

Design and Development of the Rapid Prototyping Techniques Ontology with the Appropriate Technique Selection Approach

Nasibeh Pouti

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

April 27, 2022

Design and Development of the Rapid Prototyping Techniques Ontology with the Appropriate Technique Selection Approach

Nasibeh Pouti Information Technology and Computer Engineering Department Sayyed Jamaleddin Asadabadi University Asadaabad-Hamedan-Iran Email: pooti.np@sjau.ac.ir

Abstract---This article aims to design and develop Rapid Prototyping Techniques Ontology based on the study of new generation web as the Semantic Web that is a method of encoding and retrieval of information will be able to understand and process the information. To create an ontology that makes up the backbone of the Semantic Web, first, the selective techniques of rapid prototyping systems were studied, and in the operating area of the appropriate technique, knowledge was extracted with the content analysis method. The output of this process is the ontology of rapid prototyping techniques that are fully covered knowledge in a given area with more than 600 axiom, 120 classes and sub-classes, and more than 60 features. In addition to a knowledge-based view in the field of selector systems of Rapid Prototyping, opens a new arena. In the end, domain knowledge using the owl language in the Protégé application is implemented as Rapid **Prototyping Ontology.**

Keyword---Rapid Prototyping Techniques, Ontology, Selector System, Semantic Web

I. INTRODUCTION

The Semantic Web is a new architecture for the global web, combining traditional web content with a formal, machine-understandable meaning. The main motivation for creating the Semantic Web was to increase automation, web information processing, and improve interactions and collaboration between information systems. In essence, the Semantic Web is a set of languages and tools for the automated processing of information stored on the Web. The information provided on the Semantic Web must be fully dynamic to take full advantage of the capabilities of the Semantic Web. Therefore, semantic presentation of data and dynamics are the two main features of the Semantic Web. The Semantic Web can be thought of as a global space of intelligent machine computing in which all books, sciences, encyclopedias, and databases are put together meaningfully and with the ability to understand a concept that is not only human-understandable. It can also be understood and processed by a machine [1]. One of the goals of the semantic web is to provide a better knowledge management system in which knowledge is organized in a conceptual space based on its meaning, automated tools support data retention by checking inconsistencies and extracting new knowledge Keyword-based searches are replaced by semantic searches, and it is also possible to query from multiple documents [2].

To achieve these goals, a special architecture has been developed for the Semantic Web. This layered architecture on the web means that the top layer must be able to understand the lower layers and vice versa. Rapid prototyping techniques have been developed as new technologies in the field of manufacturing for about two decades. The multiplicity of these techniques, the variety of their characteristics, and the different industrial applications that use these techniques have made the issue of selecting the appropriate technique based on the characteristics for different applications a challenge [3]. Over the past two decades, a variety of decision-making, ranking, and prioritization methods have been developed to select the appropriate technique. However, due to the extensible nature of these techniques and the commercial systems developed based on them, the organization of knowledge in this field, which can be used as a knowledge base to select the appropriate technique based on the indicators used, has never been considered in these studies. While providing good potential for providing the knowledge needed to select the right system. Rapid prototyping techniques selection systems try to provide a new arena in the use of appropriate techniques in each application by developing capabilities and expanding applications.

Creating web-based selector systems with high availability and semantic exploration in the field of operation, which is accompanied by intelligence and the ability to understand feedback from another system, creates an ontology of these techniques with great attractiveness in production. . For this reason, this article, an attempt has been made to identify the metadata of this field of operation, to provide an ontology of rapid prototyping techniques as the cornerstone of a semantic web with the appropriate technique selection approach.

Considering the capabilities of ontology in presenting thematic and contextual knowledge, in this article, by analyzing the qualitative content of resources related to selecting the appropriate rapid prototyping technique as well as sources for identifying and introducing RP techniques, related categories were identified. Then, the categories in the form of entities-relationships formed the database of RP techniques, and by searching the database based on the categories, several important rules for selecting the appropriate RP techniques were extracted. Finally, using the process of creating an ontology, the ontology of these techniques was developed. The purpose of this study is to introduce the field of RP technology with the approach of selecting the appropriate technique to those interested in this field as a new paradigm in the field of industry.

II. RESERCH BACKGROUND

In this section, we will first have a brief overview of rapid prototyping techniques and selector systems, and then describe the structure of the semantic web and determine the position of the ontology.

A. Rapid prototyping

Rapid prototyping is the creation of a physical sample of computer design data by layer-by-layer deposition, without the use of tools. RP is a relatively new technology that was first commercially marketed in 1987 by 3D Systems, which is mainly used in manufacturing industries such as automobiles, aerospace, electrical appliances, etc. RP processes usually begin with a stereolithographic file, which describes a model created by a solid or surface code modeler. RP samples are used to view or approve designs to control the shape, fit, performance, or to create a tooling pattern for casting or modeling. Prototyping is a vital part of the product creation process that designers face. Rapid prototyping techniques, hereinafter referred to as RP, are new techniques in the field of prototyping and are techniques that can create physical prototypes using computer-aided design data [4] and be able to perform various evaluations and tests on the sample. Each RP system has its strengths and weaknesses, applications, advantages, and limitations, and the choice of the best system depends on many criteria. Some of these criteria are [5]: cost of purchasing and installing the system, device dimensions, sample dimensions, materials used to make the sample, type of laser used, laser power, laser beam diameter, etc. Due to the multiplicity of criteria and selection options for the proper application of these techniques, we need selector systems, some of which are listed in Table 1.

TABLE 1. PAST RP SELECTOR SYSTEMS

Resear	Abilit	Use	Selection	Criteria used for	Other features
chers	y to	of	method	selection	
	rank	langu			
		age			
		varia			
		bles			
Bauer	\checkmark	×	Benefit	Properties of materials	Calculation of
et al.			value		construction
1996			analysis		time and hourly
[6]					rate
Phillips	\checkmark	×	Multi-	Cost, time, quality	Including
on,			criteria		hypothetical
1997			optimizatio		machines
[7]			n		
Chuk	\checkmark	×	Evaluation	Time, final smoothness,	Use quantitative
and			of weight	cost, mechanical	and usable data
Thoms			criteria	properties, accuracy,	provided to
on,				surface finish,	vendors
1998				manufacturing chamber	

[8]					
Bibb, 1999 [9]	×	×	Rule-based	Accuracy, wall thickness	Consider secondary tools
Masoo d and Soo, 2002 [10]	×	×	Rule-based	···· · · · · · · · · · · · · · · · · ·	Four selection options
Lan et al. 2005 [11]	V	V	Expert system integrated with fuzzy hybrid evaluation	Sample fabrication time, mechanical properties, surface finish, thermal properties, cost,	quantitative an qualitative dat and pairwis comparisons based on expen
Byun and Lee, 2005 [12]	V	V	Multi- criteria decision making, modified TOPSIS	Surface finish, overall	quantitative an
Mahes h et al. 2005 [13]	V	V	Fuzzy Logic	Surface finish, resolution and clarity, dimensional accuracy, mechanical properties	
Wilson and Rosen, 2005 [14]	×	V	Select decision support problem with a scenario and distance analysis	Complexity, build volume, resolution and sharpness, mechanical properties, time, cost	
Rao and Padma nabha, 2007 [15]	×	V	Graph theory and matrix approach		
Armill otta, 2008 [16]	V	×	Multi- criteria decision making, hierarchica l analysis	characteristics, time, cost, mechanical properties, surface finish, dimensional accuracy, final finish	qualitative data
Lokesh and Jain, 2010 [17]	V	V	Multi- criteria decision- fuzzy hierarchica l analysis	Accuracy, quality, time, and cost	choose betwee an unlimite number o systems
Chatter jee and Mukhe rjee [18]	×	V	Rule-based expert system	accuracy, cost, overhead time	options, direct and indirect tools, an equipment
Mungu ia et al. 2011 [19]	V	V	Fuzzy inference		Use o quantitative an qualitative data

