
EasyChair Preprint

№ 879

An Overview of Count-Min Sketch and its

Applications

Benedikt Sigurleifsson, Aravindan Anbarasu and Karl Kangur

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 6, 2019



The Count-Min Sketch data structure and its uses within
Computer Science

Benedikt Sigurleifsson
Chalmers University of Technology

bensig@student.chalmers.se

Aravindan Anbarasu
Chalmers University of Technology

anbarasu@student.chalmers.se

Karl Kangur
Chalmers University of Technology

karlkan@student.chalmers.se

ABSTRACT
Research into data stream processing algorithms has been
going on for over 20 years by now. Its relevance has rapidly
grown in recent years, due to advancements in the Internet
of Things (IoT), Cloud Computing and Social Networking
[9]. These new technologies and devices generate a lot of
data, which causes problems related to storing and process-
ing it. This has led to a push for more efficient algorithms
and new data structures that should work on top-of-the-
line hardware as well as on small IoT devices with limited
resources. All with the aim of handling more data than
ever before. This paper mainly focuses on the Count-Min
(CM) Sketch [6], which is a compact summary data struc-
ture that serves as a frequency table of events in a stream of
data. The paper explains the implementation of this data
structure and shows that it can be used in solving problems
that appear in different fields of Computer Science, such as
solving the frequent items (heavy hitters) problem, speeding
up database queries, improving password security and many
more. We also briefly introduce the Bloom filter [2] which
is a related data structure that the CM builds upon. This
paper signifies the importance of Count-Min sketch in Com-
puter Science by describing the wide array of applications it
is used in.

Keywords
Streaming Algorithms, Count-Min Sketch, Heavy hitters,
Anomaly detection, Computational Biology

1. INTRODUCTION
The amount of data stored in this world is growing expo-

nentially. This is largely due to Internet of Things (IoT),
Cloud Computing and Social Networking technologies [9]
generating more data than ever. Meanwhile the capacity to
store data has been also been increasing. The world’s stor-
age capacity per capita has been doubling every 40 months
[11]. This increase in data has caused many new challenges
such as how computers process all of this data. These new
challenges have driven a lot of research in the field of Stream-
ing Algorithms.

Streaming Algorithms is a field that looks at problems
that come up when processing large streams of data. Data
stream refers to a sequence of data packets that carry in-
formation during transmission. When dealing with large
streams of data it is often good to process it close to the

source when it passes through as a data stream. This dis-
tributes the processing work, reduces data that needs to
be stored and enables decision making closer to the source.
If the data is not processed while it is passing through, it
will need to be stored somewhere for later processing. Most
likely the data will have to be sent to a database server. De-
pending on the amount of data that is coming in, it might
not be practical to store all of it. Therefore a lot of research
is happening in the field of Streaming Algorithm to better
improve data stream processing, which has lead to a lot of
new algorithms and data structures. The research does not
only benefit high performance computers, but is also useful
for cheap IoT devices that have limited processing power
and are in many cases the source of data. The high per-
formance computers can now process much more data than
what they could previously. However for IoT devices, now it
has suddenly become feasible to do some of the processing
on them due to better algorithms and data structures that
are available to them.

One of the most researched problems within the Stream-
ing Algorithms field is the Frequent items problem. This
problem revolves around processing a stream of data and
find items that occur most frequently [5]. The most well
known data structure that solves the Frequent items prob-
lem is the Count-Min Sketch. The word ”sketch” in this case
simply means a summary, which is exactly what the Count-
Min Sketch does. It provides a summary of number of item
occurrences that have taken place in the processed data [6].
Because of its simplicity, Count-Min Sketch has many use
cases in Networking, Databases and multiple other fields.
Reading this paper gives the readers an overview of prob-
lems faced while processing huge chunks of data and how
efficiently we can tackle this problem using the Count-Min
Sketch.

This paper intends to explain how the Count-Min Sketch
works 2. Section 3 covers different use cases where the data
structure is being used in different fields. Example problems
that will be covered are, the Heavy hitter problem that ap-
pears in the Networking field and also in the Databases field
as Iceberg queries, password security, etc. In section 4, the
importance of the algorithm is discussed, along with why
the algorithm appears in so many different fields. Finally,
we conclude the paper in section 5.

