
EasyChair Preprint
№ 5136

Fast Jump Point Search Based Path Planning for
Mobile Robots

Yucong Tong, Huaiyu Wu, Xiujuan Zheng, Zhihuan Chen and
Yang Chen

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 12, 2021

1

Fast Jump Point Search Based Path Planning

for Mobile Robots

1st Yucong Tong

Institute of Robotics and Intelligent Systems, Wuhan

University of Science and Technology

e-mail:573817112@qq.com

2nd Huaiyu Wu

Institute of Robotics and Intelligent Systems, Wuhan

University of Science and Technology

Engineering Research Center for Metallurgical

Automation and Measurement Technology of Ministry

of Education

e-mail: wuhy@wust.edu.cn

3rd Xiujuan Zheng

Institute of Robotics and Intelligent Systems, Wuhan

University of Science and Technology

Engineering Research Center for Metallurgical

Automation and Measurement Technology of Ministry

of Education

e-mail: zxj@wust.edu.cn

4th Zhihuan Chen

Institute of Robotics and Intelligent Systems, Wuhan

University of Science and Technology

Engineering Research Center for Metallurgical

Automation and Measurement Technology of Ministry

of Education

e-mail: czh@wust.edu.cn

5th Yang Chen

Institute of Robotics and Intelligent Systems, Wuhan

University of Science and Technology

Engineering Research Center for Metallurgical

Automation and Measurement Technology of Ministry

of Education

e-mail: chenyag@wust.edu.cn

Abstract: We propose a method to improve the

performance of JPS for path planning on static grid

map, including a fast neighbor pruning method and a

symmetry-breaking heuristic function. First, we adopt

a new and effective method to identify jump points

quickly through bit operations at a single time. Second,

we adopt a symmetry-breaking heuristic function to

pruning redundant jump points by adding angle

information and node sequence number in order to

further speed up path planning search. We conducted

simulation experiments on grid maps of different

specifications and obstacle ratios to verify the

effectiveness and feasibility of the proposed algorithm,

comparing with JPS. The experimental results show

that our improvement has more advantages on grid

maps of different specifications and obstacle ratios,

both in terms of search time and number of jump

points.

Keywords—path planning, prune rules, jump

point search, heuristic function, grid map

I. INTRODUCTION

With the rise of artificial intelligence, path
planning algorithms are widely used in fields as
robotics, video games, autonomous driving, and
map navigation. The purpose of path planning is to
specify a collision-free and safe path from the start
point to the target point for the moving object. The
difficulty of path planning is how to efficiently
realize the optimal path in a specific environment.
The Dijkstra algorithm and A* algorithm [1] based
on grid search are classic methods to solve the
static path planning of mobile robots. However,

these algorithms are difficult to perform well when
processing large amount of data. Therefore, search
speed and memory overhead already become the
bottleneck of this type of algorithm. In 2011,
Harabor D D [2] proposed JPS(Jump Point Search)
which was considered to be the fastest static grid
search algorithm at the time. JPS selectively
expands nodes through a set of simple rules, while
ensuring the optimal path, greatly reduce the
amount of calculation for searching nodes.

Although many achievements have been made
in the research of JPS algorithm and its variants,
there are still many challenges in terms of path
optimization, time cost and memory consumption.
Xiaolu Ma [3] applied the bidirectional search to
JPS to improve the overall search efficiency and
solve the problem of insufficient real-time
performance in mobile robot navigation; Anti Li
[4] used JPS as the global path planning in UAV
navigation, it guided the subsequent obstacle
avoidance process and shorten the task time.
Kaijun Zhou [5] modified JPS framework as a
local obstacle avoidance module for unmanned
driving, and verified the feasibility of JPS in local
path planning. Traish J [6] proposed Boundary
Lookup JPS used preprocessing technology to
mark the map boundaries in the grid, reduce the
overall number of natural neighbors. Hu Y [7]
continued their previous work by pre-storing jump
points to speed up the jump point search process
and improved the path search efficiency. Algfoor
Z A [8] improved the evaluation function of JPS

This work is supported by National Natural Science Fou

ndation of China under Grant No.61573263.