Vahdan			Multi-	Surface finish, time,	Use of
i et al.	`		criteria		quantitative and
2011			decision	dimensional accuracy,	-
[20]			making,	mechanical properties	1
			new	1 1	
			modified		
			TOPSIS		
Chakra	V	×	Multi-	Surface finish,	
borty,			criteria		quantitative data
2011			decision	strength, time, cost,	
[21]			making,	overall dimensional	
			MOORA	accuracy, mechanical	
771 .	1		method	properties	
Khrais et al.	V	N	Fuzzy inference	Manufacturing chamber, surface finish,	Use of
2011			method	quality, time, cost,	
[22]			method	overall dimensional	1
[22]				accuracy, mechanical	* ·
				5	allocation
YT,		×	Multi-	Surface finish, time,	
2012			criteria		quantitative and
[23]			decision		qualitative data
_			making,	mechanical properties	
			TOPSIS	* *	
	L,	L	method		
Ghazy,	\checkmark	\checkmark	Simple	Strength, hardness,	Has database
2012			Multi-	density, wall thickness,	
[24]			Attribute	accuracy, surface finish,	
			Ranking	thermal bending	and user interface and
			Technique (SMART)	temperature	advisor
Robers		×	Suggested	Cost, sample surface	
on et	•	î	rating	smoothness, time	quantitative data
al.			system	sinootimeos, time	quantitati i o auta
2013					
[25]					
Taghav			N /14:	A 1	4.1.111.
	v		Multi-	Accuracy, layer	Ability to
ifard	,	V	criteria	thickness, resolution,	choose between
ifard and	v	N	criteria decision	thickness, resolution, machine and sample	choose between an unlimited
ifard and Pouti,	,	N	criteria decision making-	thickness, resolution, machine and sample dimensions, power	choose between an unlimited number of
ifard and Pouti, 2013	v	V	criteria decision making- fuzzy	thickness, resolution, machine and sample dimensions, power supply parameters, cost,	choose between an unlimited number of systems
ifard and Pouti,	v	N	criteria decision making-	thickness, resolution, machine and sample dimensions, power supply parameters, cost, structure, technology,	choose between an unlimited number of systems
ifard and Pouti, 2013	v	N	criteria decision making- fuzzy	thickness, resolution, machine and sample dimensions, power supply parameters, cost, structure, technology, scanning tool, operating	choose between an unlimited number of systems
ifard and Pouti, 2013	v	v	criteria decision making- fuzzy	thickness, resolution, machine and sample dimensions, power supply parameters, cost, structure, technology, scanning tool, operating system, the material	choose between an unlimited number of systems
ifard and Pouti, 2013 [26]			criteria decision making- fuzzy TOPSIS	thickness, resolution, machine and sample dimensions, power supply parameters, cost, structure, technology, scanning tool, operating system, the material used	choose between an unlimited number of systems
ifard and Pouti, 2013 [26] Mahap	×	N N	criteria decision making- fuzzy TOPSIS Grey	thickness, resolution, machine and sample dimensions, power supply parameters, cost, structure, technology, scanning tool, operating system, the material used Overall dimensional	choose between an unlimited number of systems Using Grey
ifard and Pouti, 2013 [26]			criteria decision making- fuzzy TOPSIS Grey Relationshi	thickness, resolution, machine and sample dimensions, power supply parameters, cost, structure, technology, scanning tool, operating system, the material used Overall dimensional accuracy, time, cost,	choose between an unlimited number of systems Using Grey theory and fuzzy
ifard and Pouti, 2013 [26] Mahap atra			criteria decision making- fuzzy TOPSIS Grey Relationshi	thickness, resolution, machine and sample dimensions, power supply parameters, cost, structure, technology, scanning tool, operating system, the material used Overall dimensional	choose between an unlimited number of systems Using Grey theory and fuzzy
ifard and Pouti, 2013 [26] Mahap atra and Panda, 2013			criteria decision making- fuzzy TOPSIS Grey Relationshi p Analysis	thickness, resolution, machine and sample dimensions, power supply parameters, cost, structure, technology, scanning tool, operating system, the material used Overall dimensional accuracy, time, cost, mechanical properties,	choose between an unlimited number of systems Using Grey theory and fuzzy
ifard and Pouti, 2013 [26] Mahap atra and Panda, 2013 [27]	×	√	criteria decision making- fuzzy TOPSIS Grey Relationshi p Analysis (GRA)	thickness, resolution, machine and sample dimensions, power supply parameters, cost, structure, technology, scanning tool, operating system, the material used Overall dimensional accuracy, time, cost, mechanical properties, surface quality	choose between an unlimited number of systems Using Grey theory and fuzzy theory
ifard and Pouti, 2013 [26] Mahap atra and Panda, 2013 [27] Wang			criteria decision making- fuzzy TOPSIS Grey Relationshi p Analysis (GRA) Grey	thickness, resolution, machine and sample dimensions, power supply parameters, cost, structure, technology, scanning tool, operating system, the material used Overall dimensional accuracy, time, cost, mechanical properties, surface quality Surface finish, time,	choose between an unlimited number of systems Using Grey theory and fuzzy theory Use of
ifard and Pouti, 2013 [26] Mahap atra and Panda, 2013 [27] Wang et al.	×	√	criteria decision making- fuzzy TOPSIS Grey Relationshi g Analysis (GRA) Grey Relationshi	thickness, resolution, machine and sample dimensions, power supply parameters, cost, structure, technology, scanning tool, operating system, the material used Overall dimensional accuracy, time, cost, mechanical properties, surface quality Surface finish, time, cost, overall	choose between an unlimited number of systems Using Grey theory and fuzzy theory Use of quantitative and
ifard and Pouti, 2013 [26] Mahap atra and Panda, 2013 [27] Wang et al. 2013	×	√	criteria decision making- fuzzy TOPSIS Grey Relationshi p Analysis (GRA) Grey Relationshi p Analysis	thickness, resolution, machine and sample dimensions, power supply parameters, cost, structure, technology, scanning tool, operating system, the material used Overall dimensional accuracy, time, cost, mechanical properties, surface quality Surface finish, time, cost, overall dimensional accuracy,	choose between an unlimited number of systems Using Grey theory and fuzzy theory Use of
ifard and Pouti, 2013 [26] Mahap atra and Panda, 2013 [27] Wang et al.	×	√	criteria decision making- fuzzy TOPSIS Grey Relationshi g Analysis (GRA) Grey Relationshi	thickness, resolution, machine and sample dimensions, power supply parameters, cost, structure, technology, scanning tool, operating system, the material used Overall dimensional accuracy, time, cost, mechanical properties, surface quality Surface finish, time, cost, overall	choose between an unlimited number of systems Using Grey theory and fuzzy theory Use of quantitative and
ifard and Pouti, 2013 [26] Mahap atra and Panda, 2013 [27] Wang et al. 2013 [28]	×	. √	criteria decision making- fuzzy TOPSIS Grey Relationshi p Analysis (GRA) Grey Relationshi p Analysis (GRA)	thickness, resolution, machine and sample dimensions, power supply parameters, cost, structure, technology, scanning tool, operating system, the material used Overall dimensional accuracy, time, cost, mechanical properties, surface finish, time, cost, overall dimensional accuracy, mechanical properties	choose between an unlimited number of systems Using Grey theory and fuzzy theory Use of quantitative and qualitative data
ifard and Pouti, 2013 [26] Mahap atra and Panda, 2013 [27] Wang et al. 2013 [28] Zhang	×	√	criteria decision making- fuzzy TOPSIS Grey Relationshi p Analysis (GRA) Grey Relationshi p Analysis (GRA) Measuring	thickness, resolution, machine and sample dimensions, power supply parameters, cost, structure, technology, scanning tool, operating system, the material used Overall dimensional accuracy, time, cost, mechanical properties, surface finish, time, cost, overall dimensional accuracy, mechanical properties Surface finish, time,	choose between an unlimited number of systems Using Grey theory and fuzzy theory Use of quantitative and qualitative data Use of
ifard and Pouti, 2013 [26] Mahap atra and Panda, 2013 [27] Wang et al. 2013 [28] Zhang and	×	. √	criteria decision making- fuzzy TOPSIS Grey Relationshi p Analysis (GRA) Grey Relationshi p Analysis (GRA) Measuring the amount	thickness, resolution, machine and sample dimensions, power supply parameters, cost, structure, technology, scanning tool, operating system, the material used Overall dimensional accuracy, time, cost, mechanical properties, surface finish, time, cost, overall dimensional accuracy, mechanical properties Surface finish, time, cost, overall	choose between an unlimited number of systems Using Grey theory and fuzzy theory Use of quantitative and qualitative data Use of quantitative and
ifard and Pouti, 2013 [26] Mahap atra and Panda, 2013 [27] Wang et al. 2013 [28] Zhang and Bernar	×	. √	criteria decision making- fuzzy TOPSIS Grey Relationshi p Analysis (GRA) Grey Relationshi p Analysis (GRA) Measuring the amount of	thickness, resolution, machine and sample dimensions, power supply parameters, cost, structure, technology, scanning tool, operating system, the material used Overall dimensional accuracy, time, cost, mechanical properties, surface finish, time, cost, overall dimensional accuracy, mechanical properties	choose between an unlimited number of systems Using Grey theory and fuzzy theory Use of quantitative and qualitative data
ifard and Pouti, 2013 [26] Mahap atra and Panda, 2013 [27] Wang et al. 2013 [28] Zhang and Bernar d, 2014	×	. √	criteria decision making- fuzzy TOPSIS Grey Relationshi p Analysis (GRA) Grey Relationshi p Analysis (GRA) Measuring the amount of	thickness, resolution, machine and sample dimensions, power supply parameters, cost, structure, technology, scanning tool, operating system, the material used Overall dimensional accuracy, time, cost, mechanical properties, surface finish, time, cost, overall dimensional accuracy, mechanical properties Surface finish, time, cost, overall	choose between an unlimited number of systems Using Grey theory and fuzzy theory Use of quantitative and qualitative data Use of quantitative and qualitative data
ifard and Pouti, 2013 [26] Mahap atra and Panda, 2013 [27] Wang et al. 2013 [28] Zhang and Bernar	×	. √	criteria decision making- fuzzy TOPSIS Grey Relationshi p Analysis (GRA) Grey Relationshi p Analysis (GRA) Measuring the amount of	thickness, resolution, machine and sample dimensions, power supply parameters, cost, structure, technology, scanning tool, operating system, the material used Overall dimensional accuracy, time, cost, mechanical properties, surface finish, time, cost, overall dimensional accuracy, mechanical properties	choose between an unlimited number of systems Using Grey theory and fuzzy theory Use of quantitative and qualitative data
ifard and Pouti, 2013 [26] Mahap atra and Panda, 2013 [27] Wang et al. 2013 [28] Zhang and Bernar d, 2014	×	. √	criteria decision making- fuzzy TOPSIS Grey Relationshi p Analysis (GRA) Grey Relationshi p Analysis (GRA) Measuring the amount of	thickness, resolution, machine and sample dimensions, power supply parameters, cost, structure, technology, scanning tool, operating system, the material used Overall dimensional accuracy, time, cost, mechanical properties, surface finish, time, cost, overall dimensional accuracy, mechanical properties Surface finish, time, cost, overall dimensional accuracy, mechanical properties	choose between an unlimited number of systems Using Grey theory and fuzzy theory Use of quantitative and qualitative data Use of quantitative data and direct weight allocation
ifard and Pouti, 2013 [26] Mahap atra and Panda, 2013 [27] Wang et al. 2013 [28] Zhang and Bernar d, 2014 [29]	×	√ √	criteria decision making- fuzzy TOPSIS Grey Relationshi p Analysis (GRA) Grey Relationshi p Analysis (GRA) Measuring the amount of knowledge Multi- criteria	thickness, resolution, machine and sample dimensions, power supply parameters, cost, structure, technology, scanning tool, operating system, the material used Overall dimensional accuracy, time, cost, mechanical properties, surface finish, time, cost, overall dimensional accuracy, mechanical properties Surface finish, time, cost, overall dimensional accuracy, mechanical properties Bending temperature,	choose between an unlimited number of systems Using Grey theory and fuzzy theory Use of quantitative and qualitative data Use of quantitative data and direct weight allocation
ifard and Pouti, 2013 [26] Mahap atra and Panda, 2013 [27] Wang et al. 2013 [28] Zhang and Bernar d, 2014 [29] Shende and Kulkar	×	√ √	criteria decision making- fuzzy TOPSIS Grey Relationshi p Analysis (GRA) Grey Relationshi p Analysis (GRA) Measuring the amount of knowledge Multi-	thickness, resolution, machine and sample dimensions, power supply parameters, cost, structure, technology, scanning tool, operating system, the material used Overall dimensional accuracy, time, cost, mechanical properties, surface quality Surface finish, time, cost, overall dimensional accuracy, mechanical properties Surface finish, time, cost, overall dimensional accuracy, mechanical properties Bending temperature, construction time, accuracy, cost, tensile	choose between an unlimited number of systems Using Grey theory and fuzzy theory Use of quantitative and qualitative data Use of quantitative data Use of quantitative and qualitative data and direct weight allocation Use a few criteria in the first step and
ifard and Pouti, 2013 [26] Mahap atra and Panda, 2013 [27] Wang et al. 2013 [28] Zhang and Bernar d, 2014 [29] Shende and Kulkar ni,	×	√ √	criteria decision making- fuzzy TOPSIS Grey Relationshi p Analysis (GRA) Grey Relationshi p Analysis (GRA) Measuring the amount of knowledge Multi- criteria decision making,	thickness, resolution, machine and sample dimensions, power supply parameters, cost, structure, technology, scanning tool, operating system, the material used Overall dimensional accuracy, time, cost, mechanical properties, surface finish, time, cost, overall dimensional accuracy, mechanical properties Surface finish, time, cost, overall dimensional accuracy, mechanical properties Bending temperature, accuracy, cost, tensile strength, elongation,	choose between an unlimited number of systems Using Grey theory and fuzzy theory Use of quantitative and qualitative data Use of quantitative data and direct weight allocation Use a few criteria in the first step and then complete
ifard and Pouti, 2013 [26] Mahap atra and Panda, 2013 [27] Wang et al. 2013 [28] Zhang and Bernar d, 2014 [29] Shende and Kulkar ni, 2014	×	√ √	criteria decision making- fuzzy TOPSIS Grey Relationshi p Analysis (GRA) Grey Relationshi p Analysis (GRA) Measuring the amount of knowledge Multi- criteria decision making, using	thickness, resolution, machine and sample dimensions, power supply parameters, cost, structure, technology, scanning tool, operating system, the material used Overall dimensional accuracy, time, cost, mechanical properties, surface quality Surface finish, time, cost, overall dimensional accuracy, mechanical properties Surface finish, time, cost, overall dimensional accuracy, mechanical properties Bending temperature, construction time, accuracy, cost, tensile	choose between an unlimited number of systems Using Grey theory and fuzzy theory Use of quantitative and qualitative data and direct weight allocation Use a few criteria in the first step and then complete the criteria by
ifard and Pouti, 2013 [26] Mahap atra and Panda, 2013 [27] Wang et al. 2013 [28] Zhang and Bernar d, 2014 [29] Shende and Kulkar ni,	×	√ √	criteria decision making- fuzzy TOPSIS Grey Relationshi p Analysis (GRA) Grey Relationshi p Analysis (GRA) Massuring the amount of knowledge Multi- criteria decision making, using TOPSIS	thickness, resolution, machine and sample dimensions, power supply parameters, cost, structure, technology, scanning tool, operating system, the material used Overall dimensional accuracy, time, cost, mechanical properties, surface finish, time, cost, overall dimensional accuracy, mechanical properties Surface finish, time, cost, overall dimensional accuracy, mechanical properties Bending temperature, accuracy, cost, tensile strength, elongation,	choose between an unlimited number of systems Using Grey theory and fuzzy theory Use of quantitative and qualitative data and direct weight allocation Use a few criteria in the first step and then complete the criteria by comparison and
ifard and Pouti, 2013 [26] Mahap atra and Panda, 2013 [27] Wang et al. 2013 [28] Zhang and Bernar d, 2014 [29] Shende and Kulkar ni, 2014	×	√ √	criteria decision making- fuzzy TOPSIS Grey Relationshi p Analysis (GRA) Grey Relationshi p Analysis (GRA) Measuring the amount of knowledge Multi- criteria decision making, using	thickness, resolution, machine and sample dimensions, power supply parameters, cost, structure, technology, scanning tool, operating system, the material used Overall dimensional accuracy, time, cost, mechanical properties, surface finish, time, cost, overall dimensional accuracy, mechanical properties Surface finish, time, cost, overall dimensional accuracy, mechanical properties Bending temperature, accuracy, cost, tensile strength, elongation,	choose between an unlimited number of systems Using Grey theory and fuzzy theory Use of quantitative and qualitative data and direct weight allocation Use a few criteria in the first step and then complete the criteria by