1



2. COUNT-MIN SKETCH
The Count-Min Sketch is a data structure that is used

to summarize data streams [6]. It stores information about
how often item occurs in the data without storing all the
data from the data stream and helps with answering ques-
tions like ”What items have appeared more than k times in
this data stream?”

2.1 Bloom Filters
Before going into how the Count-Min Sketch works, it is

worth to take a look at a solution to another related prob-
lem that the Count-Min Sketch builds upon. This problem
is called the membership problem.

2.1.1 The Membership Problem
The membership problem is a common problem when

working with data. It revolves around finding out whether
a certain item can be found in a set of data. This problem
sounds simple, but when working with large data sets, it
might not be feasible to go through all the data to answer
this question. It might not even be possible if the data is
coming in as a stream that is not stored.

The membership problem can be solved with Bloom Fil-
ters. Bloom Filters are data structures that can be used
to keep track of items, in other words they give a compact
overview of what is in the data without the need to store
all the data [2]. By compacting the data, Bloom Filters
only provide an approximate answer. From this compact
overview that Bloom Filters provide the membership query
can be easily answered.

2.1.2 Bloom Filter implementation
Bloom filters are implemented using unique hash func-

tions and a bit array that is initialized to zero. The purpose
of the hash functions is to map items to certain bit fields
in the array. When membership data of an item is inserted
into the data structure, the item is hashed separately by all
the hash functions and the respective bit array fields that
the hash function maps to are set to one. An overview of
how a Bloom Filter looks and how an insert operation is
performed can be seen in figure 1. In the figure we have an
bit array where all the bits are initialized to zero. The first
value that is mapped to the bit array gets hashed by all the
hash functions, which maps them to a certain field in the
array. Those fields are set to one which is represented with
a red color in the figure.

When retrieving from the data structure, the item is again
hashed by all the hash functions and the respective bit fields
are checked. If all the fields are set to one, then we can say
that the item might be in the data. If one of the fields is not
set, then we can say with certainty that the item does not
appear in the data.

The uncertainty in the answer when all the fields are set,
comes from using hash functions. This uncertainty however
allows the data to be stored more compactly. Hash func-
tions can have hash collisions, meaning that the same hash
function might map two different items to the same bit array

Figure 1: Bloom Filter insert operation

field. Two different hash functions can also map two differ-
ent items to the same bit array field since the Bloom filter
uses only a single array for all the hash functions. These
hash collisions can lead to false positives, which is the cause
of the uncertainty in the answer. If only one hash function is
used the uncertainty is high because there is no redundancy
that minimizes the affect of possible hash collisions. This
can be fixed by adding more hash functions. However by
adding more hash functions, the likelihood of having hash
collisions between hash functions increases. It will also re-
sult in the bit array filling up faster, since more bit array
fields are being set to one. Therefore there is a sweet spot
for the number of hash functions to use.

2.2 Count-Min Sketch implementation
Now back to the Count-Min Sketch. As mentioned in the

beginning of this section the Count-Min Sketch provides an-
swers to how often items appear in a data stream [6]. It
is therefore very similar to the Bloom Filters in the sense
that it provides an answer to the membership problem, but
provides additionally the number of occurrences.

The Count-Min Sketch builds upon the idea of the Bloom
Filter by using unique hash functions and zero initialized
arrays. However instead of using a single array it uses sep-
arate array for every single hash function. This way more
hash functions can be added without increasing the like-
lihood of collisions between hash functions. This however
creates a trade off between memory usage and uncertainty.
Using more hash functions leads to less uncertainty, but in-
creases memory usage. Finally the Count-Min Sketch stores
a counter unlike the membership bit that the Bloom Filter
uses. This counter represents the number of occurrences of
an item in the data.

Figure 2: Count-Min Sketch insert operation

Figure 2 demonstrates what the Count-Min Sketch looks

2



like and how the insert operation works. When an item is
inserted it is hashed separately by all of the hash functions.
The hash functions maps the input to the corresponding
counter in their array that all get raised by one.

When checking for the number of occurrences an item has,
the item gets hashed separately by all the hash functions to
find the corresponding counters. These counters might have
different values. This is due to the fact that hash functions
are still being used and even though there are no hash colli-
sions between hash functions, they can still occur within the
same hash function. Meaning that two different items might
get mapped to the same counter and thus that counter might
get incremented more often. When picking a value between
those potentially different counter values, it is always safest
to pick the lowest value to get the most accurate results.

