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ABSTRACT: 

Background subtraction for foreground detection has been commonly applied for varying usages 

to identify objects in motion within a scene, such as that in video surveillance. In fact, significant 

publications were noted in the last decade within this area of background modelling. Despite the 

several surveys noted in the literature, none has offered a comprehensive review in this field. 

Therefore, this paper elaborates both conventional and recent approaches in light of background 

modelling. Initially, the approaches listed in the literature were classified in terms of mathematical 

models. Next, these models were analyzed based on challenging scenarios that they managed, the 

challenges and issues are then summarized. After that, an enhanced method is proposed, resulting 

from hybridizing the weight optimizations from CNN with a set of customized features derived by 

the Viola‐ Jones detector to enhance the overall network's performance. The initial findings show 

that the proposed method superior the state-of-the-art models in terms of accuracy, recall, 

precision, and F-measure. 
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1. INTRODUCTION:  

Analyzing and comprehending video sequences has gained much popularity amongst researchers. 

Multiple applications within this research domain (i.e., video surveillance [1–3], optical motion 

capture [4], & multimedia usage [5]) require detection of moving objects in the scene as the initial 

step. The fundamental operation sought refers to segregation of moving objects called ‘foreground’ 

from static information known as ‘background’. The typical process applied here refers to 

background subtraction elaborately detailed in [6–8]. One easy technique for modelling the 

background is acquiring a background image that excludes object in motion. The background in 

certain settings is to no avail and can be altered if critical condition emerges, e.g., object removal 

or introduction and changes in illumination in the scene. Therefore, a more adaptive and robust 

background representation model is needed. The two issues linked with background subtraction 

are salient motion detection [10] and change detection [9]. Changes are detected between two 

images. Hence, background subtraction occurs when (1) changes stem from objects in motion and 

(2) two images are present: background and current. Meanwhile, salient motion detection seeks 

semantic regions and filters out insignificant regions. The very concept of saliency detection stems 

from human visual system - a simple, pre-attentive, and easy process. Hence, detection of salient 

motion reflects a scenario of background subtraction. 
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Background subtraction has earned popularity due to its capability to detect foreground from video 

streams, i.e., automated video surveillance and Human-Machine Interaction (HMI) [11-12], 

content-based video coding [13], anomaly detection [14], people counting [15], background 

substitution [16], visual analysis of human activities [17-18], visual observation of animals [19-

20], and target tracking [21-22]. Background subtraction adheres to the similar scheme for 

detecting an object in motion [23]: background initialization, background maintenance, and 

foreground detection. Several settings, including uncluttered scene, static camera, static 

background, and constant illumination, appear crucial to successfully execute background 

subtraction. Nonetheless, actual settings pose challenging scenarios that interrupt foreground 

detection in videos. Background subtraction robustness is influenced by multiple aspects, 

including bootstrapping, difference in illumination, low frame rate, shadows, night videos, 

dynamic background, intermittent object motion, camouflage, and cameras in motion (hand-held 

cameras/aerial vehicles/pan-tilt-zoom cameras/mobile devices), elaborated in detail in [24-25]. 

The reminders of this article are as follows: Section 2 analyzes the existing literature. Section 3 

summarizes the challenges and issues, then Section 4 illustrated the proposed model with initial 

results. Finally, the article is concluded in Section 5. 

2. RELATED WORKS 

2.1 Video surveillance 

Increased installation of CCTV and advanced camera infrastructures has led to the emergence of 

intelligent video surveillance systems for automatic specific monitoring. The main goal for 

installing the video surveillance system is to automatically interpret a scene after analyzing 

interactions and motions of objects to hinder unpleasant incidences. Essentially, video surveillance 

systems ascertain safety and security aspects. In particular, abnormal behavior detection has gained 

popularity in this research domain [26]. 

 For instance, a monitoring system was developed to detect fall among elderly within the setting 

of a home [27]. The ellipse-shape system is tailored to fit the body of the subject, while tracking 

of the head position identified change in the posture of the subject. Another automated surveillance 

system was devised to detect burglary via motion and posture analyses with low-cost hardware 

(e.g., consumer’s camera) [28]. In a system that converts results in 2D to 3D space; abnormal 

crowd motion detection technique was deployed for uncontrolled outdoor setting [29]. Notably, 

the cluster size, orientation, and location generated by crowd had been applied to estimate crowd 

behaviour. Mismatch between cluster motion and prediction reflects higher chances of abnormal 

events. Recently, a system was initiated to identify real-time suspicious behaviour installed at 

shopping malls [30]. The system detects suspicious motion, including loitering activities and 

unattended cash register. Another smart surveillance system was introduced to detect interpersonal 

crime (e.g., harassment, trespass, & violence) in public transport and places by identifying 

positional change speed of the human subject [31]. 