T	al	V	VIROD	D-11-1-114	T
Liao et al.	v	v	VIKOR and	Reliability	Use of qualitative data
2014			DEMATE		of experts
[31]			L rankings		···· ··· ·· ··· ···
			and		
			network		
			analysis		
	_		process	<i>a</i>	
Zhang		×	Integrated decision		Use of analytics and quantitative
and Bernar			model	smoothness, time, mechanical properties	and qualitative
d. 2014			(similarity	incentation properties	data quantative
[32]			model-		
			deviation		
			model)		
Kumar		\checkmark	Multi-	Cost, product quality,	
et al.			criteria	time, pollution control	analysis instead
2016			decision		of hierarchical
[33]			making, network		analysis
			analysis		
			process		
Zheng			Design of		Using the
et al.			uneven		preferred graph
2017				accuracy, sample cost,	
[34]				elongation, roughness,	
			fuzzy axioms	and surface roughness	ranking flexibility based
			axioms		on the purpose
					of performance
					evaluation
Anand		\checkmark	Multi-	Strength, aspect ratio,	
and			criteria	speed, roughness and	
inodh,			decision		alternatives and
2018			making, TOPSIS,	size, separability, layer thickness, material	criteria
[35]				adaptability, geometric	
			hierarchica	complexity, cost	
			l analysis	1	
Zaman		\checkmark	Multi-	Material type, process	
et al.			criteria	type, machine type,	
2018			decision		databases, it is
[36]			making, hierarchica	tensile strength, flexibility in failure,	first done based
			l analysis	surface finish, material	
			1 unui y 515	cost, backup material	· · · ·
				cost	sieving materials
Wang		\checkmark	Multi-		Cover a large
et al.			criteria	,	number of
2018			decision-	geometric	criteria, and use
[37]			TOPSIS and	characteristics, thermal and electrical	
			hierarchica	properties, cost, time,	methou
			l analysis	resource status	
Kadkh			Multi-		It consists of two
oda-			criteria	economic	phases: initial
Ahmad			decision	characteristics of the	
i et al.				process, machine, and	
2019 [38]			hierarchica 1 analysis		on process, machine, and
[30]			process		material
			r	prototype	characteristics
				manufacturing	and then
				-	selection based
					on sample
0:	al		Malt	A 1	characteristics
Qin, et al.	N	\checkmark	Multi- Criterion	Accuracy, roughness,	Ability to choose between
aı.				strength, elongation, cost, construction time	an unlimited
2020			Decision		
2020 [39]			Decision Making,	cost, construction time	number of
2020 [39]			Making, Combined	cost, construction time	

			Capability		
			Operators		
			*		
			Benfroni		
			Weighted		
			by Fuzzy		
			Archimede		
			s Method		
Palanis			Multi-	Construction volume,	Ability to
amy, et		-	criteria	layer thickness, material	
ally, et			decision-	type, model material,	
2020				backing material, raw	
				material, path tracking	
[3]					
					wide range of
			criteria	advantages, technology,	criteria
				model material supplier,	
				maximum material size,	
				material change mode,	
				final payment, final	
				improvement, material	
				option Digital, material	
				waste, resume option,	
				backup layers, RP	
				software, machine	
				access, accuracy, wall	
				thickness, resolution,	
				repeatability, 3D	
				printing cost, chemical	
				solvent, biodegradation	
Chandr	\checkmark		hybrid	Material/Product	The study
a et al.			MCDMapp		considers some
2022			roach,	Performance, Market	important
[40]			SWARA	stability, Total cost,	criteria,
			and	Ecological values	including energy
			COPRAS	6	consumption,
			methods		eco-friendly and
			methous		wastage-free
					production, that
					* ·
					help
					Sustainable
					additive
					manufacturing
Tavcar,	\checkmark	×	Multi-	Material, Quality	increase cost
Nordin,			criteria AM	grades, Cost	awareness in
2021			function		the conceptual
[41]			(MCF)		design phase and
			. /		support product
					developers in
					doing AM cost
					estimation and
D ''	-	1	.		process selection
Ransik	V		Fuzzy	Product characteristics,	
arbum,			Analytic		preferences from
and		1	Hierarchy	printer characteristic	both technical
Khamh			Process		expert and user
Khamh ong,			Process and		expert and user groups
					1
ong,			and		1

B. Semantic Web

The second part of the literature review is devoted to examining the structure of the Semantic Web. The purpose of semantic web development is to structure data, add its meanings, and ultimately represent knowledge with the help of machines using technologies and standards being developed and complemented by the World Wide Web Consortium. In the Semantic Web, machines (robots, servers, and computers) are supposed to be able to understand the contents of the Internet. In this structure, machines must be able to communicate with each other, not just humans.

C. Semantic Web Layered Structure

The structure proposed for the Semantic Web is a layered structure, in which we briefly examine each of the layers. The first layer, which includes "Unicode" and "URI", shows the texts and how to send them to the web. Unicode is an international standard (conforming to the ISO standard) for the exchange of multilingual information, Which assigns unique numbers to each letter, independent of the operating system environment, program, and language. "URI" stands for "Uniform Resources Identifier", a string of characters that indicates a location or address of a resource on the Internet, and from its components can be sufficient information about that resource, including the category of an object URI is used to define concepts in the Semantic Web[43]. The second layer, as a semantic web grammatical layer, includes the namespace, the expandable markup language, and the schematic of the expandable markup language. The namespace is a logical naming scheme for grouping related classes. This scheme prevents classes that use the same identifier for methods and properties from overlapping. Extensible Markup Language (XML) is a scripting language used to transmit structured data over the Internet, and is specifically designed to create web pages and is a continuation of HTML, but with the difference that the information in it is somehow stored and easily accessible and connected[44]. The third layer, the semantic web concept layer includes "RDF" and "RDF schema". The word "RDF" stands for "Resource Description Framework", a language based on "XML" used to describe concepts and create documents on the Semantic Web and gives meaning to the words of a page for search engines. Specifies the relationship between words. In other words, this language, using a set of mathematical and semantic relations, can form logical connections between data that can be addressed and directly accessible; But what makes it different from XML is that instead of tagging the inside of a document, external information about that document can also be tagged. "RDFS" is a semantic generalization of "RDF" and a word description language to further explain classes and groups of resources and their relationship, allowing resources to serve as examples of classes and subclasses. "RDFS" is similar to object-oriented languages and has characteristics such as class, features, etc. [45]

The fourth layer of the semantic web structure is the most important layer related to ontology. In the Semantic Web, the relationship between the concepts contained in Web documents is determined by concepts related to ontology. By doing this, machines can understand and process relevant documents and can communicate between them. Creating a common understanding of the terms used on the Web is one of the most important tasks of an ontology in a particular field. In other words, the ontology identifies the relationship between concepts in web documents and the real world, thereby making the relevant documents processable and understandable by machines, and facilitating sharing between agents. In the field of the Semantic Web, an ontology shows the meaning of words and their relation to the field in which they are used. Various languages are used to build an ontology: OWL, which stands for Web Ontology Language, is the standard language introduced by WTC to build on-the-web, structure-based ontologies, and Web architecture is a family of languages used to model knowledge. Usually, such languages are used to design ontologies for AI issues. The purpose of OWL is to provide an XML encyclopedia of classes, their specifications, and the relationships between these classes and examples [46].

There are many tools for implementing an ontology, the most widely used of which is the Protégé. This software is a platform (has a development environment and a programming library that allows you to create an ontology in two ways manually or using code.) and open-source software (the ability to insert, update and component switching is available in this tool) to display knowledge based on an ontology developed by Stanford University School of Medicine. Protégé is a framework for building knowledge-based systems that enables the provision of a knowledge-based system based on RDF, OWL, and framebased [47]. The fifth layer, as the "logic" layer, creates a clear framework and standard rules for inference engines tasked with generating ultimate knowledge on the Semantic Web. This layer, which is located above the ontology layer, is used to express intelligible expressions at the machine level. At the ontology level, the machine can understand the basic concepts of the semantic web, but to increase the semantic processing power of machines, it must be possible to define logical principles for them to use to infer. The logic layer uses rules that allow conclusions to be drawn from previous assumptions; In general, it determines a practical law if a series of conditions are met. The sixth layer of the semantic web to the subject "Proof" is assigned. After having intelligible regions for the machine, it is expected that different expressions can be proved with the help of logic. Logical expressions have value when they can be proved. The seventh layer, the "trust" layer, emerges using an electronic signature (a mathematical scheme for proving the identity and validity of a digital message or document); The web will only reach its full potential if users have confidence in the security of its operations and the quality of its information. In fact, despite the permission for anyone to make logical statements about sources, programs want to make only inferences based on statements they trust, so examining the source of the statements is a key part of the semantic web.

D. Ontology

An ontology is an explicit, accurate, and expressive representation of instances, concepts, and relationships in a subject area that, according to features such as inference, interconnection, and interoperability between information systems, support for natural language processing, search query understanding, etc. can be used to create intelligent information systems. An ontology is a semantic tool that incorporates common concepts and the consensus of experts in a subject area and uses rules and standards to describe the concepts and relationships between them. Providing common concepts as well as rules and standards in the ontology allows the exchange of information and the integration of scattered knowledge resources in different information systems. An ontology defines a common glossary for researchers who need to "share information" in a particular field and domain. This glossary includes machine-understandable definitions of the basic concepts of a domain and the relationships between them [56].

There are various reasons for the development of an ontology. Some of these reasons are: Sharing a common understanding of information structure between human or machine factors, the ability to reuse domain knowledge, separating domain knowledge from operational knowledge, and domain knowledge analysis. An ontology together with a set of individual examples of classes forms a knowledge base. In practice, there is a narrow boundary where the ontology ends and the knowledge base begins. Ontologies include descriptions of concepts, attributes, and their relationships. Concepts in the scope of the ontology are defined by classes. Attributes and connections called slots complement the concepts in the domain. More complex ontologies also include axioms and offer more complex methods for defining classes, such as creating constraints on specific attributes or counting class components, defining subclasses or separate classes, and so on. In practice, the development of an ontology involves the following steps: [48]

- Definition of classes in ontology
- Arrange classes in a "subclass-superclass" hierarchy
- Define slots and describe the values that these slots are allowed to have.
- Determine slot values for class instances

After these steps, the knowledge base can be created by defining individual instances of these classes, determining the specific values of the slots, and determining the additional constraints on the slots.

III. RESEARCH METHODOLOGY

In this paper, rapid prototyping techniques ontology is designed and created during the three phases, independent of the field used, which include data acquisition of the desired field, data classification and knowledge acquisition, design, and creation of the ontology.

A. Data acquisition

We have used the qualitative content analysis method to obtain data related to rapid prototyping techniques. This type of analysis has three approaches including conventional content analysis, directed content analysis, and summative content analysis. Conventional content analysis is commonly used in the design of studies that aim to describe a phenomenon and is often appropriate when existing theories or research literature on the subject are limited. Sometimes there are previous theories or researches about a phenomenon that is either incomplete or need further descriptions. In this case, the researcher chooses the method of content analysis with a directional approach. A study that uses a qualitative content analysis method with a summative approach begins with identifying and quantifying specific words or themes in the text, to understand how these words or their content are used in the text. This quantification is not only an attempt to understand the meaning of words but also seeks to discover the use of these words in the text. Table 2 compares these three approaches [49].

TABLE 2. BASIC DIFFERENCES IN CODING IN THREE CONTENT ANALYSIS APPROACHES

Type of	Start of	Time to recognize	Origin of codes or
content	research	codes or keywords	keywords
analysis			
Conventional	Observation	They are determined	Are derived from data
Content		simultaneously with	
Analysis		data analysis	
Directed	Theory	They are identified at	Are derived from
Content		the same time as or	research theory or
Analysis		before the data	findings
		analysis	
Summative	Keywords	Keywords are defined	Are obtained based on
Content		before and during data	the researcher's interest
Analysis		analysis	or research literature

In this research, due to the nature of the research, the existence of a sufficient number of sources in the research literature, and the availability of guiding keywords, summative content analysis has been used. Based on the type of qualitative analysis and the selected method for extracting data from the documents, the content analysis protocol was created in the form of Table 3.