The memory that the Count-Min sketch uses depends on
two configurable variables width (w) and depth (d), where w
is the size of the arrays and d is the number of hash functions
used. These two variables are chosen at the beginning and
do not change over time, even though the data continues to
grow. Therefore the Count-Min sketch promises fixed space
usage. By promising fixed space usage, one would think
that the Count-Min Sketch would not give accurate results.
However every query made has at most error 2N/w with
the probability of 1 − (1/2)d, where N is the total number
of counts in the sketch [7]. This means that the user of the
Count-Min Sketch just has to make w and d large enough
to make the queries very accurate without using much space.

3. COUNT-MIN SKETCH APPLICATIONS
The following section will take a look at how the Count-

Min Sketch can be used in different applications within dif-
ferent fields of Computer Science.

3.1 Networking
In recent years network anomaly detection, an approach

to network security threat detection has become a significant
area in the field of Information and Communication Tech-
nology (ICT). Anomaly detection is the identification of rare
events or elements in the data stream which raise suspicions
by differing significantly. These are widely used for identify-
ing network intrusions. Nowadays, the network bandwidth
is too high which makes it difficult to detect anomalies due
to the computational overhead and memory requirements.
Different efficient data structures have been developed for
years to detect anomalies in data streams with guaranteed
error bounds.

In this subsection, we focus on the detection of one im-
portant significant behavior known as heavy hitters by using
the Count-Min (CM) Sketch data structure.

3.1.1 Heavy Hitter Problem
A heavy hitter in the network can be either an IP ad-

dress/port or a combination of both [3]. These heavy hitters
create high volume traffic beyond some predefined threshold
in the network, thus creating anomalies. The heavy hitter
problem [15], is summarized by considering an array of ele-
ments A, of length n and also with the parameter k. Here k

is a modest number (100 or 1000) and n is very large (billions
or trillions) considering all possible source and destination
IP address pairs. The target here is to find the elements in
the array that occur at least n/k times [15]. An important
point to be noted here is the fact that there can be at most
k such elements or there might be no such elements in the
array [15]. But the heavy hitter problem promises the ex-
istence of a majority element. For Example, data packets
that constitutes more than 15% of the entire network traffic
are called heavy hitters because it violates the service agree-
ment between the two nodes [3].

Since the Internet continues to grow in size and complex-
ity, monitoring heavy hitters in real time is a big challenge
due to processing and memory constraints [3]. Bu et al. [3]
explains that to detect any such heavy hitters, the system
should scale up to at least 2104 keys (keys here denote an
IP address/port). ”The number(2104) is calculated based on
the number of possible five-tuple flows: source IP address
(32 bits), destination IP address (32 bits), source port (16
bits), destination port (16 bits), and protocol (8 bits). This
number might be significantly smaller for realistic network
flow since not all possible combination of these fields are
possible” [3].

3.1.2 Heavy Hitter Detection: An Impossibility Re-
sult

The goal of the heavy-hitter detection is to efficiently iden-
tify the set of flows that represent a significantly large pro-
portion of the link capacity with a lower error rate and mem-
ory usage [3]. The solution is quite simple if we have already
a stored array of elements A in the memory , as we just need
to populate the result only if the element occurs at least n/k
times [15]. But the question here is that, can we solve the
same heavy-hitter problem with a single pass over the ar-
ray in real-time, without a local copy and by using limited
memory space only [15]? Roughgarden et al. [15] explains
the fact that there is no algorithm that can solve the heavy-
hitter problem in a single pass while using limited memory
space in real-time.

3.1.3 Approximate Heavy Hitter Problem and De-
tection

Though it was stated that there is no algorithm that can
solve the heavy-hitter problem in a single pass, there are lots
of applications that are still being challenged by the heavy-
hitter problem. This motivates us continuously to come up
with significant streaming algorithms to solve the problem.
The best-case scenario is to find a relaxation of the problem
that remains applicable for the significant applications and
also admits a good solution [15].

The ε-approximate heavy hitters (ε-HH) problem, is sum-
marized by considering an array of elements A, of length
n and also with the user defined parameters k and ε. The
algorithm should output a list of elements such that [15],

• The list contains every element that occurs at least
n/k times in the array A

• Every element in the list occurs at least
n

k
− εn times

in the array A.

