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Abstract—Manufacturing companies are facing new market
demands, mostly driven by global competition and digitalization.
In this context, more efficient, flexible, adaptable and evolvable
mechatronic and manufacturing systems are required, which
enable quick adjustments to the production in order to address
(all these) market changes. However, production idle times due to
such re-configurations and adaptations might be costly. In this pa-
per, a live updates concept for Programmable Logic Controllers
(PLCs) is presented. The proposed design employs a Petri net
runtime engine, in which the executed functional program (the
Petri net model with its interpretation) is updated while running,
without system shutdown and restart being needed. To this end,
a quarantine-mode execution and monitoring approach is used
for the new PLC program functional validation. A reconfigurable
Vernadat machine case study is also presented.

Index Terms—dynamic software updates, live patching, live
updates, PLC, Cetratus, availability

I. INTRODUCTION

In the current digitalization and globalization era, higher
efficiency, flexibility and productivity is wished in order to
reduce time-to-market and production costs. Traditional sys-
tems, such as Dedicated Manufacturing Lines (DML) and
Flexible Manufacturing Systems (FMS), are able to produce
goods at high production rates, usually with some degree of
low flexibility and customization [1]. In spite of that, with the
aim of dynamically responding to market changes in a cost-
efficient manner, different strategies, methods and schemes,
denoted Reconfigurable Manufacturing Systems (RMS), have
been proposed [1], [2].

A RMS is a class of production systems which it is able
to rapidly change and evolve in order to adjust its production
functions, capabilities and capacity [3]. These manufacturing
systems may adapt its functionality to suit new products and
therefore enable the production of high variety of products.
These reconfiguration might be driven by new products to be
manufactured, changes in current products or changes to the
production rates of the products.

Nevertheless, production downtimes due to such reconfig-
urations might be costly. As stated by H. Haddou-Benderbal
et al. [4], [5], the system might go through frequent reconfig-
urations. The configuration change time, which represents the
time required to a given machine to change the configuration,
is an RMS system metric and variable, used to compute and

determine optimal system layout and production process. By
reducing such duration in all machines, the manufacturing
system responsiveness and reactivity is improved, manufactur-
ing capability increased and, therefore, overall costs reduced.
Actually, as expressed by Y. Koren [1], if those machines
have not been originally designed to provide reconfigurability
capabilities, such process will prove costly, lengthy, and thus,
impractical. One of the technology enablers for RMS is
reconfigurable software [1].

In this paper, a live updates concept for industrial Pro-
grammable Logic Controllers (PLCs) is proposed, which en-
ables zero downtime reconfiguration capabilities and therefore,
reduces the manufacturing system reconfiguration times and
costs. The presented approach is based on the Cetratus frame-
work [6], [7], originally devised for safe and secure industrial
control systems, for example railway [7] or smart energy [8]
systems. Even though the proposed framework was focused
on the incorporation of leading-edge security mechanisms,
any other types of software components could be updated. To
this end, a quarantine-mode based execution and monitoring
approach is enforced. In this work, in the context of RMSs,
the executed functional program is adapted.

This paper is organized as follows: After this introduction,
background information about Petri nets and the design of
the proposed solution is presented. Following, the live update
process used for the machine reconfiguration is described.
Afterwards, a case study, presenting an implementation of the
introduced design and method on a real PLC, is presented and
discussed. Lastly, conclusions and future lines are drawn.

II. BACKGROUND

A Petri net (PN), introduced in 1962 by Carl Adam Petri
[9], is described as N =< P, T, Pre, Post >, where P and
T are the sets of places and transitions and Pre and Post are
the |P | x |T | sized, natural valued, incidence matrices. For
example, Post[p, t] = w means that there is an arc from t
to p with weight or multiplicity w. When all weights are one
the net is defined as ordinary. Petri nets methods allow model
formal proof and validation analysis [10].

