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Abstract

We introduce an approach to causal modeling that uses Literature-Based Discov-
ery (LBD) to identify salient domain knowledge in observational data. Causal
models represent a marriage between graph theory, probability, and domain
knowledge. We hypothesize that the LBD paradigm can be applied to identify
variables of interest for the automated construction of causal models of observa-
tional data, and that causal models thus informed will improve upon the perfor-
mance of purely statistical techniques. We evaluated our hypothesis with a phar-
macovigilance (PV) use case. In PV, the task is to discriminate between drug/side-
effect signals and noise. We analyzed observational clinical data derived from
electronic health records (EHR) and constructed causal models. We used logistic
regression coefficients as our baseline and calculated estimated controlled direct
effect from the LBD-informed causal models. Causal models improved upon un-
adjusted statistical models by 8.64% using Area under the Curve of the Receiver
Operating Characteristic. Improving upon previous work in PV using EHR as the
primary data source, our results establish the utility of the approach.

1 Introduction

In this study, we continue with our previous work refashioning the literature-based discovery (LBD)
paradigm as a means to inform causal models for pharmacovigilance (PV), or the surveillance of
post-marketing adverse drug events (ADEs) [1, 2]. We will address a limitation of our previous
work by quantifying the effect of the endogenous variable (medication exposure) on the outcome of
interest (ADE) [2].

Confounding is endemic to observational data. A confounder is present when an exogenous variable
mutually influences both the predictor, or explanatory variable, and the outcome of interest [3]. For
example, we may be interested in whether or not a drug causes gastrointestinal bleeding. To identify
a confounder, we can search the literature for comorbidities that are treated by the drug which are
also known to cause gastrointestinal bleeding, e.g., diabetes. As we have shown in our previous
work, the identification of confounders can facilitate the process of deconfounding, (or ”screening
off ” spurious associations from descriptive statistical correlation) in observational data, by impos-
ing constraints from a priori domain knowledge on the topology of the causal graph [1, 2]. By
incorporating confounders into causal models under a set of ”vivid assumptions”, one can perform
experiments upon the resulting data generating model to test whether or not any influence from an
explanatory variable becomes ”blocked” [4]. We hypothesize that causal models informed by
LBD will improve upon the performance of purely statistical approaches.
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2 Background

Adverse drug events impose a formidable onus upon health systems and individuals worldwide
[5]. This danger serves as the primary impetus for the current study. After regulatory agencies
such as the Food and Drug Administration (FDA) release a novel pharmaceutical therapy to market,
these pharmaceuticals must be monitored. Clinicians and pharmaceutical companies submit reports
of adverse events to spontaneous reporting systems (SRSs) such as FAERS in the United States
and EudraVigilance in the E.U. However, these data have limitations, such as incomplete clinical
information, under-reporting of side-effects, and selection bias. An important issue with SRSs is
that they lack a denominator with which to calculate the prevalence of adverse events from the data
alone. As a complement to data from SRSs, a current focus of attention among PV researchers is
on the use of Electronic Health Record (EHR) data. Clinical notes can provide a plethora of detail
of routine clinical practice. However, these data are not without additional challenges: inconsistent
granularity of encoding, text processing overhead, and confounding.

Most PV work utilizes statistical methods (lasso shrinkage, meta-analysis) for the task of detecting
drug-ADE signal from observational clinical data [6, 7]. Statistical analysis can only tell us that a
correlation exists, not determine causality. As noted elsewhere, causal methods have been under-
utilized in biomedicine [8]. A major hurdle to the adoption of causal modeling methods lies in the
”identification” problem, or selection of relevant covariates, since this is labor intensive. Causal
discovery at scale requires an automated method to populate these models. LBD provides the means
to search for confounding variable candidates (CVCs) identified by the literature.

Causal discovery methods have been in existence since the late 1980s and represent a marriage be-
tween probability, graph theory, causal assumptions (faithfulness, causal Markov condition, absence
of latent confounders), and domain knowledge [9, 3]. The modeling process takes place in two steps:
first, represent anticipated inter-variable dependencies in terms of directed acyclic graph topology
(nodes encode variables, edges dependencies); second, learn the parameters of the structural equa-
tions that quantify these relationships. Consider a data set A that consists of a set of random variables
X and that is described by a directed acyclic graph G, where the Bayesian Network B = (G, X) and
θ denotes the parameters of the global distribution of X, such that θ is iid with X, so that B = (G,
θ) (and θ can denote the sufficient statistics of appropriate marginal and joint distributions given A,
e.g. binomial if discrete, Gaussian if continuous). The structure and parameter learning process then
can be decomposed into the following components [10]:

P (B|A) = P (G, θ|A) = P (G|A)P (θ|G,A). (1)

P (G|A) denotes the structure (topology) learning and can be further decomposed as follows:

P (G|A) = P (G) argmax(

∫
P (A|G, θ)P (θ|G)dθ) (2)

where P (G) represents the skeleton of the graph from domain knowledge as a prior.

Figure 1: G and mutilated graph G’.