Here we allow the memory space used by a solution to grow
as 1/ε [15]. This clearly shows that we cannot take ε to be 0

3



Figure 3: Approximate Heavy Hitters Detection.

and solve the exact version of HH problem, as the memory
turns to ∞ [15]. For example, let us take ε = 1/2k, then as
per the algorithm mentioned above, the list contains every
element that occurs at least n/k times in the array A. Also
every element in the list occurs at least n/2k times in the
array A. This approximate solution is as good as the exact
solution [15].

Figure 3 explains an approximate heavy hitters problem
solved by using Count-Min sketch. The Count-Min-sketch
supports two functions: Inc(x) and Count(x) [15]. The func-
tion Count(x) would return the frequency count of x, which
is the number of times Inc(x) function has been invoked in
the past [15]. Consider a stream of data elements as the
input array A. Let n be the number of elements seen so far.
Assume ε = 1/2k. All the potential heavy-hitters are stored
in a heap memory.

1. We take each element xi from the stream of data ele-
ments.

2. We add each element xi one by one to the Count-Min
sketch.

3. For each element xi fed inside the Count-Min sketch,
we invoke Inc(x) followed by Count(x). We also check
for the condition if Count(x) ≥ n/k [15].

4. If the condition is True we store the xi in heap using
the key Count(x), else we drop xi. If xi was already
in the heap, we delete it before re-inserting it with its
new key value [15].

Also, whenever n grows to the point that some element xi
stored in the heap has a key less than n/k (checkable in
O(1) time), we delete xi from the heap [15]. Once the entire
stream of elements are passed, we output all of the elements
in the heap. Assuming that Count-Min sketch makes no big
errors, we approximately consider that every element xi in

the heap has true frequency count at least
n

k
− εn =

n

2k
times, as other elements would have been deleted from the
heap by the end of the pass [15].

3.2 Databases
The Count-Min Sketch is not only useful for data streams,

it is also very useful for databases and is used in many differ-
ent applications within the field of databases. This section
will cover some of those applications, especially those that
were introduced in the paper ”Spectral Bloom Filters” [4].

The Spectral Bloom Filter (SBF) is a type of Bloom Fil-
ter (BF) data structure that was introduced two years before
the Count-Min Sketch. It provides its users with count ap-
proximations just like the Count-Min Sketch does, but is
implemented differently. This paper will not go into details
of the differences between those two implementations. How-
ever the main difference is that the Spectral Bloom Filter
only has a single array just like the regular Bloom Filter.
In this array the SBF stores counters instead of bit fields
like the BF. The Count-Min Sketch on the other hand uses
a separate array for every hash function it uses. Since both
data structures perform the same tasks, then this paper can
use the examples of different applications mentioned in the
Spectral Bloom Filter paper.

3.2.1 Database queries
Database queries are used to retrieve information from

database tables. When dealing with large tables, then run-
ning a simple query can be computationally expensive. Let’s
take the following query as an example

SELECT count(a1) FROM R WHERE a1 = v

This query counts all elements a1 in the table R that meet
a certain condition a1 = v. This requires the database to go
through every row in the table R and count the items de-
pending on the condition. This is a very simple task, but can
be very time consuming depending on the size of the table.
If this query is required to be run often, then it can become
very costly. Running this query can be made considerately
cheaper by using the Count-Min Sketch. Like mentioned in
section 2 the Count-Min Sketch provides a relatively precise
frequency approximation of items in the table R, using fixed
memory. The precision and memory usage depends on user
defined parameters and which parameter the user prefers
over the other. By having this approximation of the table
R, the query can simply sum up the frequency count for
those elements that meet the condition, instead of iterating
over the whole table R.

Count is not the only database query operation that can
benefit from using the Count-Min Sketch, it can also be used
for operations like average, sum, max and many more.

3.2.2 Iceberg queries
Iceberg queries refer to queries that search for items that

occur more often than some specified threshold. These queries
are mostly useful to detect high frequency items in the data.
It is essentially the same problem as the Heavy Hitter prob-
lem that is described in section 3.1.1 and is solved in the
same way. The problem is briefly mentioned here again to
show how it can be used in databases.

An example of how an iceberg query could be used is an
online store that want’s to give frequent customers special
deals. When a frequent customer contacts a sales represen-
tative, the sales representative gets an event that this is a

4



frequent customer and that he is allowed to give the cus-
tomer better deals in order to close the purchase.