2

and proposed three heuristic functions with
weighting factors to optimize the search space and
memory consumption. These above methods have
improved JPS from natural neighbors, jump points
and heuristic functions, but how to further trim the
symmetry nodes in the grid, reduce the number of
jump points, and improve the efficiency of the
algorithm still a problem worthy of research.

It is found that the key to improve JPS lies in
the identification of jump points and the
acceleration of the iterative process. We improved
the neighbor pruning rules and heuristic functions,
and proposed a Fast Jump Point Search (Fast JPS)
algorithm. We adopted a fast prune rule by
analyzing the characteristics of the grid and
introducing bit operations, the search for the
current node is converted into a batch search for
obstacles, and natural neighbors and forced
neighbors are directly extracted based on the
obstacle location information. At the same time,
combined with the heuristic function that destroys
symmetry, the symmetry nodes in the grid are
selected to trim redundant nodes and speeding up
the search for jump points. The simulation results
show that our improved algorithm have a better
path planning performance than JPS on grid maps
of different specifications and obstacle ratios.

II. JPS ALGORITHM IS USED FOR PATH

PLANNING

A. Overview of the principle of JPS algorithm

The main idea of JPS is to skip a large number
of symmetrical path nodes in the search process,
and only look for the jump points as the nodes to
be expanded. So as to quickly search out the path
connecting the start point and the target point. In
essence, JPS is an optimization algorithm of A*.
In each node search, JPS starts to move along the
straight or diagonal direction of the current node,
and prunes the symmetric nodes with long paths in
the neighbors according to certain rules. Only
search for nodes with the shortest path among
neighbors, call them natural neighbors or forced
neighbors, and then further figure out nodes with
expansion value, call them jump points, and add
them to the to complete the heuristic
search recursively Process [9]. The core of JPS can
be summarized into two rules: neighbor pruning
rules and jump point screening rules.

B. Pruning rules of neighbor

The neighbor pruning rule only trims the eight
neighbor nodes of the current node each time, and
distinguishes the trimmed neighbors from the
preserved natural neighbors based on the path
length. According to the moving direction and
obstacles, there are four situations, as shown in
Figure 1.

p y

x

n ́

n ́

n

p

5

n

xp x

y

n p x

2 n

 a) b) c) d)

Fig. 1. When the move from p to x is straight (as in a)) only
one natural neighbor remains. When the move from p to x is

diagonal (as in b)), three natural neighbors remain. When

obstacles are adjacent to x some neighbors become forced; we
illustrate this in for straight moves (as in b)) and for diagonal

moves (as in d)).

In Figure 1, x is the current node, p is the parent
node, n is the target node, = nxpx ,, represents

the path from p to n through, as shown by the solid

line, = nyp ,, represents any path from p to

n without x passing through, as shown by the

dashed line,)(len represents the path length.

1) There are no obstacles
As shown in Figure 1a) straight movement, the

length of the path is shorter than the length of

 the path, indicating that the neighbor n is the

shortest path node in the current neighbor, the
white node is the natural neighbor, and the gray
nodes that are symmetrical on both sides of the
straight line will be trimmed. The pruning rules of
natural neighbors are expressed as:

),,(),,(nyplennxplen (1)

In Figure 1b) diagonal movement, there is a

path with the same length as the path . At this

time, in addition to neighbors n, neighbors n are

also natural neighbors. The pruning rules of
natural neighbors becomes:

),,(),,(nyplennxplen (2)

2) There are obstacles
 As shown in Figure 1c) and Figure 1d), the

path to the neighbor n changes due to the presence

of obstacles. Obviously, the path is the shortest

path node at this time. Therefore, in addition to the
natural neighbor in the absence of obstacles, an
additional natural neighbor needs to be added,
which is called a forced neighbor. The forced
neighbor pruning condition is:

),,(),,(nyplennxplen (3)

C. Pruning rules of jump point

The neighbor pruning rule preserves the
shortest path node in the neighbors. However, not
all natural neighbors are the final path nodes. For
the target path, only nodes that change the
direction of the path have the value of expansion.
The purpose of trimming jump points is to replace
the middle jump points with no expansion value

3

by the remote jump points. The pruning rules of
jump point as follows:

1) When the natural neighbor is the start

point or the target point, it must be a jump point;

2) The natural neighbor has at least one

forced neighbor. At this time, the natural

neighbor and the forced neighbor are jump points

for each other;

3) When searching in the diagonal direction,

if there is a jump point in the horizontal or vertical

direction of the natural neighbor, the natural

neighbor on the diagonal is also a jump point.

