versus the size of query set m. FDAH can achieve stable performance
when m >= 2000, because FDAH can utilize the whole training set when m is
greater than 2000. Besides, FDAH is not sensitive to γ2 and γ3 in a range from
10−4 to 102 in practice.

4 Conclusion

In this paper, we propose a novel deep hashing method called Fast Deep Asym-
metric Hashing (FDAH). The proposed FDAH assumes that the binary codes
of training set can be obtained by regressing their semantic labels and avoids
using the quadratic term of binary variables in the final hashing loss. As a result,
FDAH can learn the binary codes of all bits with a closed-form solution to speed
up the training procedure. Moreover, FDAH can obtain more discriminative
and efficient binary codes by incorporating the semantic information in binary
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codes learning and the quantization process. Extensive experiments on three
well-known datasets show that the proposed FDAH can achieve state-of-the-art
performance with less training time.
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