Using the Count-Min Sketch for this is fairly straight for-
ward. It can be used to keep count of occurrences. Every
time a customer contacts a sales representative the Count-
Min Sketch is checked for whether this is a frequent cus-
tomer. This is done by checking the number of purchases
and see if it exceeds some dynamic threshold that the com-
pany decides. If it exceeds the threshold the sales represen-
tative gets a notification about it.

3.2.3 Spectral Bloomjoins
When querying data from databases it is very common to

want data from two database tables in the same query. The
join operation is used to do just that. In a distributed set-
ting, these database tables might reside on different database
servers. When doing a distributed join between two database
servers, either database server will have to send the contents
of its table to the other server. This results in a slow re-
sponse time and high communication cost.

The Bloomjoin was presented as a method of doing a fast
distributed join between two database tables that are lo-
cated on different database servers. As the name suggests
the Bloomjoin uses a Bloom Filter (BF) to make these com-
munications more efficient. To be able to use the Bloomjoin,
both databases need to use Bloom Filters to summarize what
items are in their tables. Section 2.1 gives an good overview
of how Bloom Filters work. Instead of sending all the data
that resides on one of the database server to the other server
and then send the result of the joined data back to the first
server, the database servers can simply send the summary
of their data. By sending the summary of the data a lot less
time is spent on sending data back and fourth between the
database servers.

Lets look at an example of how a Bloomjoin works. Lets
say that there are two database servers S1 and S2. They
get a query that wants to do a join operation between two
tables residing on those two servers. One of those servers S1

starts by sending the other server S2 its BF1 that contains a
summary of the requested table. S2 then performs the join
operation between its table and BF1. S2 then replies with
only the matches from the join operation back to S1. Now
S1 can produce the final results from the matches that were
sent back from S2. These communications are much more
efficient than sending a whole table between the servers.

The Spectral Bloom Filter paper [4], suggests that the
SBF can be used to further improve some Bloomjoin opera-
tions. The join operations in question are those join opera-
tions that rely on counting or filtering the results based on
some threshold value. These are the same operations that
are mentioned in section 3.2.1, that discusses what database
queries can be improved.

An example of this is the following query, which performs
a count on the joined results. Both SBF and the Count-Min
Sketch work very well for this problem since they contain
count of item occurrences.

SELECT R.a,count(*) FROM R,S

WHERE R.a = S.a GROUP BY R.a

Another example is the following query that faces the Ice-
berg Queries problem discussed in section 3.2.2. The query
filters the results of the join operation based on a threshold.

SELECT R.a,count(*) FROM R,S

WHERE R.a = S.a GROUP BY R.a

HAVING count(*) [>,=] T

3.3 Other areas
While Networks and Databases are the most well-known

areas for applications of the Count-Min Sketch, the need to
process a data stream in a fast and efficient manner has also
grown to become a significant problem in many other fields
such as Computational Biology [21], Security [16], Games
[10], Machine Learning [18], Social networks [20] etc. In
this section we cover the application of Count-Min Sketch
in some of those fields.

3.3.1 K-mer counting in Computational Biology
Computational Biology is the development and applica-

tion of data-analytical and theoretical methods, mathemat-
ical modeling and computational simulation techniques to
the study of biological, behavioral, and social systems [12].
In other words, it is the science of using biological data to
develop algorithms or models to understand biological sys-
tems and relationships.

For example, one of the challenges in computational ge-
nomics, is counting all the different k-mers (subsequences of
lenght k) obtained through DNA sequencing. K-mer count-
ing has been widely used in bioinformatics and with the
increase in sequencing data set sizes, efficient processing of
the reads has become more important.

Khmer is a k-mer counting solution that uses the Count-
Min Sketch data structure in its implementation [21]. The
advantage of khmer compared to other k-mer counting so-
lutions is that it enables memory- and time-efficient online
counting directly as data is loaded, without a need for disk
access. This enables khmer to retrieve the counts of individ-
ual k-mers significantly faster than previous solutions.

One of the important properties of the Count-Min sketch
is that its memory usage is fixed, meaning it will not in-
crease as data is loaded. The memory usage, as well as the
accuracy of the count, is determined by the size and number
of hash tables used. Therefore, in khmer, the user has con-
trol over the memory usage, based on the desired accuracy
of the results. This is critical in order to run the system on
commodity hardware with limited resources.