D. Description of JPS path planning problem

In the robot path planning problem, the
implementation framework of JPS and A* are
similar. In order to apply JPS to actual robots, the
actual map should be converted into a binary grid
map, including the feasible area and the obstacle
area. Irregular obstacles are filled according to
their grid coordinates, and the robot can be
regarded as a mass point. The JPS path planning
process is shown in Figure 2.

S G

Fig. 2. JPS path palnning process

As shown in Figure 2. At the start point, JPS
moves along the straight and diagonal directions,
searching for only one node at a time. According
to pruning rules of neighbor and jump point, the
neighbors of the current node are divided into
natural neighbors and forced neighbors. White
nodes are pruned neighbors and gray nodes are
jump point. Each time the search stops at the point
where the jump point is trimmed or the boundary
is reached, the jump point returned will be add to

; then, select the optimal jump point from
the heuristic function, and delete the jump point
from openlist and add to closelist ; Repeat the

above process until the target point is found. The
final path consists of the parent nodes backtracked
in , as shown by the solid red line. From
the above process, it can be seen that JPS has two
shortcomings in path planning:

1) Each pruning is only for the neighbors of

the current node, and the efficiency of searching

paths in large scenes needs to be improved;

2) When facing a symmetrical obstacle as

shown in Figure 2, JPS will search for all the

symmetry jump points on the red and yellow paths.

And the heuristic function estimates of the points

are the same, which causes the calculation

amount to increase exponentially.

III. FAST JPS ALGORITHM

In response to the above problems, we propose
a Fast JPS algorithm to improve the efficiency of
node pruning and reduce the search for symmetry
paths. The algorithm consists of two parts:
accelerating the pruning of nodes and the
identification of jump points with bit operations;
and using symmetry-breaking heuristic function
replace the conventional heuristic function to
reduce the number of jump points.

A. fast pruning rules

JPS only trims the neighbors of the current
node, and selects jump points one by one; Hu Y [7]
use bit operations to implement prune of neighbors
and jump points; we improved bit operations
according to the location of obstacles. The
information is directly extracted to force neighbors,
and the functions of quickly pruning nodes and
screening jump points are realized to improve the
overall performance of the algorithm. We take
Figure 3 as an example to illustrate the whole
process

p1

1 2 3 4 5

2

3

x

B

Bx

B

Fig. 3. Schematic of fast pruning rules

In Figure 3 moving along the diagonal form
to . According to JPS flow, the first step is to
move horizontally to the right in a straight line at

 2,2 . Pruning identify jump point 2,3 and

forced neighbor 1,4 and stop before 2,5 .

As mentioned in c) of pruning rules of jump point,
x is also a jump point and there are no return in

vertical direction. So far, the pruning of 2,2

ends. The above jump points will be arranged by
the heuristic function, and the optimal value will
be used as the current node for the next expansion.
If x is not a jump point, move one step diagonally

to 3,3 and repeat the above process.

Hu Y [7] uses bit operations to implement batch
pruning of nodes. The implementation process is
as follows: first, detect the dead end of the current
node's moving direction; second, detect the forced
neighbors of adjacent rows of the current node;
finally, use logic “or” operation to detect jump
points.

We propose a new pruning rules based on bit
operation method that can speed up the

4

identification of jump points without violating
pruning rules of neighbor and pruning rules of
jump point. It can be seen from Figure 1 that
forced neighbors only exist near obstacles. At the
same time, only natural neighbors that force
neighbors are jump points. In other words, we only
need to find the node near the obstacle and judge
whether it is a jump point.