A marking is a |P | sized, natural valued, vector. A marked
net or P/T system is a pair < N,M0 >, where M0 is the
initial marking. A transition t can be fired at marking M if
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Fig. 1: Proposed PLC software architecture

M ≥ Pre[P, t] condition is satisfied. The firing of transition t
yields then a new marking M ′. This is computed by Equation
1, where C is the token - flow matrix of the net, given by
C = Post − Pre, and θ is the firing vector, representing
t transition firing. This equation is also known as the state
equation of the system.

Mi+1 = C ∗ θ +Mi (1)

As discussed by A. Giua and F. DiCesare [11], Petri nets
were already been used in different automation applications
back in 1993. For this purpose, a Petri net interpreter, denoted
PN engine in this work, was implemented. This software
element continuously computes the state equation shown in
Equation 1 using the Petri net model specified in the C matrix.

Nowadays, as described by Karatkevich et al. in their book
Design of Reconfigurable Logic Controllers [12], one of the
most spread Petri net-based language for industrial PLCs is
Sequential Function Chart (SFC), also known as GRAFCET
diagrams, which is widely supported by diverse PLC program-
ming environments. This high-level graphical programming
language is defined in the IEC 61131-3 international standard.
Usually, a SFC program interpreter engine is also employed
to run the SFC application specified by the engineer.

Moreover, ladder diagrams written in ladder logic, a graph-
ical programming language originated from the design and
construction of relay racks as used in process control and
manufacturing, could also be translated to common Petri nets
[13], [14]. Consequently, the proposed solution in this paper
might directly be applied to such logic programs written in
SFC and Ladder programming languages. Once the Petri net
is created from the SFC and Ladder specifications, such PN
model and the current stored marking should be substituted in
the PLC for machine reconfiguration.

III. DESIGN

The industrial controller software design is divided in
two parts. Figure 1 shows the live updates enabled PLC
architecture. On the one hand (at the top of Figure 1), the
PN runtime engine and application-specific PN model and
current state, denoted marking. The PN runtime engine is a PN
execution library, which computes new system states according
to Equation 1. In addition, as observed, two containers are
allocated for the PLC program, A and B respectively. These
are alternatively switched as the primary program, while the
secondary is used for the quarantine-mode execution and
monitoring.

On the other hand, (at the bottom of Figure 1 shown in
yellow color) the Cetratus framework components are de-
picted, which are reusable and generic building blocks which
enable safe life updates. The Message Router enables the data
exchange among all the PLC program and other system com-
ponents. In addition, message duplication and re-directions
tasks are also performed. The Provider and Dispatcher provide
system input and outputs management services, acting as
wrappers to the underlying I/O drivers, such as for Digital
Inputs (DI), Digital Outputs (DO) or fieldbus communications.
The Provider, Dispatcher and Message Router provide the
foundations for I/O virtualized environment. Finally, the PLC
program dynamic updating process is handled by the Updater
component, in which an indirection handling table is used.
This module accomplishes the required PN model update and
current marking transformations. The Monitor gathers and
provides new PLC program execution monitoring data. The
execution footprint, i.e. timing and functional behaviour is also
measured.

In order to prevent any propagation of faults through the
system, independence of execution both in the spatial and time



domain between the PLC programs (both A and B containers)
and Cetratus framework components is needed. Any possible
program updating error is also kept under control.

In contrast to common PLC program update, in which a
new application logic is supplied to the system and executed
at boot, a state transformation function is necessary for a
dynamic software update [6], [8]. In any time instance, the
executed PN model and the current marking stored in the
container shall be compatible each other. Thus, in case a new
PN model is supplied to the system, a process to adjust and
update such marking is also necessary. Equation 2 shows the
current marking transformation function, which is executed by
the Updater SW component shown in Figure 1 when the new
PLC program is dynamically instantiated.

Mnew = STmatrix ∗Mold + STbase (2)

For the computation of the new marking Mnew, in addition
to the old Mold marking, the STmatrix marking state trans-
formation matrix and the STbase marking state transformation
base vector, shall be specified. These parameters are supplied
by the user in the PLC program update package. Software up-
date description and meta-data information is also commonly
provided.