Another important property of the Count-Min sketch is
that it is a probabilistic data structure with one-sided er-
ror. This means that khmer gives random overestimates of
k-mer frequency, but never generates underestimates. The
probability of an inaccurate count can be estimated based
on the hash table load. The size of the miscount depends
on the details of the frequency distribution of k-mers. These
inaccuracies are usually acceptable since for many applica-
tions, an approximate k-mer count is sufficient.

5



3.3.2 Password Security
One of the more popular techniques of attack on pass-

words is a dictionary attack, which is a form of brute force
attack for defeating an authentication mechanism. The at-
tacker attempts to guess a password by trying all the words
in some kind of a list (often words in a dictionary)[19]. This
kind of an attack is especially dangerous if the attacker has
information about the most popular passwords used in the
system. In order to protect users from a dictionary attack
where the attacker tries to gain access to an account by try-
ing the most popular passwords, it is important to:

1. limit the amount of tries the attacker gets to issue
when trying to guess a password of an account and

2. minimize the amount of accounts with the most pop-
ular passwords [16].

While the first problem is quite straight-forward to solve, no
perfect solution has been found to achieve the second goal.
In an attempt to influence user selection of passwords, nu-
merous different tools and rules have been created. Most
sites nowadays have password-composition policies, forcing
users to use long passwords that include uppercase and low-
ercase letters, use special characters etc. These policies are
often criticized for unintended consequences and little added
entropy.

Schechter et al. [16] have proposed to take the direct
approach of preventing users from choosing passwords that
are dangerously popular. To achieve that, it is necessary to
identify those undesirably popular passwords - the authors
of the aforementioned paper have come up with a solution
where they use Count-Min sketch to create an oracle.

Their proposal is to strengthen user selected passwords
against statistical dictionary attacks by allowing users to
select any kind of password they want as long as it is not
already too popular among other users. The purpose of the
oracle is to identify dangerously popular passwords using
Count-Min sketch data structure that is populated with ex-
isting users’ passwords. Interestingly, a minimum acceptable
false-positive rate is set in order to obfuscate attackers that
might get access to the oracle.

According to their paper [16], a password is considered
too popular if it occurs at a rate that exceeds the fractional
popularity threshold - r. An attacker who would be able
to issue G guesses against each account, and who has in-
formation about the G most popular passwords, could com-
promise a fraction of at most rG accounts. For example, if
the fractional popularity threshold was set to 1

1,000,000
, an

attacker with knowledge about the most popular password
would be able to compromise only 0.0001% of the accounts.
In contrast, an attacker could compromise 0.22% of MyS-
pace accounts [17] or 0.9% of RockYou accounts [13] if he
knew the most popular password of those sites.

4. DISCUSSION
Count-Min sketch is a solution to a problem that exists

in a wide range of areas - how to efficiently approximate the
count of items in a vast stream of data without having to
store every item. It is a problem that is quite simple in its

nature and appears in many different fields. In this survey
paper we have provided an overview of some of the key ar-
eas where the Count-Min sketch data structure is used and
how it is implemented. One of the pivotal properties of the
method is that it requires memory space which is sub-linear
to the data size being considered [1]. This enables its use in
cases where storing all of the data is not feasible due to the
large amount of data and limited hardware resources.

When analysing the different applications described in sec-
tions 3.1, 3.2 and 3.3 it is possible to draw parallels between
some of the solutions. In principle, the heavy hitter problem
(3.1.1), Iceberg queries (3.2.2) and the oracle in password se-
curity (3.3.2), are all dealing with the same problem. They
are trying to identify outliers in the data - high frequency
items that occur more often than some predefined threshold.
Count-Min sketch is a great tool for solving this problem as
efficiently as possible.

While Count-Min sketch is without a doubt an excellent
sketch, it is still not perfect. One potential problem is that
it can be quite biased by overestimating the frequencies of
elements with a low number of observations. This becomes
a significant problem if we are interested in the count of the
low-frequency elements. This flaw is quite well known and
several improvements have been suggested to compensate
for this [8], [14].

We have shown in this paper that the Count-Min sketch
has already found its use in many different applications.
Considering the growing importance of data stream process-
ing, there is no reason to believe that the Count-Min sketch
is going away anytime soon.