The video surveillance system is comprised of object detection, tracking, and recognition, as well 

as behavioral analysis [32]. In object detection, the region of interest (ROI) is determined (e.g., 



vehicles/human in motion). The detected objects are grouped into predefined categories during 

object recognition step. Moving objects are identified and categorized into ‘car’ or ‘human’ in 

accordance to their features; i.e., color, shape, and pattern. Next, tracking of objects and analysis 

of behaviour are executed to detect suspicious events. Detection and recognition of object are 

crucial in determining the overall surveillance system performance, mainly because the following 

steps are highly reliant on the outcomes of these initial steps. 

Nevertheless, several shortcomings have been linked with video surveillance system, such as 

occluded objects in video and disruptive noise due to change in illumination. One should note that 

such setbacks are higher in outdoor setting [33] due to poor quality of videos as a result of 

illumination changes and objects frequently identified far from camera. On top of that, various 

algorithms formulated in controlled setting exert poor performance in actual condition [34]. Most 

techniques are suitable for day-time surveillance due to heavy reliance on lighting [35], while 

abnormal incidences, i.e., crime, commonly happen at night. Thus, it is crucial to overcome the 

stated drawbacks by developing suitable video surveillance systems meant for outdoor setting. 

2.2 Background subtraction 

One viable method deployed in computer vision systems refers to background subtraction, which 

was initially applied for detecting objects in motion across video streams. Algorithms of 

background subtraction differentiates moving objects or better known as ‘foreground’ from the 

sequence background in the video stream without object details [36]. The vastly explored 

background subtraction method for video surveillance analysis since the 1990s is meant to identify 

moving objects from background prior to other intricate detection processes, i.e., people counting, 

invasion, and tracing [37]. 

The three stages in background subtraction algorithms are [38]: (1) Background initialization: 

development of a background model with certain number of frames and designed in multiple ways, 

i.e., neural network, statistical, and fuzzy. (2) Foreground detection: background model and 

present frame are compared. Connection is made to determine scene foreground via subtraction. 

(3) Background maintenance: images trained during the initialization step meant to update the 

background model are analyzed during the process of detection. 

An object in motion for an extended time should be amalgamated into the background. Algorithms 

for background subtraction are grouped based on the technique of background model development, 

such as basic, cluster, statistical, fuzzy, and neuro-fuzzy modelling types. Upon computing the 

model in basic modelling, the variance between background image and present frame is modified 

in accordance with threshold. If the computed outcome exceeds that of threshold, the present frame 

pixels are segmented into foreground. Prior frame or static image functions as background in basic 

modelling. In fact, a background model can be structured using arithmetic mean of continuous 

images [39], median [40], or even by referring to histogram analysis result after a certain duration 

[41]. Simply put, basic modelling is easy to implement and is applicable to generate background 

models despite its shortcoming of failing to separate foreground by removing or introducing 

objects or when an object comes to a halt. Meanwhile, each pixel color distribution in statistical 

modelling turns into Gaussian distribution sum defined in the attributed color spaces. The widely 



applied background subtraction algorithm refers to the parametric stochastic background model 

initiated by [42] and improved by [43]. Besides, single Gaussian, a combination of Gaussian, and 

Kernel Density Estimation [44] have been used in background modelling to distribute pixel color. 

Exceptional performance was displayed by Gaussian Mixture Models (GMMs) for outdoor scene 

analysis; thus, vastly applied with backgrounds in motion. The model also exhibits the capability 

to process changes despite poor lighting.  

Unfortunately, the algorithm fails to give desired outcomes for radical changes as a consequence 

of motion in background, jittery camera, shadows, and changes in lighting. Besides, a background 

model becomes inefficient when established by noise-filled video frame at the learning phase. 

Many studies have attempted using GMMs to enhance background subtraction. To enhance system 

adaptability to changes of illumination [45], update modified equation [46], and investigate 

distribution of 3D multi-variable Gaussian, a technique was prescribed to calculate the number of 

ideal Gaussian distributions of every pixel automatically rather than fixing a constant [47]. 

Recently, a new framework was proposed by incorporating motion compensation and hysteresis 

thresholding [48]. Two background modelling; texture modelling and GMM, had successfully 

lowered cases of false positive. As for cluster background modelling, each frame pixel is presented 

based on time via clustering. The pixels are categorized based on if congruous cluster is a fraction 

of background, in comparison to relevant cluster group. In the clustering method, Codebook or K-

mean algorithm is deployed. As for the fuzzy approach, the boundary of application varies 

substantially based on setting. Background subtraction was performed in a study based on 

similarity criterion with image and color of the input image [49]. Satisfactory outcomes obtained 

from Choquet Integral had several features: texture, color, and edge [50]. 