TABLE 3. QUALITATIVE CONTENT ANALYSIS PROTOCOL OF RESOURCES RELATED TO RP TECHNIQUES

	TLES .	JUKCES KELATED TO KI TECHNIQUES
1	Type of content analysis	Qualitative
2	References used	References related to the introduction of RP techniques and systems, resources related to the selection of the appropriate RP system
3	Type of sampling	A purposeful sampling of references
4	Approach	Summative content analysis
5	Perspective	Inductive content analysis
6	Analysis unit	Theme
7	Context unit	Paragraph
8	Coding protocol	1. Separation of keywords in the selection of rapid prototyping techniques 2. Study of resources related to each of the RP techniques and machines, 3. Separation of paragraphs containing one or more related themes, 4. Extraction of themes in the form of sentences 5. Extraction of content codes, 6. Combine codes and create categories

Qualitative content analysis was performed in two stages:

Step 1) At this stage, to identify topics related to RP techniques, 37 sources found in selecting the appropriate RP technique were reviewed. These resources contained key themes on the selection criteria and characteristics of RP

techniques. In the study of this category of content analysis sources, the topics related to the selection criteria of RP techniques, which are the common features of most RP techniques, were identified.

Step 2) Considering that in the first stage, most of the resources focused only on the common features of RP techniques, therefore, to fully identify the techniques, it was necessary to examine the sources related to the introduction of each of the techniques. Thus, for each of the 50 identified systems of commercially common RP techniques, two sources were identified, themed, coded, and categorized.

Based on the analysis of summative qualitative content, the main categories related to RP techniques have been identified from references related to the characteristics of techniques and the determination of appropriate techniques. These categories are based on the obtained codes and their composition. Some of the categories extracted from RP sources are as follows.

• RP machine categories

The manufacturer of the RP machines, Some codes related to this category are Arkam, Stratasys, Soligen, Autostrade, EOSINT, Cubital, Generis, EAS, Kira, Solidscape, Miko, Optomek, etc.

The technology used by RP machines, which is one of the categories related to RP techniques, is created with codes such as technologies for making electron beam melting, melted sediment modeling, three-dimensional printing, lamination technique, and so on.

The structure of **RP** machines, Structure is a category that derives from the properties of **RP** techniques and is created through the codes of liquid, solid, and powder structure.

Workspace of RP machines, this category is derived from topics related to workspace features such as maximum workspace length (mm), which includes RP machines with a workspace length of between 100 and 1600 mm. Maximum width of the workspace (mm), which includes RP machines with a working space width of 100 to 800 mm. Maximum height of workspace (mm), which includes RP machines whose workspace height is between 60 to 1070 mm.

Accuracy of **RP machines**, accuracy is based on the dimensions of the workspace and depends on the user experience, skills, and other operational factors. It usually includes machines with an accuracy starting at 0.005 mm [50].

The thickness of the construction layer, less thickness creates a smoother surface but increases build time. Each RP machine has a spectrum for layer thickness. Depending on the part to be sampled, the user can select the maximum and minimum layer thickness. Includes systems with a construction thickness between 0.01 to 0.5 mm.

The material used by the RP system to produce samples, some these materials is EBS, resin, polyamide, nylon, metals, polystyrene, polycarbonate, polyphenyl sulfone, elastomer, LM sheet, composite, LM plastic, stretch, thermoplastic, ceramic, photopolymer, TSR resin, etc.

Construction speed in cubic (cm³/h), this parameter indicates the ability of the RP machine to process, laminate, solidify or deposit materials and is not provided by the time of manufacture because then it will depend on many factors. This category includes construction speeds between 8 and $1575 \text{ cm}^3/\text{h}$.

Cost, which includes the cost of buying and installing an RP machine and is in dollars. This parameter varies between 50,000 \$ and 680,000 \$. In addition, it includes the cost of energy consumption and depreciation of the machine.

Scanning tools, RP machines use a variety of tools to build prototype layers. Some of these are [18]: high power ultraviolet lamp, solid-state semiconductor laser, neodymium YAG, helium-cadmium, carbon dioxide, incandescent pulleys with injection section, ink-jet print section, Electron beam, etc.

The dimensions of the RP system, including the length of the RP system, vary between 500 and 3660 mm. The width of the RP system varies from 430 to 3100 mm. The height of the RP system varies between 200 and 2900 mm. The weight of the RP system varies between 136 and 2540 kg.

Energy requirements, which are 6 parameters that determine the characteristics of the power supply. These parameters are the number of power supply which is a maximum of 3, the number of phases of the power supply which this parameter is 1 or 3. The maximum and minimum voltage of the power supply that these criteria vary between 12 to 460 volts, maximum amperage of the power supply which varies between 5 to 75 amps, frequency of the power supply which can be 50, 60, or 50/60.

The resolution of the RP machine includes the horizontal resolution (in the direction of X-Y) in millimeters. This criterion affects the quality and physical appearance of the sample made in the horizontal direction, the horizontal resolution of which starts from 0.01 and vertical separation (in the direction of Z) in millimeters, the minimum value of which is 0.05 in the vertical direction.

An operating system is a system that drives the software components of RP machines. The operating system can be one of the versions of Windows.

Contamination control by RP machine is one of the identified categories that result from codes such as gas emission, noise and vibration, waste disposal, recycling, chemical solvent, and biological decomposition.

• RP sample categories

The thermal properties of the sample, which include heat resistance, thermal bending temperature

The geometrical characteristics of the sample include the shape of the sample, the number of additional components and parts, the ductility and complexity of the sample.

Mechanical properties of the sample that are related to themes such as dimensional accuracy, size, flexibility, tensile strength, compressive strength, shear strength

Surface characteristics of the sample include the surface finish of the sample, surface roughness and roughness, surface clarity and resolution, tolerance, and surface accuracy.

The electrical properties of the sample include the electrical conductivity of the sample

Sample making time includes preparation times, sample preprocessing time, sample creation time, final sample payment time.

The cost of making a sample, which includes the cost of raw materials for the sample, the cost of backing materials used to create the sample, and the cost of using a 3D printer and the initial design of the sample.

B. Data classification and knowledge acquisition

There are several ways to categorize data. Some of these methods include decision tree-based methods, law-based methods, memory-based reasoning, neural networks, Bayesian theory-based methods, and support vector machines. In this application, law-based methods are used to acquire knowledge. To acquire rules, we need to categorize data so that we can extract rules by exploring and searching for data. To do this, we created a relational database. Database entities, as well as entity properties, were obtained based on the categories extracted from qualitative content analysis, and then the desired relationships were established between the entities. By examining the database created about RP techniques with the help of queries in the database tables, some rules about the features of RP machines have been obtained, some of which are as follows. Table 4 also shows some of the characteristics of RP techniques [51] [50] [43]:

- All RP techniques have only one main structure, liquid, solid, or powder
- Each RP model has at least one RP machine
- The thicker the sample fabrication layers, the more accurate the machine
- The higher the resolution of the machine, the higher the quality of the sample made
- The dimensions of the car manufacturing chamber are directly related to the dimensions of the sample
- The dimensions of the machine are directly related to the dimensions of the machine housing

- Every manufacturer has at least one RP car model
- Machines can only use one structure in terms of the main structures of solid, liquid, and powder
- Each RP machine has at least one type of raw material to build.
- Each RP machine has at least one scan tool
- Some RP machines have a cooling system
- Some RP machines have additional operations
- Some RP machines have colored raw materials
- Solid and powder-based systems require adhesives along with the raw material
- The output of RP machine software in all machines is in three forms: code, STL, and SLI
- Some fast prototyping machines require a backup structure
- Machines with backup structures prepare the final sample more slowly
- Some RP machines require additional sample operations
- Machines that perform sample finishing operations have a longer process for sample production
- Machines that perform complementary operations produce higher quality samples
- Some machines require a scanning system, which is a set of scanning tools