As shown in blue, red and yellow boxes in

Figure 3, the current row of x is xB , and the up

row of x is

B , and the down row of x is

B . The

three-row grid box can be expressed as:

=

=

=

]0010[

]1000[

]0000[

，，，

，，，

，，，

B

B

B

x (4)

Equation (4), 0 means free and 1 means
obstacle. Perform a series of operations as follow:

1) Detect forced neighbor: if there is a

potential forced neighbor among the neighbors of

, it means:

]0,1[)1:(|)1:(=++

iiBiiB (5)

2) Detect jump point: if the nodes are free on

the moving direction of , is a jump point . It

means:

]0,0[)1:(=+iiBx (6)

3) Detect stop: if (6) is not established, it

means that there is a dead end and stop; if (6) is

established and (5) is unestablished, it means that

there is no jump point, 1i .

It can be judged that == 2,3)2(iBx is a

jump point based on the above conditions. The
result is consistent with JPS. But the fast pruning
rules based on bit operation can complete the
pruning of nodes and the identification of jump
points at one time.

B. Heuristic functions that break symmetry

Qiu L [1] combined JPS with A* to figure out
path planning, and used Euclidean distance to
calculate heuristic function. On a grid map that
allows straight and diagonal movement, the
Euclidean distance is usually shorter than the
actual path distance, causes the path length to be
sub-optimal. In order to improve the accuracy of

path estimation, we choose Octile distance

allowed to move diagonally as the heuristic
function. The calculation method of is:

),min(*)22(dydxdydxOctile −++= (7)

Equation (7), dx and dy represents the distance

that the current node is projected from the target
point on the coordinate system. At the same time,
in order to make the moving direction close to the
target point to accelerate the path convergence, we
add the angle information to the heuristic function:

 cos)(+=nh (8)

Equation (8) is the angle made up of the line

from the start point to the target point and the line

from the current node to the target point. can be

calculated by the rotation angle formula. Some

nodes can be trimmed by (8).

But when the obstacle is symmetrical as shown

in Figure 4, JPS cannot distinguish the symmetry

nodes resulting in repeated searches.

S

A ́

A

B ́

B

C ́

C

G

π ́

π

Fig. 4. Symmetry search

In Figure 4, because of the symmetrical nodes

AA , BB , CC , there are two similar paths:

= CBA ,, and = CBA ,, . In order to

break the balance of the symmetrical nodes and
reduce invalid searches and nodes, we adopt the
heuristic function as follow:

)cos(*)1()(++= pnh (9)

The function of (9) is to distinguish the nodes
with the same value of the heuristic function. The
form of p is the key to the heuristic function. It can

be designed as:

 =

=
N

i
il

lindex
p

0

*

 (10)

Index indicate the node serial number, l
indicate the minimum distance of unit grid and

 =

N

i
il

0
indicate the longest path distance in the

current grid map.

IV. SIMULATION EXPERIMENT AND RESULT

ANALYSIS

In order to verify the feasibility and
effectiveness of the Fast JPS we proposed, we
implement JPS and Fast JPS under the grid map of
different scenes. The main performance indicators
of the test include: number of jump points, path
length, search time. The computer configuration is

5

Intel Corei5 4G, win10 system, and the simulation
environment is MATLAB2015a. The simulation
includes three scenarios. In the grid map, the black
grid represents the obstacle area, the gray grid
represents the start point S or the target point G,
the white gird represents the feasible area, and the
red solid line is the result of path planning. We
stipulate that the path can move along straight or
diagonal, and cannot touch obstacles. The blue
point indicates that the grid is a jump point. The
result of path planning as follow:

Scene 1 in Figure 5 is a typical symmetry
structure, which is used to verify the screening
effect of the symmetry-breaking heuristic function
we designed;

 a) JPS b) Fast JPS

Fig. 5. Test results of the two algorithms in scene 1

Scene 2 in Figure 6 contain two paths with the
same length and the same number of jump point,

which is mainly used to verify the pruning rules
we have improved;

 a) JPS b) Fast JPS

Fig. 6. Test results of the two algorithms in scene 2

Scene 3 in Figure 7 is a large-scale grid with
many invalid nodes, which is used to verify the
grid preprocessing technology.

 a) JPS b) Fast JPS

Fig. 7. Test results of the two algorithms in scene 3

We conduct further analysis on the statistics of
the data results of the three scenes in Table 1.