In case no changes are performed to the marking, neither at
the compositional (length of the vector) and contents (stored
PN marking data) level, the STmatrix matrix would be the
unitary matrix (STmatrix = I) and STbase a vector initialized
with zeros (STbase = ~0) of the same length as the current
marking. In this case, the new PN model would use the original
marking. Therefore, the execution of the state transformation
process would be not needed. It has to be pointed out that
the length of the new marking Mnew might differ from the
original Mold one.

Therefore, the dynamic PLC program update package, to
be supplied to the PLC by the Updater, should include the
following:
• PLC program meta-data information
• PN model, described by the C matrix (see Equation 1)
• PN marking state transformation parameters, composed

by (see Equation 2):
– STmatrix PN marking state transformation matrix
– STbase PN marking state transformation base vector

IV. LIVE UPDATES

As described previously, two containers are created in
the system (see Figure 1), A and B, which are alterna-
tively employed for the currently executed PLC program and
the quarantine-mode execution. This information is managed
through the PRIMARY state variable, which indicates which
indicates the container in which the stable PLC application
component version is located. Figure 2 shows the state-
transition diagram. As can be observed, the A PLC program
is initially selected on system boot.

Figure 3 shows the live patching process. Initially, the
new PLC program package is supplied to the system by

AA BB

Fig. 2: PRIMARY state transition diagram

the Updater. This user may be the system operator or a
Manufacturing Execution System (MES). The Updater may
also abort the updating process at any time.
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Fig. 3: Quarantine-mode based live patching sequence diagram

Initially, the primary PLC program is only executed, A or
B depending on the PRIMARY state variable shown in Figure
2. At this point, the Message Router redirects system I/O data
back and forth from the corresponding PLC program container.

On the live update request, the Updater module first checks
which of the containers holds the primary application com-
ponent by examining the PRIMARY state variable. The new
PLC program is then instantiated in the secondary container.
In this setup procedure, shown in Figure 3, two tasks are being
accomplished. First, denoted code transformation, the new PN
model is loaded into the system. Secondly, the current PN state
is updated. This process is also known as state transformation
[6], [7]. For this purpose, the old PN marking is wrapped
and transferred to the secondary container. At this point, the
Equation 2 is executed and a new marking, compatible with
the new PN model, is computed.

As stated by Wahler et al. [15], the state of the program, in
this case, the PN marking, has to be transformed within the



same execution cycle. If this task is not accomplished in such
execution cycle, an outdated, and probably corrupted, marking
would be encountered by the PN model. In order to avoid
this situation, a stateTransT imeOut timeout notification is
raised if the Updater module had not enough time to complete
the task. The dynamic PLC program updating process is also
aborted. The time needed to execute this process will depend
on the computation capabilities of the PLC.

Once the setup phase is accomplished, the quarantine-mode
execution starts, in which both the old PLC program and the
new one are simultaneously executed. For this purpose, input
information gathered by the Provider component is delivered
to both programs. Nevertheless, only the outcome produced
by the stable PLC program (specified by the PRIMARY state
variable) is supplied to the Dispatcher by the Message Router
and set as system output. At the same time, PLC program mon-
itoring data is collected by the Monitor component. This infor-
mation is then provided to the user in the program exec info
message (in the getQuaranExecInfo call shown in Figure
3). The Updater will continuously request, though polling,
quarantine-mode PLC program execution information and
verify the correctness of its execution.

Lastly, the substitution of the program is performed and
the PRIMARY variable conmutated. Although, the user may
abort the current dynamic updating process if the new program
does not provide enough trustworthiness or fulfill the expected
behaviour or correctness. This will depend on the monitored
and examined data obtained in the quarantine-mode execution
and monitoring phase (the tested loop in Figure 3).