TABLE 4. SOME FEATURES OF RP TECHNIQUES

RP Machine	Model	Scan tools(Scan system)	Structure
SLA 3500	SLA	The laser system, Nd: YVO4 (laser +	Liquid
SEA 5500	JLA	mirror + lens)	Liquiu
SLA 5000	SLA	The laser system, Nd: YVO4 (laser +	Liquid
	~~~~~	mirror + lens)	
SLA 7000	SLA	The laser system, Nd: YVO4 (laser +	Liquid
		mirror + lens)	
Viper Si2	SLA	Dual beam laser system	Liquid
LOM-1015Plus	LOM	Carbon dioxide laser with roller drive	Solid
		system	
LOM-2030H	LOM	Carbon dioxide laser with roller drive	Solid
		system	
Vanguard si2	SLS	Carbon dioxide laser + powder	Powder
SLS		distributor roller	
EOSINT P 360	EOS	Carbon dioxide laser + dual laser system	Powder
		+ powder lift system	
MEM-250-II	MEM	Raw material lamination system + sheet	Solid
		heating part + wax or melted	
		thermoplastic injection	
M-RPMS-II	MEM	Raw material lamination system + sheet	Solid
		heating part + wax or melted	
		thermoplastic injection	
EOSINT M250	EOS	Carbon dioxide laser + dual laser system	Powder
Xtended		+ powder lift system	
Solider 4600	SGC	High power ultraviolet lamp	Liquid
FDM 3000	FDM	Raw material pulley + melt part +	Solid
		injection part	
Solider 5600	SGC	High power ultraviolet lamp	Liquid
FDM Maxum	FDM	Raw material pulley + melt part +	Solid
		injection part	
EOSINT S	EOS	Carbon dioxide laser + dual laser system	Powder
		+ powder lift system	
SCS-1000HD	SCS	Helium-cadmium laser + galvanometric	Liquid
		mirror	
SCS-2000	SCS	Solid-state semiconductor laser +	Liquid

	1	- 1	
SCS-3000	SCS	galvanometric mirror Solid-state semiconductor laser +	Liquid
SCS-3000	SCS	galvanometric mirror	
SCS-8000	SCS	Solid-state semiconductor laser + galvanometric mirror	Liquid
FDM Titan	FDM	Raw material pulley + melt part + injection part	Solid
SSM-600	SSM	Raw material lamination system + sheet	Solid
		heating part + wax or melted	
		thermoplastic injection	
SSM-1600	SSM	Raw material lamination system + sheet	Solid
		heating part + wax or melted	
		thermoplastic injection	
EOSINT P700	EOS	Carbon dioxide laser + dual laser system	Powder
Z 400 3DP	3DP	+ powder lift system Horizontal and vertical movement	Powder
Z 400 3DF	SDF	system for feeding powder and glue +	Fowder
		printing system	
Dimension	FDM	Raw material pulley + melt part +	Solid
Dimension	1 DM	injection part	bolla
Z 406 3DP	3DP	Horizontal and vertical movement	Powder
2 100 001	021	system for feeding powder and glue +	100000
		printing system	
SOUP II	SOUP	Solid state ultraviolet laser + resin level	Liquid
600GS-02		controller	1
SOUP II	SOUP	Solid state ultraviolet laser + resin level	Liquid
600GS-05		controller	
SOUP II	SOUP	Solid state ultraviolet laser + resin level	Liquid
600GS-10		controller	
Prodigy Plus	FDM	Raw material pulley + melt part +	Solid
		injection part	
Z 810 3DP	3DP	Horizontal and vertical movement	Powder
		system for feeding powder and glue +	
D.4	D	printing system Ink jet + feed small droplets of glue	Develop
R4 LENS 750	R LENS	Nd:YVO4 laser with one scan head +	Powder Powder
LEINS 750	LENS	laser focusing part + powder delivery	Powder
		opening	
LENS 850	LENS	Nd:YVO4 laser, dual + laser focusing	Powder
		part + powder delivery opening	
ModelMaker II	Model	part + powder delivery opening Ink jet + wax adhesive + cutting	Solid
ModelMaker II	Model Maker	Ink jet + wax adhesive + cutting additional parts	Solid
KSC-50N		Ink jet + wax adhesive + cutting	Solid Solid
	Maker	Ink jet + wax adhesive + cutting additional parts Laminating system + hot press system Powder injection section + electric	
KSC-50N	Maker PLT	Ink jet + wax adhesive + cutting additional parts Laminating system + hot press system Powder injection section + electric adhesive droplet injection section +	Solid
KSC-50N DSPC 300	Maker PLT DSPC	Ink jet + wax adhesive + cutting additional parts Laminating system + hot press system Powder injection section + electric adhesive droplet injection section + distributor roller	Solid Powder
KSC-50N DSPC 300 PLT-A4	Maker PLT DSPC PLT	Ink jet + wax adhesive + cutting additional parts Laminating system + hot press system Powder injection section + electric adhesive droplet injection section + distributor roller Sheet cutting system + hot press system	Solid Powder Solid
KSC-50N DSPC 300 PLT-A4 LC-510	Maker PLT DSPC PLT LC	Ink jet + wax adhesive + cutting additional parts Laminating system + hot press system Powder injection section + electric adhesive droplet injection section + distributor roller Sheet cutting system + hot press system Helium-cadmium laser + NC controller	Solid Powder Solid Liquid
KSC-50N DSPC 300 PLT-A4	Maker PLT DSPC PLT LC Model	Ink jet + wax adhesive + cutting additional parts Laminating system + hot press system Powder injection section + electric adhesive droplet injection section + distributor roller Sheet cutting system + hot press system Helium-cadmium laser + NC controller Ink jet + wax adhesive + cutting	Solid Powder Solid
KSC-50N DSPC 300 PLT-A4 LC-510 PatternMaster	Maker PLT DSPC PLT LC Model Maker	Ink jet + wax adhesive + cutting additional parts Laminating system + hot press system Powder injection section + electric adhesive droplet injection section + distributor roller Sheet cutting system + hot press system Helium-cadmium laser + NC controller Ink jet + wax adhesive + cutting additional parts	Solid Powder Solid Liquid Solid
KSC-50N DSPC 300 PLT-A4 LC-510	Maker PLT DSPC PLT LC Model	Ink jet + wax adhesive + cutting additional parts Laminating system + hot press system Powder injection section + electric adhesive droplet injection section + distributor roller Sheet cutting system + hot press system Helium-cadmium laser + NC controller Ink jet + wax adhesive + cutting additional parts Semiconductor laser + vertical motion	Solid Powder Solid Liquid
KSC-50N DSPC 300 PLT-A4 LC-510 PatternMaster E-Darts	Maker PLT DSPC PLT LC Model Maker E-Darts	Ink jet + wax adhesive + cutting additional parts Laminating system + hot press system Powder injection section + electric adhesive droplet injection section + distributor roller Sheet cutting system + hot press system Helium-cadmium laser + NC controller Ink jet + wax adhesive + cutting additional parts Semiconductor laser + vertical motion system	Solid Powder Solid Liquid Solid
KSC-50N DSPC 300 PLT-A4 LC-510 PatternMaster	Maker PLT DSPC PLT LC Model Maker	Ink jet + wax adhesive + cutting additional parts Laminating system + hot press system Powder injection section + electric adhesive droplet injection section + distributor roller Sheet cutting system + hot press system Helium-cadmium laser + NC controller Ink jet + wax adhesive + cutting additional parts Semiconductor laser + vertical motion system Powder melt head with vertical	Solid Powder Solid Liquid Solid
KSC-50N DSPC 300 PLT-A4 LC-510 PatternMaster E-Darts	Maker PLT DSPC PLT LC Model Maker E-Darts	Ink jet + wax adhesive + cutting additional parts Laminating system + hot press system Powder injection section + electric adhesive droplet injection section + distributor roller Sheet cutting system + hot press system Helium-cadmium laser + NC controller Ink jet + wax adhesive + cutting additional parts Semiconductor laser + vertical motion system Powder melt head with vertical movement + interchangeable injection	Solid Powder Solid Liquid Solid
KSC-50N DSPC 300 PLT-A4 LC-510 PatternMaster E-Darts MJS	Maker PLT DSPC PLT LC Model Maker E-Darts MJS	Ink jet + wax adhesive + cutting additional parts Laminating system + hot press system Powder injection section + electric adhesive droplet injection section + distributor roller Sheet cutting system + hot press system Helium-cadmium laser + NC controller Ink jet + wax adhesive + cutting additional parts Semiconductor laser + vertical motion system Powder melt head with vertical movement + interchangeable injection section with horizontal movement	Solid Powder Solid Liquid Solid Liquid Powder
KSC-50N DSPC 300 PLT-A4 LC-510 PatternMaster E-Darts	Maker PLT DSPC PLT LC Model Maker E-Darts	Ink jet + wax adhesive + cutting additional parts Laminating system + hot press system Powder injection section + electric adhesive droplet injection section + distributor roller Sheet cutting system + hot press system Helium-cadmium laser + NC controller Ink jet + wax adhesive + cutting additional parts Semiconductor laser + vertical motion system Powder melt head with vertical movement + interchangeable injection section with horizontal movement Thermojet as power supply + X-Y	Solid Powder Solid Liquid Solid
KSC-50N DSPC 300 PLT-A4 LC-510 PatternMaster E-Darts MJS ThermoJet	Maker PLT DSPC PLT LC Model Maker E-Darts MJS Thermo	Ink jet + wax adhesive + cutting additional parts Laminating system + hot press system Powder injection section + electric adhesive droplet injection section + distributor roller Sheet cutting system + hot press system Helium-cadmium laser + NC controller Ink jet + wax adhesive + cutting additional parts Semiconductor laser + vertical motion system Powder melt head with vertical movement + interchangeable injection section with horizontal movement	Solid Powder Solid Liquid Solid Liquid Powder
KSC-50N DSPC 300 PLT-A4 LC-510 PatternMaster E-Darts MJS ThermoJet Printer ARCAM EBM S12	Maker PLT DSPC PLT LC Model Maker E-Darts MJS Thermo Jet	Ink jet + wax adhesive + cutting additional parts Laminating system + hot press system Powder injection section + electric adhesive droplet injection section + distributor roller Sheet cutting system + hot press system Helium-cadmium laser + NC controller Ink jet + wax adhesive + cutting additional parts Semiconductor laser + vertical motion system Powder melt head with vertical movement + interchangeable injection section with horizontal movement Thermojet as power supply + X-Y locomotor system Melt electron beam + vacuum tank + vacuum generating pump + control unit	Solid Powder Solid Liquid Solid Liquid Powder Solid
KSC-50N DSPC 300 PLT-A4 LC-510 PatternMaster E-Darts MJS ThermoJet Printer ARCAM EBM	Maker PLT DSPC PLT LC Model Maker E-Darts MJS Thermo Jet	Ink jet + wax adhesive + cutting additional parts Laminating system + hot press system Powder injection section + electric adhesive droplet injection section + distributor roller Sheet cutting system + hot press system Helium-cadmium laser + NC controller Ink jet + wax adhesive + cutting additional parts Semiconductor laser + vertical motion system Powder melt head with vertical movement + interchangeable injection section with horizontal movement Thermojet as power supply + X-Y locomotor system Melt electron beam + vacuum tank + vacuum generating pump + control unit Horizontal and vertical movement	Solid Powder Solid Liquid Solid Powder Solid
KSC-50N DSPC 300 PLT-A4 LC-510 PatternMaster E-Darts MJS ThermoJet Printer ARCAM EBM S12	Maker PLT DSPC PLT LC Model Maker E-Darts MJS Thermo Jet EBM	Ink jet + wax adhesive + cutting additional parts Laminating system + hot press system Powder injection section + electric adhesive droplet injection section + distributor roller Sheet cutting system + hot press system Helium-cadmium laser + NC controller Ink jet + wax adhesive + cutting additional parts Semiconductor laser + vertical motion system Powder melt head with vertical movement + interchangeable injection section with horizontal movement Thermojet as power supply + X-Y locomotor system Melt electron beam + vacuum tank + vacuum generating pump + control unit Horizontal and vertical movement system for feeding powder and glue +	Solid Powder Solid Liquid Solid Liquid Powder Solid
KSC-50N DSPC 300 PLT-A4 LC-510 PatternMaster E-Darts MJS ThermoJet Printer ARCAM EBM S12 GS 1500	Maker PLT DSPC PLT LC Model Maker E-Darts MJS Thermo Jet EBM GS	Ink jet + wax adhesive + cutting additional parts Laminating system + hot press system Powder injection section + electric adhesive droplet injection section + distributor roller Sheet cutting system + hot press system Helium-cadmium laser + NC controller Ink jet + wax adhesive + cutting additional parts Semiconductor laser + vertical motion system Powder melt head with vertical movement + interchangeable injection section with horizontal movement Thermojet as power supply + X-Y locomotor system Melt electron beam + vacuum tank + vacuum generating pump + control unit Horizontal and vertical movement system for feeding powder and glue + printing system	Solid Powder Solid Solid Liquid Solid Powder Powder
KSC-50N DSPC 300 PLT-A4 LC-510 PatternMaster E-Darts MJS ThermoJet Printer ARCAM EBM S12 GS 1500 R 10	Maker PLT DSPC PLT LC Model Maker E-Darts MJS Thermo Jet EBM GS R	Ink jet + wax adhesive + cutting additional parts Laminating system + hot press system Powder injection section + electric adhesive droplet injection section + distributor roller Sheet cutting system + hot press system Helium-cadmium laser + NC controller Ink jet + wax adhesive + cutting additional parts Semiconductor laser + vertical motion system Powder melt head with vertical movement + interchangeable injection section with horizontal movement Thermojet as power supply + X-Y locomotor system Melt electron beam + vacuum tank + vacuum generating pump + control unit Horizontal and vertical movement system for feeding powder and glue + printing system Ink jet + feed small droplets of glue	Solid Powder Solid Liquid Solid Liquid Powder Solid Powder Powder