Meanwhile, background modelling based on neural network denotes the average of weights 

adequately trained neural networks for N number of clean frames. Training of the networks 

classifies every pixel into foreground or background [51, 52]. Culibrk et al., prescribed an 

approach of segmentation using the adaptive form of Probabilistic Neural Networks (PNNs) [53], 

while Maddalena and Petrosino deployed the Self-Organising Map (SOM) network in order to 

execute background subtraction [54]. The latter further enhanced their past study by incorporating 

the fuzzy function at the learning phase [55]. 

2.3 Object detection 

The field of object detection has displayed substantial progress using deep learning in its 

applications. It differs from object recognition because the latter classifies every image into a pre-

defined class and the former detects in every image via localization. Many object detection 

approaches using deep learning deployed CNNs [56–57]. From the (Regions with CNN) R-CNN 

advent [58], the combination of CNN classification and region proposal emerged as the preferred 

object detection framework. Rather than applying hand-crafted features (e.g., histograms of 

oriented gradients (HoG)) [59], CNN features are employed in R-CNN to offer better 

representation. As for R-CNN, thousands of bounding boxes or known as ‘region proposals’ have 

been generated using selective search, whereby the proposals turned into CNN classification 

inputs. Rapid R-CNN [60] is complemented by R-CNN for accuracy and efficiency. Initially, the 



proposals share weights of forward pass in CNN via ROI pooling approach to minimize 

computation. Besides, bounding box regressor, features of convolutional, and classifier are linked 

in a network for a speedy system. Nonetheless, the selective search for region proposals is not 

efficient still.  

Rapid R-CNN [61] was enhanced with the integration of region proposal process via detection 

networks. Region proposal network and convolutional layers are applied for proposals creation. 

Although the process of detection turns more rapid than Fast R-CNN, its speed lags from real-time 

(5 fps on GPU). The YOLO [62] – a cutting-edge detection technique – has surpassed the above 

techniques. Based on CNN, YOLO applies different framework. This new method divides an 

image into grid cells and estimates both each cell probabilities and bounding boxes coordinates. 

Probabilities are aggregated by calculating individual box confidence. The processing time can be 

increased substantially by this framework; images are processed at 40-90 fps on GPU and a tiny 

version exceeds 200 fps. 

2.4 Pedestrian detection 

One crucial task of video surveillance is pedestrian detection, which has two groups: learning-

based and hand-crafted feature-based techniques. The latter category method of HoG detects 

images using shapes and local object appearance [63]. To date, HoG is the baseline used to extend 

algorithms. For instance, [64] combined HoG and LBP to address occlusion issue in pedestrian 

detection and reached 91.3% rate of detection using INRIA dataset [65]. Besides, a model based 

on part was deployed to enhance algorithms accuracy and detection efficiency [66]. Meanwhile, 

(HoG + LUV) color channels have been applied vastly [67-68]. Pedestrian detection also applies 

Haar-like characteristics. An efficient and simple informed-Haar detector was initiated by [69] for 

persons standing upright. Outcomes retrieved from Caltech and INRIA datasets [70] revealed 

34.6% and 14.43% miss rates, respectively. Subjects in INRIA stood upright with high quality, 

whereas Caltech is a benchmark with challenging images [71]. Some techniques involved were 

Support Vector Machine (SVM) [72] and boosted classifiers [73]. Other frameworks applied hand-

crafted features, e.g., HSG-HIK [74]. Recently, learning-based techniques have garnered much 

attention from the academic. In these approaches, image pixels are learnt, and the cutting-edge 

detection approaches rely on deep CNNs [75]. Another study used unsupervised convolutional 

sparse auto-encoders to train features, while classification deployed end-to-end supervised training 

[76]. The use of ConvNet with multi-stage features and INRIA dataset led to 10.55% average error 

rate. Meanwhile, unified CNN-based deep model was introduced using learning process to allow 

interactions among classification elements, feature extraction, occlusion, and part deformation 

[77]. 

In coping with intricate variations in pedestrian appearance, TA-CNN initiated by [78] optimized 

pedestrian classification using auxiliary semantic tasks (scene & pedestrian features), besides 

reducing miss rates in ETH and Caltech datasets [63]. Next, the approach of DeepParts [79] uses 

part detectors to solve occlusion issue, thus minimizing miss rate to 11.89% in Caltech dataset. 

Person detection also employed R-CNN, which can offer 53.9% human classification accuracy in 

VOC2011 dataset [80], whereas methods of other region (e.g., Regions and Parts) offer lower 



accuracy. The MixedPeds algorithm [80] generates mixed reality dataset that amalgamates 

synthetic human agents and actual background. Although Faster R-CNN enhances the precision 

of detection, it demands substantial time and memory – minimizing the speed of detection. 
 

