
EasyChair Preprint
№ 7927

Forbidding Edges Between Points in the Plane
to Disconnect the Triangulation Flip Graph

Reza Bigdeli and Anna Lubiw

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 5, 2022



Forbidding Edges between Points in the Plane to
Disconnect the Triangulation Flip Graph
Reza Bigdeli #

Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada

Anna Lubiw #Ñ

Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada

Abstract
The flip graph for a set P of points in the plane has a vertex for every triangulation of P , and an
edge when two triangulations differ by one flip that replaces one triangulation edge by another. The
flip graph is known to be connected even if some triangulation edges are constrained to be used. We
study connectivity of the flip graph when some triangulation edges are forbidden.

A set X of edges between points of P is a flip cut set if eliminating all triangulations that
contain edges of X results in a disconnected flip graph. If X is a single edge it is called a flip cut
edge. The flip cut number of P is the minimum size of a flip cut set. We give an algorithm to
test if an edge is a flip cut edge. For a set of n points in convex position (whose flip graph is the
1-skeleton of the associahedron) we prove that the flip cut number is n − 3.
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1 Introduction

Given a set P of n points in the plane, which may include collinear points, an edge of P is a
line segment pq that intersects P in exactly the two endpoints p and q. A triangulation
of P is maximal set of non-crossing edges. Triangulations have important applications in
graphics and mesh generation [2, 10] and are of significant mathematical interest [9].

A fundamental approach to understanding triangulations is by means of flips. A flip
operates on a triangulation by removing one edge pq and adding another edge uv to obtain a
new triangulation—of necessity, the edges pq and uv will cross and their four endpoints will
form a convex quadrilateral with no other points of P inside it. For example, in Figure 1,
edge a1b1 can be flipped to uv. In 1972, Lawson [12, 13] proved that any triangulation of
point set P can be reconfigured to any other triangulation of P by a sequence of flips. This
can be expressed as connectivity of the flip graph, which has a vertex for every triangulation
of P and an edge when two triangulations differ by a flip.

Although reconfiguring triangulations via flips is well studied [4], there are some very
interesting open questions, and many properties of flip graphs remain to be discovered.

The case of points in convex position is especially interesting because there is a bijection
between flips in triangulations of a convex point set and rotations in binary trees [18]. Finding
the rotation distance between two binary trees is of great interest in biology for phylogenetic
trees [8], and in data structures for splay trees [18]. Furthermore, the flip graph for n

points in convex position is the 1-skeleton of an (n − 3)-dimensional polytope called the
associahedron [14], or see [6]. See Figure 2. Although there is no geometric analogue of the
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2 Flip Cut Edges
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Figure 1 The smallest point set that has a flip cut edge. The edge e = uv is a flip cut edge since
forbidding e leaves two possible triangulations (as shown) and neither one allows a flip.

associahedron for the case of triangulations of a general point set, some of its properties
carry over to an abstract complex called the flip complex. For example, the 2-dimensional
faces of the flip complex, like those of the associahedron, have size 4 or 5 [15].

An open frontier in the study of flip graphs has to do with expander properties, which
would potentially lead to rapid mixing via random flips. For results on mixing in triangulations,
see [5, 16, 17]. More generally, researchers study connectivity properties of flip graphs.
Recently, Wagner and Welzl [19] showed that for n points in general position in the plane,
the flip graph is ⌈ n

2 − 2⌉-connected. For points in convex position, the flip graph is (n −
3)-connected, which follows from Balinski’s theorem [1] applied to the 1-skeleton of the
associahedron, see [19].

One intriguing thing about flip graphs of triangulations is that many properties carry over
when we restrict to triangulations containing some specified non-crossing edges—so-called
constrained triangulations. The subgraph of the flip graph consisting of triangulations that
contain all the constrained edges is connected [7].

Figure 2 The flip graph of points of a convex hexagon is the 1-skeleton of an associahedron. If
we forbid the two red edges, the resulting flip graph (with vertices circled in green) is connected.

Our Results. We study connectivity properties of the flip graph when—instead of constrain-
ing certain edges between points to be present—we forbid certain edges between points. To
be precise, if a set X of edges between points is forbidden, we eliminate all triangulations that
contain an edge of X, and examine whether the flip graph on the remaining triangulations is
connected. We say that X is a flip cut set if the resulting flip graph is disconnected; in the
special case where X is a single edge, we say that the edge is a flip cut edge. For example
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the edge uv in Figure 1 is a flip cut edge, but the two red edges in Figure 2 do not form a
flip cut set. Also see Figures 3, 4. We define the flip cut number of a set of points to be
the minimum size of a flip cut set. This is analogous to the connectivity of a graph—the
minimum number of vertices whose removal disconnects the graph.

Since the structure of the flip graph depends on the edges between the points, it seems
more natural to study connectivity of the flip graph after deleting some of these edges, rather
than deleting some vertices of the flip graph, as standard graph connectivity does, and as
the result of Wagner and Welzl [19] does.

As our main result, we characterize when an edge e is a flip cut edge in terms of connectivity
(in the usual graph sense) of the edges that cross e. We then use the characterization to give
an O(n log n) time algorithm to test if a given edge e in a point set of size n is a flip cut
edge. With that algorithm as preprocessing, we give a linear time algorithm to test if two
triangulations are still connected after we eliminate from the flip graph all triangulations
containing edge e.

For the case of n points in convex position, there are no flip cut edges and we show
that the flip cut number is n − 3. For example, in Figure 2 the leftmost and rightmost
triangulations become disconnected if we forbid one more edge, which yields a flip cut set of
size 3 for n = 6.
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Figure 3 The “channel”, and a triangulation that becomes frozen (an isolated vertex in the flip
graph) if we forbid the edge b2, tn−1 (in red). In fact, every edge bitj , i, j /∈ {1, 5} is a flip cut edge.

We show that a point set of size n may have Θ(n2) flip cut edges (see Figure 3), and
we show that a flip cut edge may result in Θ(n) disconnected components in the flip graph.
We also examine various special point sets whose flip graphs have been previously studied,
such as points on an integer grid [5] and, more generally, point sets without empty convex
pentagons [11]. Our characterization of flip cut edges becomes simpler in the absence of
empty convex pentagons. Point sets without empty convex pentagons must have collinear
points; our results do not assume points in general position.

For further details see the arxiv version [3].

Figure 4 Some point sets and their flip cut edges (in red).
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