KSC-50N DSPC 300 PLT-A4 LC-510 PatternMaster E-Darts MJS ThermoJet Printer ARCAM EBM S12 GS 1500 R 10 SOLIFORM	Maker PLT DSPC PLT LC Model Maker E-Darts MJS Thermo Jet EBM GS GS R SOLIF	Ink jet + wax adhesive + cutting additional parts Laminating system + hot press system Powder injection section + electric adhesive droplet injection section + distributor roller Sheet cutting system + hot press system Helium-cadmium laser + NC controller Ink jet + wax adhesive + cutting additional parts Semiconductor laser + vertical motion system Powder melt head with vertical movement + interchangeable injection section with horizontal movement Thermojet as power supply + X-Y locomotor system Melt electron beam + vacuum tank + vacuum generating pump + control unit Horizontal and vertical movement system for feeding powder and glue + printing system Ink jet + feed small droplets of glue Solid-state laser + fixed and variable	Solid Powder Solid Solid Liquid Powder Powder Powder
KSC-50N DSPC 300 PLT-A4 LC-510 PatternMaster E-Darts MJS ThermoJet Printer ARCAM EBM S12 GS 1500 R 10 SOLIFORM 250B	Maker PLT DSPC PLT LC Model Maker E-Darts MJS Thermo Jet EBM GS R SOLIF ORM	Ink jet + wax adhesive + cutting additional parts Laminating system + hot press system Powder injection section + electric adhesive droplet injection section + distributor roller Sheet cutting system + hot press system Helium-cadmium laser + NC controller Ink jet + wax adhesive + cutting additional parts Semiconductor laser + vertical motion system Powder melt head with vertical movement + interchangeable injection section with horizontal movement Thermojet as power supply + X-Y locomotor system Melt electron beam + vacuum tank + vacuum generating pump + control unit Horizontal and vertical movement system of feeding powder and glue + printing system Ink jet + feed small droplets of glue Solid-state laser + fixed and variable beam diameter + laser control system	Solid Powder Solid Liquid Solid Powder Powder Powder Liquid
KSC-50N DSPC 300 PLT-A4 LC-510 PatternMaster E-Darts MJS ThermoJet Printer ARCAM EBM S12 GS 1500 R 10 SOLIFORM 250B SOLIFORM	Maker PLT DSPC PLT LC Model Maker E-Darts MJS Thermo Jet EBM GS R SOLIF ORM SOLIF	Ink jet + wax adhesive + cutting additional parts Laminating system + hot press system Powder injection section + electric adhesive droplet injection section + distributor roller Sheet cutting system + hot press system Helium-cadmium laser + NC controller Ink jet + wax adhesive + cutting additional parts Semiconductor laser + vertical motion system Powder melt head with vertical movement + interchangeable injection section with horizontal movement Thermojet as power supply + X-Y locomotor system Melt electron beam + vacuum tank + vacuum generating pump + control unit Horizontal and vertical movement system of feeding powder and glue + printing system Ink jet + feed small droplets of glue Solid-state laser + fixed and variable beam diameter + laser control system	Solid Powder Solid Liquid Solid Liquid Powder Solid Powder Powder
KSC-50N DSPC 300 PLT-A4 LC-510 PatternMaster E-Darts MJS ThermoJet Printer ARCAM EBM S12 GS 1500 R 10 SOLIFORM 250B SOLIFORM 250EP	Maker PLT DSPC PLT LC Model Maker E-Darts MJS Thermo Jet EBM GS GS R SOLIF ORM SOLIF ORM	Ink jet + wax adhesive + cutting additional parts Laminating system + hot press system Powder injection section + electric adhesive droplet injection section + distributor roller Sheet cutting system + hot press system Helium-cadmium laser + NC controller Ink jet + wax adhesive + cutting additional parts Semiconductor laser + vertical motion system Powder melt head with vertical movement + interchangeable injection section with horizontal movement Thermojet as power supply + X-Y locomotor system Melt electron beam + vacuum tank + vacuum generating pump + control unit Horizontal and vertical movement system of feeding powder and glue + printing system Ink jet + feed small droplets of glue Solid-state laser + fixed and variable beam diameter + laser control system	Solid Powder Solid Solid Liquid Powder Solid Powder Powder Liquid
KSC-50N DSPC 300 PLT-A4 LC-510 PatternMaster E-Darts MJS ThermoJet Printer ARCAM EBM S12 GS 1500 R 10 SOLIFORM 250B SOLIFORM 250EP SOLIFORM	Maker PLT DSPC PLT LC Model Maker E-Darts MJS Thermo Jet EBM GS GS R SOLIF ORM SOLIF ORM	Ink jet + wax adhesive + cutting additional parts Laminating system + hot press system Powder injection section + electric adhesive droplet injection section + distributor roller Sheet cutting system + hot press system Helium-cadmium laser + NC controller Ink jet + wax adhesive + cutting additional parts Semiconductor laser + vertical motion system Powder melt head with vertical movement + interchangeable injection section with horizontal movement Thermojet as power supply + X-Y locomotor system Melt electron beam + vacuum tank + vacuum generating pump + control unit Horizontal and vertical movement system for feeding powder and glue + printing system Ink jet + feed small droplets of glue Solid-state laser + fixed and variable beam diameter + laser control system Solid-state laser + fixed and variable beam diameter + laser control system	Solid Powder Solid Liquid Solid Powder Powder Powder Liquid
KSC-50N DSPC 300 PLT-A4 LC-510 PatternMaster E-Darts MJS ThermoJet Printer ARCAM EBM S12 GS 1500 R 10 SOLIFORM 250B SOLIFORM 250EP	Maker PLT DSPC PLT LC Model Maker E-Darts MJS Thermo Jet EBM GS GS R SOLIF ORM SOLIF ORM	Ink jet + wax adhesive + cutting additional parts Laminating system + hot press system Powder injection section + electric adhesive droplet injection section + distributor roller Sheet cutting system + hot press system Helium-cadmium laser + NC controller Ink jet + wax adhesive + cutting additional parts Semiconductor laser + vertical motion system Powder melt head with vertical movement + interchangeable injection section with horizontal movement Thermojet as power supply + X-Y locomotor system Melt electron beam + vacuum tank + vacuum generating pump + control unit Horizontal and vertical movement system of feeding powder and glue + printing system Ink jet + feed small droplets of glue Solid-state laser + fixed and variable beam diameter + laser control system	Solid Powder Solid Solid Liquid Powder Solid Powder Powder Liquid

500EP	ORM	beam diameter + laser control system	
-------	-----	--------------------------------------	--

Criteria with value for each RP machine are machine dimensions, construction chamber dimensions, accuracy, resolution in horizontal and vertical directions, manufacturer, manufacturing technology, machine model, machine operating system, machine power supply parameters, scanning tools, materials.

C. Design and creation of ontology

- **Ontology.** In recent years, the development of ontologies as a formal and explicit description of terms in a particular domain and the relationships between them [52] has evolved from laboratory work in artificial intelligence laboratories to a work in real applications.
- Ontology components. An ontology together with a set of individual examples of classes forms a knowledge base. In practice, there is a narrow boundary where the ontology ends and the knowledge base begins. Ontologies include descriptions of concepts, attributes, and their relationships. Concepts in the scope of the ontology are defined by classes. Attributes and connections called slots complement the concepts in the domain. More complex ontologies also include axioms, which are called axioms, and offer more complex methods for defining classes, such as creating constraints on specific attributes or counting class components, defining subclasses or separate classes, and so on.

In practice, the development of an ontology involves the following steps [53]:

- Definition of classes in ontology
- Arrange classes in a "subclass-superclass" hierarchy

• Define slots and describe the values that these slots are allowed to have.

• Determine slot values for class instances

After these steps, the knowledge base can be created by defining individual instances of these classes, determining the specific values of the slots, and determining the additional constraints on the slots.

# IV. ONTOLOGY OF RAPID PROTOTYPING TECHNIQUES

Since the background knowledge required to select the appropriate rapid prototyping technique includes a broad set of relationships and interactions between parameters, the development of an ontology for sharing background knowledge, analyses related to the adoption of the appropriate technique to the application. To achieve this goal, it is necessary to go through 5 steps [54]: determining the scope and domain of the ontology, considering the issue of reusing the ontology, counting the important words in the ontology, defining class hierarchy, defining class properties.

### A. Determining the scope and domain of the ontology

The domain in question in this ontology is all the rapid prototyping techniques that are used commercially. Because these techniques are implemented by RP machines, the ontology for rapid prototyping techniques needs to cover all aspects of identifying dimensions, capabilities, applications, parameters affecting the sample, and identifying existing RP machines. In addition, what increases the attractiveness of knowledge in this field is the ability to adapt the application to the appropriate RP system, which turns the ontology into an application-oriented ontology.

#### B. Consider the issue of reusing ontologies

Considering what has already been done by others and making changes, modifications, or extensions to existing resources to suit our particular scope and the specific application is a worthwhile process. Reusing existing ontologies is essential when the system in question requires interaction with other application systems that have used a particular ontology (or a specific glossary)

#### C. Counting important words in the ontology

At this stage, it is useful to make a list of all the words we want to explain in one application. Because in the next steps, it helps us to identify classes and subclasses and attributes and connections. Some important words in this prototyping prototyping-rapid field are: systemsconstruction dimensions-accuracy-quality-layer thicknessresolution-scanning tool-power supply-laser-resin-liquidbased systems, solid and powder-scanning speed-purchase, and installation cost-UV lamp-polyamide-polystyrene-SLAcompany-COLAM-FDM LAM-SCS-3D companycomposite sheet-thermojet-inkjet, etc.

As can be seen, by extracting some words related to prototyping techniques, the way is paved for the next step, which is to categorize the concepts and create a classsubclass hierarchy. Of course, among the words, in addition to concepts, there are also attributes, relationships, and examples that are distinguished in the next steps.

The next two steps involve developing the hierarchy of classes and defining the properties of very closely intertwined concepts. In such a way that it is very difficult to distinguish between them and to consider the precedence and lag between them. We usually start by defining a limited number of concepts in the hierarchy and then move on to describing their characteristics (created concepts). These steps are the most important in the ontology design process.

# D. Definition of classes and class hierarchy

There are different approaches to the development of class hierarchies:

• Top-down approach: The top-down development process begins with the definition of general concepts in the domain. It then continues the development process by creating more specific subclasses of these concepts.

• Bottom-up approach: The bottom-up development process begins with the definition of very specific classes, the leaves of the class hierarchy, then continues the development process by grouping these classes into more general concepts.

• Hybrid approach: Hybrid development process is a combination of top-down and bottom-up methods. In this method, first, prominent and important concepts are defined. Then, with the generalization (combination) or privatization (analysis) of these concepts, the development process continues.

A top-down approach has been used to develop an ontology of rapid prototyping techniques. From the list we created in step three, select the words that describe the independent objects. In ontology, these words define "class" and form anchor points in the hierarchy of classes. Classes are placed in a hierarchical pattern. This hierarchical pattern is formed on the basis that if an object is an instance of one class, will it be an instance of another class? And if so, these classes are in a class-subclass hierarchy. Otherwise, they will be separate classes. If we pay attention to the words, we see that in the field of rapid prototyping techniques, two main concepts can be designed and identified. One is rapid prototyping systems and the other is built-in prototypes, and the other terms are related to these two terms. Each of the two main concepts is defined as a superclass. There are several other concepts related to the concept of rapid prototyping systems, which we call RP machines, which are defined as the relevant subclasses. Some of these subclasses dimensions, manufacturing are machine chamber dimensions, resolution, the thickness of fabric layers, power supply, scanning speed, scanning tool, manufacturing material, machine accuracy, machine cost, etc. Each of these subclasses, in turn, has other subclasses, and we continue the class-subclass definition process until the next level is objects or instances.

The next superclass is a sample that has subclasses such as time-cost-quality-size, etc. These subclasses can be extended to several levels to fully cover the concept.

One way to identify subclasses of a class is that the class-subclass hierarchy should be such that the sample defined for the last subclass is also an instance of the subclasses associated with that subclass. Figure 1 shows a class-subclass hierarchy of rapid prototyping techniques developed in Protégé software version 4.2.2.