V. IMPLEMENTATION

The presented concept in this paper is implemented in an
OMRON PLC, programmed in Structured Text (ST) program-
ming language. This equipment is connected to a Machine
Configuration Tool (MCT) through the Message Queuing
Telemetry Transport (MQTT) protocol [16]. This protocol is
widely used for collecting monitoring data from sensors and
devices, for example in smart meters [17] or photovoltaic
plants [18].

The MCT, which is developed using the Node-RED flow-
based development tool, allows the reconfiguration of the
machine. On the one hand, the tool collects and visualizes the
quarantine-mode monitoring data captured from the PLC. The
system variables are also received, specifically the PRIMARY
(see Figure 2) and the STATUS variables. The last one
indicates if a program update is under way or not.

On the other hand, MCT provides, aligned with the live
patching process shown in Figure 3, the system updating
features. These are:

1) Load: A new PLC program is loaded into the system,
which is then automatically executed in quarantine-
mode.

2) Remove: The PLC program under test is discarded.
3) Substitute: The PRIMARY variable is switched.

VI. CASE STUDY

In this section, a reconfigurable Vernadat [19] machine
case study is presented. Vernadat is a manufacturing system
composed by two machines, which share a common interme-
diate store, with limited capacity. In this temporary buffer,
the initially produced parts by the first machine are stored.
These are then refined by the second machine. Loading and
unloading tasks are accomplished by a robot. The Vernadat
system uses infeeding and an outfeeding conveyors for raw
and finished parts respectively. Figure 4 shows the Vernadat
system.
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Fig. 4: Reconfigurable Vernadat system [19]

Regarding the temporary buffer for partially produced parts,
seven different parts can be simultaneously be stored, in which
initially, three parts are allocated. The system makes use of
several mechatronical sensors, actuators and control signals for
both machines and the robot. Table I provides a description of
each signal.

Type Name Description Element

Input

PE Part ready for processing Infeeding conveyor
FCM1 Part loaded

Machine 1FPM1 Part processed
EB Part ready
SB Part ready for storing in Temporary buffer

FCM2 Part loaded into Machine 2FPM2 Part processed by
PS Finished part in Outfeeding conveyor

Output

CM1 Part loading order into Ma-
chine 1 from infeeding con-
veyor

Robot

PM1 Part processing order Machine 1
DM1 Move part from Machine 1

to temporary buffer RobotCM2 Move part from temporary
buffer to Machine 2

PM2 Part processing order Machine 2
DM2 Part unloading from Ma-

chine 2 and placement into
outfeeding conveyor

Robot

LM1 Apply lubricant Machine 1
LM2 Apply lubricant Machine 2

TABLE I: Input and outputs signals of the Vernadat system

The PLC programs (the initial one and the consecutive
updates) are modelled using the PIPE tool [20], [21], an open-



source platform independent Petri Nets editor, simulator and
analysis tool. In this case study, two consecutive program
updates are performed in the reconfigurable Vernadat system.
Following, firstly, the initial program being executed, and
afterwards, the applied program updates are described. After
that, the obtained results are shown.

A. Initial Program

Figure 5 shows the initial logical program of the Vernadat
system, as well as its initial marking. As can be noted, initially,
13 places and 10 transitions are defined.
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Fig. 5: Initial Vernadat system Petri net [19]

As far as its interpretation is concerned, the defined places
and transitions in the Petri net are mapped to the system
input and output signals. Nevertheless, it has to be mentioned
that these signals might no be necessarily be linked to the
PN model. This model might also make use of internal
variables and functional blocks, such as timers, counters and/or
comparators. Table II shows the mapping of PN transitions and
places to system input and outputs signals. PN transitions are
linked to system inputs while PN places to system outputs. In
the initial program, the LM1 and LM2 output signals are nor
assigned and neither used.