TABLE I. PERFORMANCE TEST RESULTS OF JPS ALGORITHM AND FAST JPS ALGORITHM IN THREE SCENARIOS

 Performance JPS Fast JPS Improve

Scene 1

Number of jump point 10 7 30%

Search time 9.22ms 8.31ms 9.9%

Path length 15.07 15.07 -

Scene 2

Number of jump point 75 62 17.3%

Search time 29.21ms 25.95ms 11.1%

Path length 49.36 49.36 -

Scene 3

Number of jump point 89 63 29.2%

Search time 105.14ms 64.80ms 38.3%

Path length 103.67 103.67 -

The results of the test in the above scene as
show in the Table 1. It can be seen that our method
is better than JPS in terms of overall performance.
In three different scenarios, our method has a
certain improvement in reducing the number of
jump points and searching time. Even in the
symmetrical gird map and large-scale gird map,
our method is still much better.

To verify the effectiveness of Fast JPS in
irregular grid maps. We conducted experiments on

100100 grid maps. Obstacles on each map are
randomly generated, and their ratio is 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7. 100 iterations for each map. We
separately counted the search time and the number
of jump points for valid paths, and eliminated the
data that could not generate paths. We show the
results of the experiment in box plot in Figure 8.

6

a）Comparison of search time b）Comparison of number of nodes

Fig. 8. Box plot of two algorithms on 100 × 100 random grid

As shown in Figure 8, we have summarized the mean and variance of the time and jump points of the two
algorithms under a 100×100 grid. As the proportion of obstacles increases, the number of jump points and
search time trends extended by the two algorithms are consistent. When the obstacle ratio is 0.1, JPS has a
larger outlier, and our method is relatively stable. Table 2 shows the statistical results of a 100×100 random
grid, including the minimum Min, 25% quartile Q1, median Mid, 75% quartile Q3, and maximum Max. It can
be seen from the table that our method has a certain improvement in the total number of jump points and search
time in the entire data segment. At the same time, the outliers have been reduced. The results prove that our
proposed method has good stability and feasibility.

TABLE II. STATISTICS RESULTS OF 100×100 RANDOM GRID

Percentage of obstacle 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Number of nodes

Min
JPS 3.7 5.4 4.4 3.5 2.3 1.9 1.2

Fast JPS 3.7 5.1 4.1 3.6 2.2 1.9 1.2

Q1
JPS 6.8 9.1 44.5 10.4 16.1 7.8 0.3

Fast JPS 6.6 8.8 41.7 8.8 17.9 7.7 0.3

Mid
JPS 9.5 18.2 40.8 46.8 37.6 10.1 1.5

Fast JPS 7.4 11.1 20.1 35.6 23.6 10 1.5

Q3
JPS 10.6 31.7 45.2 74.2 63.6 2.9 1

Fast JPS 12.7 23.7 24.1 44.4 40.2 2.9 1

Max
JPS 66.3 36.7 35 68.6 132.3 8 2.1

Fast JPS 22.9 32.2 16.5 61.8 107 8 2.1

Search time(ms)

Mid
JPS 35.2 22.6 19.3 19.7 17.7 17.1 15.7

Fast JPS 35.4 21.5 19.2 20.0 16.7 16.8 15.2

Q1
JPS 30.6 26.9 87.3 28.6 36.9 30.5 15.8

Fast JPS 23.4 24.9 85.2 25.1 39.0 28.6 15.7

Mid
JPS 34.9 36.1 68.3 86.7 76.1 31.5 17.9

Fast JPS 26.9 27.8 37.0 66.9 51.5 31.2 18.0

Q3
JPS 38.6 54.9 74.2 117.8 110.4 22.0 19.3

Fast JPS 36.6 43.7 43.9 72.4 76.9 21.9 19.4

Max
JPS 138.1 63.4 62.0 113.3 247.4 33.1 23.9

Fast JPS 51.5 55.9 36.9 101.8 199.7 33.0 23.7

V. SUMMARY

Aiming at the pruning rules and symmetry
jump points in JPS, we propose improvements
from two aspects. First, on the basis of analyzing

the pruning rules and jumping point rules, we use
bit operation and obstacle information to extract
the jumping points. This method can effectively
simplify the intermediate process. Second, for the
excessive calculation caused by the symmetrical