# E. Define class properties

Classes alone do not contain enough information to answer competency questions that test the ontology's ability to respond to background knowledge. In addition, by extracting some related domain words, and assigning them to the class and subclass hierarchy, several words remain, which are attributes and examples. For each attribute in the list (remaining words) we must specify which class describes it. It should be noted that all subclasses of a class inherit the characteristics of the main class. In addition, each of the subclasses includes other unique features in addition to the main class features. Features are basically of two categories [52]:

🗧 🗘 🔮 untitled-antology-25 (http://	www.semanticweb.org/tasibeh/ontologies/2015/5/untitied-ontology-28)	Search for entity
en Ontology Entlies Individuals		
iss hierarchy: Thing		
Thing     Machine_Specification     Machine-Size		
OMachine_Build_Envel     Machine_Corporation		
# Machine_Costs		
Depreciation_Cost	1	
Installation_Cost		
Powering_Cost		
Purchase_Cost		
Raw_Materials_Co	st.	
Machine_Models		
	Machine_Thickness_Layer = Machine_Postprocessing_Tasks = Prototype_Quality = Machine_	
Cleaning	ing_Tasks = Machine_Thickness_Layer = Machine_Percision = Prototype_Quality = Machine_	Resolution = Machine_Scanning_Speed
Postcuring		
Machine Power Sup	aha	
	### # Machine Thickness Layer = Machine Postprocessing Tasks = Machine Percision = Prototys	o Occility - Machine Econolog Econd
► OMachine Scan Syste		u-famili : uncume-semund-sheen
	meed = Machine Thickness Laver = Machine Postprocessing Tasks = Machine Percision = Pr	mototype Quality = Machine Resolution
Machine Software F		contraction - record - record -
► Machine Structures		
	aver = Machine Postprocessing Tasks = Machine Percision = Prototype Quality = Machine	Resolution = Machine Scanning Speed
* Prototype Specification		
Prototype Accuracy		
Prototype Build Tim	•	
Prototype Price		
	Machine Thickness Laver = Machine Postprocessing Tasks = Machine Percision = Machine	Resolution = Machine Scanning Speed
▼ OPrototype Size = Na	chine Build Envelope	
PHieght = Hieght		
○ PLength = Length		

Fig 1. View of RP techniques classes and subclasses

• Data properties that specify the relationship between an instance or object with data values

• Object properties that determine the relationship between two classes or two objects.

Figure 2 shows some of the ontological features of rapid prototyping techniques.

A D willed-antology-28 (http://www.saturticovers.org/naster/vetorgas/20155)	vrited antikegy (21)		
Ame Orlang Talam Indi-stan			
and property herarchy, expOlyedProperty	BILLED Data property terrarchy: topDataProperty		
	12 0 M		
Biological Sectors Biological Sectors Biolog	<ul> <li>If the constraint operation of the constraint operation operation</li></ul>		

Fig 2. An overview of the data and object properties of RP techniques.

Some data properties include:

Prototype-Material, Prototype-Accuracy, Machine-Structure, Machine-Model-Name, Operating-System, Machine-Technology, .....

Some of the object properties are:

has-power-cost, has-thickness-layer, is-time-consuming, is-larger-than, is-scan-tools-of, has-post-processing-task,.....

Given the definition of the original structure, we can now create the extracted rules. For example, one of our rules was that every RP machine is based on one type of raw material:

Related classes: Machine Structure-Machine Material Related property: is-based-on As can be seen in Figure 3, using restrictions, firstly, only one structure is acceptable for each machine, and secondly, the machines of each structure are disjoint with the other two structures. In this figure, examples of materials used in the solid structure are also observed.

Image: State of the state of	-	
Orfabgy Entine Industrale		
hererchy Sold_Based IIBR	Description: Sold_Based	
4 X	Subclass of 🔘	
► ● Machine_Power_Supply	Machine_Materials	000
V OMachine_Resolution = Machine_Thickness_Layer = Machine_Postprocessing_Tasks =		
XY_Resolution     Z Resolution	SubGass Of (Anonymous Amestar)	
► O Machine Scan System		
OMachine_Scanning_Speed = Machine_Thickness_Layer = Machine_Postprocessing_Ta	Likeraters 🔘	
Machine_Software_Files     V -      Machine_Structures	♦A8S	00
Machine_Structures     T -      Machine Materials	Casting_Wax	00
Liquid_Based	Elastomer	00
Powder_Based     Solid Based	LOMComposite	00
Solid_Based     V - O Machine Thickness Laver = Machine Postprocessing Tasks = Machine Percision = P	OMPaper	00
The second	LOMPlastics	õõ.
t property hierarchy is based on IBBB	Description: is_based_on	
• ×		
kechine	Investo in 🔘	
has_RP_Machine has_scan_tools		
has_RP_Machine     mas_scan_tools     mas_schware_files	Donaine (Intersection)	000
whas_RP_Machine  whas_scan_tools whas_software_files whas_structure	Oursing Demotion () • is_based_on exactly 1 Machine_Materials	
e hos. BP. McChine hos. scar, Job's hos. schowing. files hos. schowing. hos. schowing. h	Donaine (Intersection)	
has_scan, posts     has_scan, posts     has_scan, posts     has_scan, posts     has_structure     has_structure     has_structure     has_scance     ha	Derate Densitie  Bis_based_on exactly 1 Machine_Materials Machine_Models	
what SP - Matchine	Dardet Jenschol C B. Jased, on exactly 1 Machine_Materials Hachine_Models Rage Stewarter C	ÖÖÖ
Bass (20) Acclude     Bass, scale, look     Bass, scale, look     Bass, scale, look     Bass, scale, look     Bass, blockers, layer     Bass, layer     Bass, blockers, layer     Bass, layer     Bas	Derate Densitie  Bis_based_on exactly 1 Machine_Materials Machine_Models	ÖÖÖ
Star 29 Archite     Star 20 Archite     S	Derer Senster     O     E., Losed, en coactly 1 Hacklee_Materials     Hackline_Models     Hackline_Materials     Generative C     Hackline_Materials	ÖÖÖ
Bass (20) Acclude     Bass, scale, look     Bass, scale, look     Bass, scale, look     Bass, scale, look     Bass, blockness, layer     Bass, layer     Bass, blockness, layer	Dardet Jenschol C B. Jased, on exactly 1 Machine_Materials Hachine_Models Rage Stewarter C	000

Fig 3. Creating an axiom using cardinality and quantity limiters

Another restriction of the quality of the sample is that according to the rules derived from library studies, it depends on the accuracy, resolution, complementary operations, scanning speed, and thickness of the RP machine layers (Figure 4).

ID Ø unterkanskogs 28. http://www.samantownk.org/samantomisinges/2015/Samited.amseps-28.		Court-fie prifte.
Active Debutype - Extinue - Individuale		
Class Statestory Profession Classy	Description Prototype_Games	0.000
U & H	Training to O	
tachine Specification	O Machine Scanning Speed	0000
Machine-Size	O Machine Resolution	8000
Machine_Build_Envelope = Prototype_Size	O Machine Thickness Laver	0000
Machine_Corporation	O Machine Percision	8000
Machine_Costs		
Machine_Models Machine Percision = Machine Thickness Laver = Machine Postprocessing Tasks = Prototype	Machine_Postprocessing_Tasks	0000
Machine Postprocessing Tasks = Machine Thickness Layer = Machine Percision = Prototype		
Machine Power Supply	Sull Classe Of O	
Machine_Resolution = Machine_Thickness_Layer = Machine_Postprocessing_Tasks = Machine_	Prototype_Specification	0000
• 2 Resolution		
O Machine_Scan_System	Juk Class (11 (Newyment Aresister)	
OMachine_Scanning_Speed = Machine_Thickness_Layer = Machine_Postprocessing_Tasks = Mac	O Prototype_Quality	0000
Machine_Software_Files	O Prototype_Quality	0000
Machine_Structures     Machine_Materials	Percision_of_Hachine only float	0000
Gachine_Materials     Giudi Based	O Prototype_Quality	0000
Powder Based	O Prototype Quality	0000
Solid Baved	O Prototype_Quality	6000
Machine_Thickness_Layer = Machine_Postprocessing_Tasks = Machine_Percision = Prototype_ = Max_Thickness		
Min Thickness	Landers O	
vototype Specification		
Prototype_Accuracy	Terrar Inc. Kov. CO	
Prototype_Build_Time		
Prototype_Price	Church Person	
Prototype Quality = Machine_Thickness_Layer = Machine_Postprocessing_Tasks = Machine_P Prototype_Size = Machine_Build_Envelope	Conversion (Ph	
O Piticipht & Hieght		
O Plength = Length	Dispose lines (rf 🔘	
• PWidth = Width •		

Fig 4. Creating an axiom using class descriptors

Finally, we define the relevant object for the final subclasses. In the subclass description section, the objects are introduced as members of the subclass. Figure 5 shows the members of the FDM model subclass as an object.

🗘 💠 🔹 🗄 🗘 🗘 👌 🗘 👌 🗘 The theorem of the th	6-ontology-28)	<ul> <li>Search for a rolly</li> </ul>
ve Ortology Entites Individuals		
as hierarchy: FOM	IIII III Description: FOM	Dist
(⊈ )∭	Equivalent Ta	
Thing	is_based_on exactly 1 Machine_Materials	0000
Tring T- Machine Specification		0000
Machine_Spectrication	DATION OF O	
O Machine Build Envelope = Prototype_Size	Machine Models	000
Machine_Corporation	Machine_Houses	000
► ● Machine_Costs		
General Angles     General Angles     General Angles	Sub Class Of (Pearginian Pecetiar)	
- 9 OP		
CLANM	Menters O	
ODSPC	Dimension	00
- O E - Darts	FDH_3000	0.0
- O EBM	<b>Ø</b> FDM Maxum	00
OLOS	+FDM Titen	
0 FDM		00
O Lasform	Prodigy_Plus	00
-910		
OLENS	Target for Key 🔘	
— O Light_Sculpting		
O LMS	Disjoner Water CO	
- O LOM		
ONIS	Chiquine Union Of	
O Model Maker		
OFFSET_FABBERS		
O Pattern_Master		
- O PLT		
- 0 R - 0 SCS		
- O SCS - O SGC		
- 9 SLA	*	

Fig 5. Introducing subclass objects using member descriptors

Figures 6 and 7 show a graphical view of the ontology created using OWLViz and ontoGraph, two of the most powerful graphical tools in Protégé software.

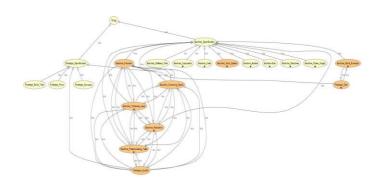



Fig 6. OWLVis view of the RP technology ontology

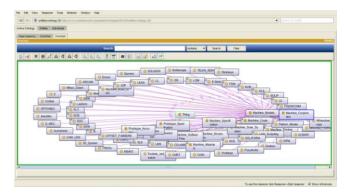



Fig 7. OntoGraph view of the RP Technologies ontology

In addition, the ontoGraph tool also provides graphical search capabilities. For example, Figure 8 shows a graphical search for the word cost in this ontology.

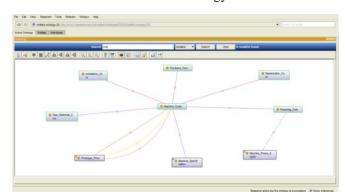



Fig 8. Graphic search on cost entity in ontoGraph

The Protégé tool, which is an ontology design tool, is based on the OWL language, which is a powerful language for describing metadata, and all parameters entered in the software can be retrieved in the OWL language.

Figure 9 shows an ontology created in OWL that begins with the definition of namespaces. Finally, Figure 10 shows

the statistics of ontology entities (class-subclass-data property-thematic property-axioms-types of limiters, type of thematic properties, etc.)

🔹 🔶 🔮 antike5-antology-28 (http://www.semanticweb.org/has/beh/antologies/2015/5/untille5-ontalogy-28)	<ul> <li>Bearch for entity</li> </ul>
e Orthology Entities Individuals	
a hierarchy OntoGeal Ott.2004, rendering	
JOAL rendering	αε
xml:hase="http://www.semanticweb.org/nasibeh/ontologies/2015/5/untitled-ontology-28"	
smlns:rdfs-"http://www.w3.org/2000/01/rdf-schema#"	
milm::mad="http://www.w3.org/2001/30ESchemm#"	
amlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"	
<pre>xmlns:xml="http://www.w3.oog/XKL/1990/namespace"</pre>	
ontologyIRI+"http://www.semanticweb.org/masibeh/ontologies/2015/5/untitled-ontology-28">	
<prefix iri="http://www.wS.org/2002/07/oul#" name=""></prefix>	
<prefix iri="http://www.w3.org/2002/07/oul#" name="oul"></prefix>	
<prefix iri="http://www.w3.org/1999/02/22-rdf-syntax-ms#" name="rdf"></prefix>	
<prefix iri="http://www.wl.org/2001/XML5chema#" name"xed"=""></prefix>	
<prefix iri="http://www.w3.org/2010/01/rdf-schema#" name="rdfs"></prefix>	
<declaration></declaration>	
class IRI-*+310*/>	
<declaration></declaration>	
<class iri="#3D System"></class>	
Declaration	
<declaration></declaration>	
<pre>cClass IHI-*#ARCH#*/&gt;</pre>	
<declaration></declaration>	
<class ibl="#Accoltc:"></class>	
<declaration></declaration>	
<class iri-*#amper*=""></class>	
<declaration></declaration>	
<class ibi-"#autostrade"=""></class>	
doi:10.1011/001101000</td <td></td>	
<declaration></declaration>	
<class iri-***********************************<="" td=""><td></td></class>	

Fig 9. An overview of the OWL RP technology ontology

#### V. CONCLUSIONS AND SUGGESTIONS

More than two decades have passed since the advent of rapid prtotyping technology, or in other words, additive manufacturing, but due to the emergence of new technologies and techniques in this field, selective systems are still studied in several ways. But based on a review of more than a decade of selective systems studies, no studies have yet sought to establish an ontology-based structure with the appropriate technique selection approach. This study is an innovation in systems that select this technology. Most studies have focused on criteria, decision-making methods and modeling [55], but the creation of such a structure is a new issue in this area.

	Eearch for entity
a chi antitied-entology-28 (http://www.semantic.web.org/nasibeh/bnologies/2015/Stantited-ontology-28)	Entropy
tive Ontology Dritters Individuals	
tology metrics.	
Nel i ca	
Axion	665
Legical axism count	309
Case court	123
Diject property count	31
Data property count	31
individual count	92
CL expressivey	SRQ(D)
Tess axions	
SubClassOf axioms count	122
EquivalentClasses axions count	04
StippintClasses axions count	3
GCI count	0
Hidden GCI Caunt	08
Diject property axions	
SubObjectPropertyOf axions count	0
EquivalentDisectProperties axioms count	0
inverseObjectProperties axkers count	3
Disjoint/Disjoint/Disjoint/Properties axioms count	0
Functional/DijactProperty accions count	1
InverseFunctions/DispecProperty axioms count	1