3. CHALLENGES AND ISSUES: 

The three conditions that ascertain excellent function of background subtraction are: fixed camera, 

constant illumination, and static background (pixels with unimodal distribution and no background 

object inserted or moved). Such optimum setting promotes background subtraction to offer 

excellent outcomes. In actual reality, some elements may disrupt the process. In 1999, Toyama et 

al. [81] outlined 10 challenging conditions for video surveillance. The list is extended to 13 in this 

paper: 

 Noisy image: Images with poor quality, e.g., images from web cam or post-compression.  

 Camera jitter: Swaying camera, thus leading to nominal motion in sequence. Foreground 

mask gives false detection as a result of motion with no proper maintenance mechanism.  

 Camera automatic adjustments: Modern cameras have brightness and gain control, focus, 

and white balance that are automatic. Such adjustments alter the dynamic of color levels 

between frames in sequence.  

 Illumination changes: Gradual (outdoor scene) or sudden (indoor light switch). Figure 1 

illustrates indoor setting that denotes gradual change of illumination. This leads to false 

detection in some fractions of foreground mask (see Figure 1). In some cases, sudden 

change is portrayed in illumination as a result of light being turned on and off. Since all 

pixels are impacted by those changes, numerous false detections are identified. 

 Bootstrapping: In training phase, background is unavailable for certain settings. This, it is 

not possible for computing background image representative.  

 Camouflage: Features of foreground objects pixel can be subsumed by background 

modelling. Thus, background and foreground cannot be differentiated. 

 Foreground aperture: Changes in moving object with uniform-colored regions cannot be 

detected and the whole object would not emerge as foreground. Foreground masks have 

false negative detections.  

 Moved background objects: Background objects that move are not part of the foreground. 

No robust maintenance mechanism used to detect initial and new object positions.  

 Inserted background objects: Insertion of a new background object, but not part of 

foreground. No robust maintenance mechanism used to detect the inserted background 

object.  

 Dynamic backgrounds: Backgrounds can vacillate, and this demands models that represent 

disjoint sets of pixel values. There are three dynamic backgrounds: water surface, waving 

trees, and water rippling. Huge number of false detections is noted for every case.  

 Beginning moving object: When the object moves first in the background, both it and new 

parts in the background (ghost) can be identified.  



 Sleeping foreground object: Foreground object that stops moving cannot be differentiated 

from background object and incorporated in the background. Managing this scenario is 

context reliant. At times, foreground objects that stop moving must be included, but 

otherwise in some.  

 Shadows: A foreground deriving from objects in motion or background.  

 

 
Figure 1: Challenges of moving objects detection 

 

4. PROPOSED DETECTION MODEL OF MOVING OBJECTS IN VIDEOS 

In this section, an enhanced method resulting from hybridizing the weight optimizations from 

CNN with a set of customized features derived by the Viola‐ Jones detector to enhance the overall 

network's performance, as depicted in Figure 2. In detail, the first convolutional layer of CNN is 

replaced with a function using customized filters, in order to minimize the required operations to 

calculate the layer's outputs. The replaced filters are composed of four rectangles within the filter 

space. These filters provide optimal computations of feature values than a conventional 

convolutional layer, when combined with an integral image. The initial experiments revealed that 

the customized filters of shape 5× 5 need only about 64% of the operations that a conventional 

convolutional layer requires. Empirically, these layers' real-world processing time behaves as 

theoretically computed and the optimization does not significantly reduce accuracy. 



 

Figure 2: Proposed Detection Model 

To determine the effectiveness of the proposed model, CDnet 2014 dataset is used to train and test 

the models. The initial results reveal that the proposed model outperform the state-of-the-art 

models (DMFC3D [84], Cascade [82], DeepBS [83]) in terms of accuracy, precision, recall and F-

measure, as illustrated in Figure 3.  
 

 

Figure 3: Evaluation results. 

5. CONCLUSION: 

This study has combed through recent and conventional background models applied for 

background subtraction. Two vital features were identified: (1) Background models classification 

based on mathematical tools, which is absent in the literature and (2) resources (recent & 

conventional libraries & datasets). Thus, future endeavor should look into sparse and RPCA 

models that display great potential to separate background from foreground in both actual and 
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incremental deployment. Fuzzy models too may be assessed for their potential and feature 

selection has emerged as an issue within this domain. In this article, an enhanced method is 

proposed, resulting from hybridizing the weight optimizations from CNN with a set of customized 

features derived by the Viola‐ Jones detector to enhance the overall network's performance. The 

initial findings show that the proposed method superior the state-of-the-art models. In the future, 

detailed stage of the proposed model will be further discussed in verified, and intensive 

experiments will be conducted to ensure its effectiveness and validity.  
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