Given a set of random variables {x, y, z} ∈ X such that y á x|z as in per Figure 1, where z is
a confounder that influences both x and y. G factorizes as a the following joint (pre-intervention)
probability distribution:

P (x, y, z) = P (z)P (x|z)P (y|x, z) (3)

P (x, y, z)

P (x|z)
= P (z)P (y|x, z) (4)

To determine the direct effect of x on y, we will mutilate the graph by setting (randomizing) the
values of x, such that the post-intervention distribution to reflect G’ above can be denoted by the
following truncated factorization (P (x|z) is dropped as x becomes parentless):

P (z, y|do(x)) = Pmutilated(z)Pmutilated(y|x, z) = P (z)P (y|x, z) (5)
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By dividing Equation 3 by P (x|z) as per Equation 4 and combining it with Equation 5, we obtain
a telling pre- and post-intervention ratio:

P (z, y|do(x)) = P (x, y, z)

P (x|z)
(6)

Confirming our intuition, P (x|z) will help us to estimate the effect of do(x), i.e. fixing x’s value to
1 and 0 as an ”idealized experiment” (if given binary data) [10, 11]. We can perform adjustment by
marginalizing over ”z” [11]:

P (y|do(x)) =
∑
z

P (z)P (y|x, z) (7)

LBD was first developed by Don Swanson in the 1980s [12]. Historically, the target application of
LBD has been to identify therapeutically useful relationships from publicly available knowledge.
As we have shown previously for statistical models, the LBD paradigm is a promising candidate for
this task of mapping aspects of extra-statistical domain knowledge to observational data [1]. Incor-
porating LBD-derived confounders into statistical models improved drug-ADE detection accuracy
where the unadjusted signal had some predictive utility. Elsewhere, LBD methods have been uti-
lized to assess the plausibility of drug-ADE associations [13]. In this study, we use LBD to identify
covariates that we suspect will have graphs that are homomorphic with G in Figures 1 and 2.

Figure 2: Classic confounder with ”forking” directed edges.

3 Materials and Methods

To derive our data set, we used a reference set of curated drug-ADE associations that was devel-
oped by Ryan and his colleagues as a standard for evaluating PV methods [14]. This reference set
includes 399 drug/ADE pairs and 4 ADEs with both positive (drug-ADE relationships supported by
the literature and other sources, including package labeling events) and negative (drug-ADE rela-
tionships without support) control groups per ADE. The four ADEs are as follows: acute kidney
injury (AKI), acute liver injury (ALI), gastrointestinal bleeding (GIB), and acute myocardial infarc-
tion (MI). These ADEs were chosen for their importance to PV and their impact on financial and
personal cost. We refer interested readers to detailed descriptions of the pre-processing steps in our
previous work [1, 2].

We extracted a corpus of approximately 2.2 million electronic health records (EHR) concerning out-
patient encounters for 364,000 patients in the Houston metropolitan area between 2004-2012 from
the UTHealths clinical data warehouse [15]. We used MedLEE, a clinical Natural Language Pro-
cessing system, to normalize concepts in our EHR corpus [16]. Next, we then extracted the concepts
with Apache Lucene for document-level co-occurrence statistics for convenience. From this index,
we obtained document-by-concept arrays. Each concept (drug, ADE, or CVC) is persisted as a large
sparse binary array. In these binary arrays (input for causal algorithms), a value of 1 or 0 represents
presence or absence of that concept within a document in the corpus index.

The publicly available SemRep NLP system was developed to identify and normalize relationships
between concepts expressed in the biomedical literature, resulting in sets of semantic predications,
each consisting of a pair of UMLS concepts connected through a predicate such as TREATS,
CAUSES [17]. SemMedDB is a publicly-available database product that contains the SemRep out-
put from processing of the entirety of MEDLINE. SemMedDB was used for accessing the biomed-
ical literature. Domain knowledge is retrieved as triple stores: ARGUMENT0 + PREDICATE +
ARGUMENT1. Such representations make domain knowledge amenable to computation.

We applied Predication-based Semantic Indexing (PSI) to SemMedDB to construct our knowledge
base. Our LBD methods are discussed at length elsewhere [18, 1, 2]. In the present study, PSI is
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used to facilitate rapid ranked order retrieval of concepts that fulfill semantic constraints through
particular predicates [19]. We used the following DP to identify CVCs: drug TREATS confounder;
confounder CAUSES-INV ADE. LBD yields not only covariates, but the skeleton of a graph, de-
noted by the factorization P (G) as per Equation 2.

We used the hill climbing algorithm in the bnlearn R package [10] . Hill climbing recursively adds
and subtracts directed edges until the Bayesian Information Criterion is minimized.

The core steps of our approach were as follows:

1. Query PSI vector space for confounders in ranked order of relevance.

2. Test each CVC for directed edges to both the drug and ADE using the clinical data.

3. Build causal models for each drug-ADE pair using the LBD-identified confounders.

For baseline scores, we used the coefficients from logistic regression. We performed parameter
estimation using conditional probability query on the mutilated graph for each drug-ADE causal
model, as per Equation 7. To evaluate performance, we calculated the Area Under the Receiver
Operating Characteristic curve (AUROC) based on the ranked order of the scores.

4 Results

Parameter estimates from causal models improved performance over logistic regression for all four
ADEs. Causal models improved upon unadjusted statistical models by 8.64% using Area under the
Curve of the Receiver Operating Characteristic.

5 Discussion

Figure 3: Causal graph for clozapine (- ctrl / AKI). Width indicates relationship strength.

This excursion into parameter estimation from interventions on observational data improved upon
previous work in both statistical and causal modeling for EHR-based PV. This implies that our
method is useful for screening off spurious associations. Causal models have additional advantages
in providing visual explanations of the data generating processes that can account for patterns in
large observational datasets. One question we hope to explore in future work is the extent to which
interactions between confounders are themselves confounded, as per Figure 3. One limitation of
the present study is that is was cross-sectional in nature, so granularity may be lost in exchange for
simplicity. We aim to address this and other limitations with longitudinal patient-level analysis.

6 Conclusion

We have demonstrated that the feasability of estimating parameters from cross-sectional observa-
tional clinical data using a minimal set of confounders and have improved upon previous results
in EHR-based PV. We suspect that our method could be useful for any field where observational
clinical data is admissible and there exists a structured repository of causal knowledge.
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