5. CONCLUSIONS
In this paper, we have given the readers an overview of the

Count-Min Sketch and its applications. Probabilistic data
structures, such as Count-Min sketch, are tools that have
become increasingly important in helping us cope with the
growth of big data in an efficient and adequately accurate
way. We have explained how Count-Min sketch works and
how it is used to process data streams in the areas of net-
working, databases and others fields. Though Count-Min
sketch has its own pros and cons, it is one of the most effec-
tive and simplest ways to do approximation based queries
on streaming data.

6. ACKNOWLEDGMENTS
The authors would like to thank Marina Papatriantafilou

and Karl Bäckstrőm for valuable discussions, helpful point-
ers and constructive criticism during the writing of this sur-
vey paper.

7. REFERENCES
[1] C. C. Aggarwal and S. Y. Philip. A survey of synopsis

construction in data streams. In Data Streams, pages
169–207. Springer, 2007.

[2] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[3] T. Bu, J. Cao, A. Chen, and P. P. Lee. A fast and
compact method for unveiling significant patterns in

6



high speed networks. In INFOCOM 2007. 26th IEEE
International Conference on Computer
Communications. IEEE, pages 1893–1901. IEEE, 2007.

[4] S. Cohen and Y. Matias. Spectral bloom filters. In
Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pages 241–252.
ACM, 2003.

[5] G. Cormode and M. Hadjieleftheriou. Finding
frequent items in data streams. Proceedings of the
VLDB Endowment, 1(2):1530–1541, 2008.

[6] G. Cormode and S. Muthukrishnan. An improved
data stream summary: the count-min sketch and its
applications. Journal of Algorithms, 55(1):58–75, 2005.

[7] G. Cormode and S. Muthukrishnan. Approximating
data with the count-min data structure. IEEE
Software, 2012.

[8] A. Goyal, H. Daumé III, and G. Cormode. Sketch
algorithms for estimating point queries in nlp. In
Proceedings of the 2012 joint conference on empirical
methods in natural language processing and
computational natural language learning, pages
1093–1103. Association for Computational Linguistics,
2012.

[9] M. S. Hajirahimova and A. S. Aliyeva. About big data
measurement methodologies and indicators.
International Journal of Modern Education and
Computer Science, 9(10):1, 2017.

[10] B. A. Harrison. Move prediction in the game of go.
PhD thesis, Citeseer, 2010.

[11] M. Hilbert and P. López. The world’s technological
capacity to store, communicate, and compute
information. science, page 1200970, 2011.

[12] M. Huerta, G. Downing, F. Haseltine, B. Seto, and
Y. Liu. Nih working definition of bioinformatics and
computational biology. US National Institute of
Health, 2000.

[13] A. Imperva. Consumer password worst practices.
Technical report, Technical report, Imperva ADC,
2010.

[14] G. Pitel and G. Fouquier. Count-min-log sketch:
Approximately counting with approximate counters.
arXiv preprint arXiv:1502.04885, 2015.

[15] T. Roughgarden and G. Valiant. Cs168: The modern
algorithmic toolbox lecture# 2: Approximate heavy
hitters and the count-min sketch. 2015.

[16] S. Schechter, C. Herley, and M. Mitzenmacher.
Popularity is everything: A new approach to
protecting passwords from statistical-guessing attacks.
In Proceedings of the 5th USENIX conference on Hot
topics in security, pages 1–8. USENIX Association,
2010.

[17] B. Schneier. Myspace passwords aren’t so dumb.
Wired. com, 2006.

[18] Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola,
and S. Vishwanathan. Hash kernels for structured
data. Journal of Machine Learning Research,
10(Nov):2615–2637, 2009.

[19] R. Shirey. Internet security glossary, version 2.
Technical report, 2007.

[20] H. H. Song, T. W. Cho, V. Dave, Y. Zhang, and
L. Qiu. Scalable proximity estimation and link

prediction in online social networks. In Proceedings of
the 9th ACM SIGCOMM conference on Internet
measurement, pages 322–335. ACM, 2009.

[21] Q. Zhang, J. Pell, R. Canino-Koning, A. C. Howe, and
C. T. Brown. These are not the k-mers you are
looking for: efficient online k-mer counting using a
probabilistic data structure. PloS one, 9(7):e101271,
2014.

7