TransflveObjecProperty axioms count	1
SymmetricObjectProperty axioms count	1
AsymmetricDijecFroperty axions count	1

Fig 10. An overview of inventory statistics for RP techniques

In this article, new RP techniques in the industry to develop ontology and ontology of these techniques have been studied. To develop the ontology of data and information related to these techniques, two groups of sources have been extracted by qualitative content analysis method, which includes resources related to providing the appropriate technique identification method and sources introducing techniques and their characteristics. About 50 RP systems were identified and their characteristics were determined based on the content of the resources and then the knowledge related to these techniques was structured based on the stages of ontology development. Based on this, suggestions for future research are recommended as follows:

Considering that one of the important issues in the field of knowledge of fast prototyping techniques and also the use of these techniques is the selection of the appropriate technique, and based on the literature review in this field, there is a real gap in the use of data mining techniques, it is recommended In future research, various data mining methods should be used to extract knowledge in this field. Of course, one of the difficulties of data mining in this field is to access the data of samples made by any type of RP machine, which is the reason for the lack of data mining research in this field. Methods such as using the decision tree to create rules can have good potential for future research. Especially considering that many selective systems of the past have also used law-based expert systems.

Another suggestion that could have the potential for future research is to use a variety of intelligent systems such as artificial neural networks to model the optimal fan selection, which in this case also requires data from previously created samples, and this can be one of Also being considered limitations or challenges.

Due to the purpose of this study, which was to identify the field of RP technology, and also this knowledge had the orientation of choosing the appropriate technique, there were some challenges and limitations in conducting research, such as limiting the identification and use of resources for qualitative content analysis. In this area, an attempt has been made to cover the resources related to the selection of the appropriate technique during the last two decades. They were satisfied.

#### REFERENCES

[1] T. Berners-Lee, J. Hendler, O. Lassila, "The semantic web". Scientific American, Vol.284, No.5, pp. 34-43, 2001.

[2] P. A. Bonatti, S. Decker, A. Polleres and V. Presutti, "Knowledge graphs: New directions for knowledge representation on the semantic web" (dagstuhl seminar 18371). In Dagstuhl Reports (Vol. 8, No. 9). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[3] C. Palanisamy, N. Chinnasamy, K. Muthu, "Influence of Process Parameters on Rapid Prototype Part Using Response Surface Methodology". Journal of Engineering Technology and Applied Physics. 1. pp. 4-7. 10.33093/jetap.2019.1.2.

[4] C. K. Chua, "Three–dimensional rapid prototyping technologies and key development areas", 2011.

[5] C. K. Chua, K. F. Leong and C. S. Lim, "Rapid Prototyping Principles and Application", Nanyang Technological University, Singapore, 2004.

[6] J. Bauer, H. H. Klingenberg, H. Müller, "Computer based rapid prototyping system selection and support". Proceedings of time compression technologies conference, The Heritage Motor Center, Gaydon, UK, pp 241-250, 1996.

[7] D. K. Phillipson, "Rapid prototyping machine selection program". The 6th European conference on rapid prototyping and manufacturing, Nottingham, UK,1997, pp. 292-303.

[8] R. N. Chuk, V. J. Thomson, "A comparison of rapid prototyping techniques used for wind tunnel model fabrication", Rapid Prototyping Journal 4 (4), pp.185-196, 1998.

[9] R. Bibb, "The development of a rapid prototyping selection system for small companies. Thesis", School of Product Design and Engineering, University of Wales Institute, Cardiff, 1999.

[10] S. H. Masood, A. Soo, "A rule-based expert system for rapid prototyping system selection". Robot Computer Integr Manuf, Vol. 18, pp. 267-274.

[11] H. Lan, Y. Ding, J. Hong, "Decision support system for rapid prototyping process selection through the integration of fuzzy synthetic evaluation and an expert system". International Journal of Production Research, Vol. 43, No. 1, pp.169-194, 2005.

[12] H. S. Byun, K. H. Lee, "A decision support system for the selection of a rapid prototyping process using the modified TOPSIS method", International Journal of Advanced Manufacturing Technology 26 (11-12):1338-1347. doi:10.1007/s00170-004-2099-2, 2005.

[13] M. Mahesh, J. Y. Fuh, Y. Wong, H. T. Loh, "Benchmarking for decision making in rapid prototyping systems". In: Automation Science and Engineering, 2005. IEEE International Conference on, 2005. IEEE, pp. 19-24.

[14] J. O. Wilson, D. Rosen, "Selection for rapid manufacturing under epistemic uncertainty". In: ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2005. American Society of Mechanical Engineers, pp. 451-460.

[15] R. V. Rao, K. Padmanabhan, "Rapid prototyping process selection using graph theory and matrix approach". Journal of Materials Processing Technology, Vol. 194, No.1, pp. 81-88, 2007.

[16] A. Armillotta, "Selection of layered manufacturing techniques by an adaptive AHP decision model", Robotics and Computer-Integrated Manufacturing 24 (3):450-461. doi:10.1016/j.rcim.2007.06.001.

[17] K. Lokesh, P. K. Jain, "Selection of Rapid Prototyping Technology", Advances in Production Engineering & Management, Vol. 5, No. 2, pp. 75-84, 2010.

[18] D. Chatterjee, B. Mukherjee, "Study of Fuzzy AHP Model to search the criterion in the evaluation of the best technical institutions", International Journal of Engineering Science and Technology, Vol.2, No.7, pp. 2499-2510, 2010.

[19] J. Munguia, A. Bernard, M. Erdal, "Proposal and evaluation of a KBE-RM selection system". Rapid Prototyping Journal, Vol.17, No.4, pp. 236-246, 2011.

[20] B. Vahdani, S. M. Mousavi, R. Tavakkoli-Moghaddam, "Group decision making based on novel fuzzy modified TOPSIS method". Applied Mathematical Modelling, Vol.35, No.9, pp. 4257-4269, 2011.

[21] S. Chakraborty, "Applications of the MOORA method for decision making in a manufacturing environment", The International Journal of Advanced Manufacturing Technology 54 (9-12), pp.1155-1166, 2011.

[22] S. Khrais, T. Al-Hawari, O, Al-Araidah, "A fuzzy logic application for selecting layered manufacturing techniques". Expert Systems with Applications, Vol. 38, No. 8, pp. 10286-10291, 2011.

[23] Ic. YT, "An experimental design approach using the TOPSIS method for the selection of computer-integrated manufacturing technologies", Robotics and Computer-Integrated Manufacturing, Vol. 28, No. 2, pp. 245256, 2012.

[24] M. M. Ghazy, "Development of an additive manufacturing decision support system (AMDSS)". Newcastle University, 2012.

[25] D. Roberson, D. Espalin, R. Wicker, "3D printer selection: A decisionmaking evaluation and ranking model". Virtual and Physical Prototyping, Vol.8, No.3, pp. 201-212, 2013.

[26] M. T. Taghavifard, N. Pouti, "Design and development of decision support system for ranking rapid prototyping techniques and selecting the best technique in the automotive industry", Information Technology Management, Vol.15, No.2, pp. 1-32, 2013.

[27] S. S. Mahapatra, B. N. Panda, "Benchmarking of rapid prototyping systems using grey relational analysis". International Journal of Services and Operations Management, Vol. 16, No. 4, pp. 460-477, 2013.

[28] P. Wang, P. Meng, J-Y. Zhai, Z-Q. Zhu, "A hybrid method using experiment design and grey relational analysis for multiple criteria decision-making problems". Knowledge-Based Systems, Vol.53, pp. 100-107, 2013.

[29] Y. Zhang, Y. Xu, A. Bernard, "A new decision support method for the selection of RP process: knowledge value measuring". International Journal of Computer Integrated Manufacturing, Vol.27, No. 8, pp. 747-758, 2014.

[30] V. Shende, P. Kulkarni, "Decision Support System for Rapid Prototyping Process Selection", International Journal of Scientific and Research Publications, Vol.4, No.1, 2014. [31] S. Liao, M-J. Wu, C-Y. Huang, Y-S. Kao, T-H. Lee, "Evaluating and Enhancing Three-Dimensional Printing Service Providers for Rapid Prototyping Using the DEMATEL Based Network Process and VIKOR". Mathematical Problems in Engineering, 2014.

[32] Y. Zhang, A. Bernard, "An integrated decision-making model for multi-attributes decision-making (MADM) problems in additive manufacturing process planning". Rapid Prototyping Journal, Vol.20, No.5, pp. 377-389, 2014.

[33] V. Kumar, L. Kumar, A. Haleem, "Selection of Rapid Prototyping Technology Using an ANP Based Approach", IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) Vol.13, No.4 Ver. VI (Jul. - Aug. 2016), pp. 71-78.

[34] P. Zheng, Y. Wang, X. Xu, Sh. Quan Xie, "A weighted rough set based fuzzy axiomatic design approach for the selection of AM processes". International Journal of Advanced Manufacturing Technology, Vol.91, No.5-8, pp. 1977-1990, 2017.

[35] M. B. Anand, S.Vinodh, (2018) Application of fuzzy AHP-TOPSIS for ranking additive manufacturing processes for microfabrication, RapidPrototyp. vol. 24, no.2, pp. 424–435, 2018.

[36] U. K. Zaman, M. Rivette, A. Siadat, S. M. Mousavi, "Integrated product-process design: Material and manufacturing process selection for additive manufacturing using multi-criteria decision making", Robotics, and Computer-Integrated Manufacturing, Vol. 51, pp.169–180, 2018.

[37] Y. Wang, R. Y. Zhong, X. Xu, "A decision support system for additive manufacturing process selection using a hybrid multiple criteria decision-making method", Rapid Prototyp Journal, Vol.24, No.9, pp. 1544–1553, 2018.

[38] S. Kadkhoda-Ahmadi, A. Hassan, E. Asadollahi-Yazdi, "Process and resource selection methodology in design for additive manufacturing", International Journal of Advanced Manufacturing Technology, https://doi.org/10.1007/s00170-019-03991-w, 2019.

[39] Y. Qin, Q. Qi, P. Scott, J. Jiang, "An additive manufacturing process selection approach based on fuzzy Archimedean weighted power Bonferroni aggregation operators". Robotics and Computer-Integrated Manufacturing. 2020 Aug 1; 64. 101926. https://doi.org/10.1016/j.rcim.2019.101926.

[40] M. Chandra, F. Shahab, K. E. K. Vimal, S. Rajak, "Selection for additive manufacturing using hybrid MCDM technique considering sustainable concepts". Rapid Prototyping Journal, 2022.

[41] J. Tavcar, A. Nordin, "Multi-Criteria assessment and process selection model for additive manufacturing in the conceptual phase of design". Proceedings of the Design Society, 1, pp.2197-2206, 2021.

[42] K. Ransikarbum, P. Khamhong, 2021. "Integrated fuzzy analytic hierarchy process and technique for order of preference by similarity to ideal solution for additive manufacturing printer selection". Journal of Materials Engineering and Performance, Vol.30, No.9, pp.6481-6492, 2021.

[43] S. Yasodha, Pudukkottai, "An ontology-based framework for Semantic Web Content Mining", International Conference on Computer Communication and Informatics, pp. 1-25, 2014.

[44] A. Gyrard, C. Bonnet and K. Boudaoud, "Domain knowledge Interoperability to build the Semantic Web of Things", 2014.

[45] M. Lenzerini, L. Lepore, A. Poggi, "Making meta querying practical for Hi(DLLiteR) knowledge bases, in On the Move to Meaningful Internet Systems": OTM 2014 Conferences, 8841, pp. 580–596.

[46] W. Gao, M. R. Farahani, A. Aslam, S. Hosamani, "Distance learning techniques for ontology similarity measuring and ontology mapping" Cluster Computing, Vol. 20, No. 2, pp. 959-968, 2017.

[47] C. Verma, V. Mahadevan, N. Rasiwasia, G. Aggarwal, R. Kant, A. Jaimes, S. Dey, "Construction and evaluation of ontological tag trees". Expert Systems with Applications, Vol.42, No.24, pp.9587-9602, 2015.

[48] S. Shekarpour, E. Marx, "Semantic interpretation of user queries for question answering on interlinked data", Web Semantics Journal, Vol 30, pp. 39-51, 2015.

[49] H. F. Hsieh, S. E. Shannon, "Three approaches to qualitative content analysis". Qualitative health research, Vol.15, No.9, pp.1277-1288, 2005.

[50] S. K. Lee, G. Mogi, M. Koike, K. S. Hui, J. W. Kim, "Fuzzy Integrated Analytic Hierarchy process approach for selecting strategic bigsized R&D programs in the sector of energy technology development", FUZZ-IEEE 2009, Korea. [51] S. Lepreux, C. Kolsky, G. Queric, "Towards a Methodology for DSS user-centered Design".Wiley and Blackwell, 2003.

[52] A. Maedche,"Ontology Learning for the Semantic Web", Kluwer Academic Publisher, 2002.

[53] J. Davies, D. Fensel, and F. Van Hrmelen "Towards the Semantic Web: Ontology-Driven Knowledge Management", New York: Wiley, 2003.

[54] N. F. Noy, M. Sintek, S. Decker, M. Crubézy, R. W. Fergerson, M. A. Musen, "Creating semantic web content with protege-2000". IEEE intelligent systems, Vol.16, No.2, pp. 60-71, 2001.

intelligent systems, Vol.16, No.2, pp. 60-71, 2001. [55] S. Jhunjhunwala, S. Kapil, "Rapid Manufacturing of Biomedical Devices: Process Alternatives, Selection and Planning". In Advanced Micro-and Nano-manufacturing Technologies (pp. 77-104). Springer, Singapore, 2022.

[56] K. Meng, C. Cui, H. Li, "An ontology framework for pile integrity evaluation based on analytical methodology". IEEE Access, Vol. 8, pp. 72158-72168, 2020.