Transition Input Place Output
T10 PE P11 CM1
T11 FCM1 P12 PM1
T12 FPM1 P14 DM1
T13 EB P22 CM2
T20 SB P21 PM2
T21 FCM2 P24 DM2
T22 FPM2 ... LM1
T23 PS ... LM2

TABLE II: Initial mapping of PN transitions and places to
input and output signals

B. Programs Updates

In this section, the defined program updates and system
reconfigurations are described. These reconfigurations can also
include modifications to the PN interpretation. Two different
updates are performed: Buffer size change and New phase.

1) U.1 - Buffer size change: In the first program update,
the size of the temporary buffer is increased. For this, the
current marking is updated following Equation 2. The state
transformation parameters are given by Equation 3. Through
this update, the buffer capacity in place H is increased by 2.
No modification is performed to the PN model itself.

STmatrix = I13x13; STT
base = (2 0 0 0 0 0 0 0 0 0 0 0 0);

(3)
2) U.2 - New processing stage: In the next update, a new

processing stage is created, for which an updated Petri Net
program is loaded to the system. Figure 6 shows the updated
Vernadat PLC program. As it can be observed, the P30 and
P31 places, as well as T30 and T31 transitions are added,
modelling machine lubrication operations and their finishing,
respectively.
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Fig. 6: Updated Vernadat system Petri net

In P30 and P31 places LM1 and LM2 outputs, not assigned
in the initial program, are activated. In addition, in each of
the places, a timer is activated, which after a time period (3s)
transitions T30 and T31 are fired, finishing the lubrication tasks.

Equation 4 shows the state transformation parameters for
the U.2 update. As it can be observed, no modification is
performed on the content, just the length of the current
marking is increased.

STmatrix =

(
I13x13
O2x13

)
; STT

base = ~01x15; (4)
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C. Results

The previously described live updates are carried out in the
OMRON PLC. Figure 7 shows the results of the experiment.
The time diagram shows the Primary and Status system
variables, outputs produced by both the A and B program
containers and system inputs and outputs.

Initially, following the state machine shown in Figure 2, the
Program A is executed and established as primary program.
The outputs computed by it are then settled as system out-
puts. Meanwhile, no program is allocated in the B container.
Then, the U.1 program update is initialized in step 5. Both
programs are then simultaneously executed, although, outputs
from program A are still determined as system outputs. The
substitution is performed at step 13. As observed in Figure 2,
the execution of Program A is then halted.

Regarding U.2 program update, the program update is set
up at step 22. In contrast to the previous U.1 update, the
execution of a full Vernadat processing cycle is required for
its validation, which is accomplished at step 32. Right after,
program A is, once more, defined as the Primary.

As far as timing properties are concerned, Table III shows
the obtained PLC execution processing times. As can be
noted, the proposed PLC architecture and dynamic updating
framework introduce minor overheads.

Task Processing Time (µs)
Initial program loading 1749.7

Single program execution 531.1 (average)
New program setup 2115.8

Quarantine-mode execution 578.4 (average)

TABLE III: PLC scan cycle timings

VII. CONCLUSIONS AND FUTURE WORK

In the new Industry 4.0 concept, higher productivity, flexi-
bility and efficiency is requested. In this sense, highly config-
urable, flexible and evolvable mechatronic and manufacturing
systems are necessary. Such capabilities will allow real-time
production adjusting and tuning to satisfy market needs.

In this paper, a live updates approach for PLCs based on
the Cetratus framework is proposed. Thought the proposed
system, the executed functional program is dynamically up-
dated. The presented framework enables a zero downtime
manufacturing process, in which the manufacturing system is
reconfigured to efficiently fit market needs.

In the scope of this work, the correctness verification of
the new program is manually realized, by examining by hand
the quarantine-mode execution data. This process is error-
prone and not scaleable. For future work, the MCT could be
integrated or connected to a digital twin. This would enable
the automatic comparison of the digital twin simulation and
the quarantine-mode information, and therefore, the automatic
validation of the new program. The integration of a RMS and a
digital twin was analyzed by K.A. Kurniadi [22]. In this work,
the STmatrix and STbase transformation function parameters
have manually been specified. The MCT tool should also
incorporate automatic state transformation function generation
features.
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