7

jump points. We propose a heuristic function for
symmetry destruction. We add a controllable
amount to the result of the heuristic function to
reduce the generation of symmetry jump points.
The simulation results show that our method
generates fewer jump points and less search time.

REFERENCES

[1] Qiu L. “Speed-up of A* pathfinding with jump point
search algorithm,” J. Journal of Lanzhou University of
Technology, 2015,41(3):102-107.

[2] Harabor D D, Grastien A. “Online Graph Pruning for
Pathfinding on Grid Maps,”C. Aaai Conference on
Artificial Intelligence. DBLP, 2011:1114–1119.

[3] Xiaolu Ma, Hong Mei. “Research on global path
planning of mobile robot based on bidirectional hop
search algorithm,” J. Mechanical science and technology,
2020, 39 (10): 1624-1631. 马小陆，梅宏。双向跳点
搜索算法的移动机器人全局路径规划研究［J］。机
械科学与技术，2020，39（10）：1624－1631。

[4] Anti Li, Chenglong Li, Dingjie Wu, Peng Wei.
“Collision avoidance decision method of UAV random
search combined with jump point guidance.” Acta
Aeronautica Sinica, 2020, 41 (08): 325-337. 李安醍，
李诚龙，武丁杰，卫鹏。结合跳点引导的无人机随
机搜索避撞决策方法［J］。航空学报，2020，
41(08)：325-337。

[5] Kaijun Zhou, Lingli Yu, Ziwei Long, Siyao Mo. “Local
Planning of Driverless Car Navigation Based on Jump
Point Search Method Under Urban Environment,”
Future Internet, 2017, 9(3):459-468.

[6] Traish J, Tulip J, Moore W. “Optimization using
boundary lookup jump point search,” J. IEEE
Transactions on Computational Intelligence & Ai in
Games, 2017, 8(3):268-277.

[7] Hu Y, Harabor D, Qin L, et al. “Regarding Goal
Bounding and Jump Point Search,” J. Journal of
Artificial Intelligence Research, 2021, 70:631-681.

[8] Algfoor Z A, Sunar M S, Abdullah A. “A new weighted
pathfinding algorithms to reduce the search time on grid
maps,” J. Expert Systems with Applications, 2017,
71(APR.):319-331.

[9] Min J G, Ruy W S, Park C S. “Faster pipe auto-routing
using improved jump point search.” International
Journal of Naval Architecture and Ocean Engineering,
2020, 12:596-604.

[10] Ma L, Gao X, Fu Y, et al. “An Improved Jump Point
Search Algorithm for Home Service Robot Path
Planning,” 2019 Chinese Control And Decision
Conference (CCDC). IEEE, 2019(2):1162-1167.

[11] V V Maneev, M V Syryamkin. “Optimizing the A*
search algorithm for mobile robotic devices,” J. IOP
Conference Series: Materials Science and Engineering,
2019, 516(1):012054.

[12] Harri A. “Using the Hierarchical Pathfinding A*
Algorithm in GIS to Find Paths through Rasters with
Nonuniform Traversal Cost,” J. International Journal of
Geo-Information, 2013, 2(4):996-1014.

[13] Bagli S, Geneletti D, Orsi F. “Routeing of power lines
through least-cost path analysis and multicriteria
evaluation to minimise environmental impacts.”
Environmental Impact Assessment Review, 2011,
31(3):234-239.

[14] Daniel Harabor,Alban Grastien. “Improving Jump Point
Search,”[C]// Proceedings of the twenty-fourth
international conference on automated planning and

scheduling: ICAPS 2014, Portsmouth, United Kingdom,
21-26 June 2014.2014:128-135.

