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Abstract—Gastrointestinal and Colorectal cancers are treated 
with chemotherapy and its other forms which are not able to 
provide higher survival rates [1]. Immunotherapy is increasingly 
becoming popular due to its promising response especially to 
mutated tumors such as MicroSatellite Instability (MSI) cancers 
with deficient DNA Mismatch-Repair system (dMMR). Generally, 
85% of all the cases related to gastrointestinal and colorectal 
cancers have proficient DNA Mismatch-Repair system (pMMR) 
which are also called MicroSatellite Stability (MSS). Only about 
15% of the gastrointestinal and colorectal cancer patients have 
deficient DNA Mismatch-Repair system (dMMR) causing 
MicroSatellite Instability (MSI) in their tumors. While 
Immunotherapy responds well to patients with MSI tumors, it is 
resistant to MSS tumors [2]. Hence, it’s important to classify MSI 
vs. MSS tumors so that appropriate treatment can be given to the 
patients. Clinically MSI cancers are difficult to be detected after 
stage III due to  their sensitivity to pembrolizumab inhibitors 
[3][4]. In this work, deep learning based transfer learning 
approach is detailed that can accurately classify MSI vs. MSS 
cancers using histological images which are derived from 
formalin-fixed paraffin-embedded (FFPE). 

Keywords: MicroSatellite Instability (MSI), MicroSatellite 
Stability (MSS), Deep learning, Deep convolutional neural 
network, Gastrointestinal Cancer, Colorectal cancer, Transfer 
Learning. 

 

I. INTRODUCTION 

Microsatellites are often termed as short tandem repeats or 

simple sequence repeats. Microsatellites are short repetitive 

DNA which are about 6 to 10 base pairs in length. 

These short repetitive DNA sequences can be present at 

thousands of locations in the genome. One of the unique 

characteristic of these repetitive DNA is that it has higher 

mutation rate as compared to other regions of the genome.   

The high mutation rate occurs because of the phenomenon of 

replication slippage experienced by DNA polymerase during 

replication. [5] 

It has been observed that the repetitive DNA sequences 

present in the DNA can make the DNA polymerase unstable 

resulting in addition of wrong nucleotides during replication. 

The study of microsatellites can give us valuable information 

for example variation in microsatellite can be used to 

distinguish between normal cell and an abnormal cell. In case 

of abnormal cells the microsatellites may show gain or loss in 

high frequency. Hence the genetic profile of abnormal cell will 

be different as compared to the normal cell. 

Abnormality in microsatellites can be related to either 

microsatellite stability or microsatellite instability. Most 

colorectal and gastrointestinal cancers (about 85%) are 

microsatellite stable (MSS) which have intact DNA and tend 

to respond well to regular chemotherapy based treatments 

while conditions related to microsatellite instability needs to 

be identified for immunotherapy. [6] 

Microsatellite instability (MSI) is a molecular tumor 

phenotype caused by the loss or gain of nucleotides from 

microsatellites and can be measured by polymerase chain 

reaction (PCR). These changes can arise from impairments in 

the mismatch repair (MMR) protein complex.  A  DNA  repair  

mechanism is critical for maintaining genomic stability. 

Deficient MMR dMMR causes DNA mutations to accumulate 

and may lead to high levels of microsatellite instability MSI-

H. Immunohistochemistry can be used to determine dMMR. 

MSI gastric tumors are a known entity and there are several 

ways to differentiate or diagnose a tumor being an MSI. One 

can take a look at the protein level or at the DNA level. Within 

the protein level one can look at the mismatch repair proteins 

and check if any of them are deficient. Absence of these 

protein staining shows that the tumor is likely MSI On the 

DNA level one can look at this through PCR or so-called 

fragment analysis which is also very direct and quick test.  

Also it can also be observed through TCGA data where the 

field is moving particularly in which we take a look at it in       

a multiplex fashion by next-generation sequencing. This will 

allow to get MSI status because of the mutational burden of 

the tumor especially in gastric cancer where it’s not subtle. [7] 

MSI tumors regardless of organ of origin are chemotherapy 

refractory. MSI metastatic gastric cancer progresses on sys- 

temic chemotherapy within first four months of treatment and 

again showing that these tumors are biologically distinct and 

that immunotherapy should be considered in the earlier lines of 

therapy. [8] 

Microsatellite instability (MSI) is really the main driver for 

the choice of immune therapies and human associated 

inflammatory responses. MSI tumors is just a surrogate for 

hypermutation which tend to have a load of  mutations  10 to 

100 times increase in the mutational load versus MMR 

Proficient tumors. 
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Fig. 1. Mismatch repair deficiency across tumors. 

 

The gastric cancer leads the mismatch repair deficiency 

across tumor types per [9] which is followed by small intestine, 

colorectal and then pancreas cancer as shown in Figure 1. 

Hence MSI high does exist in primarily gastric, then the small 

intestine and colorectal cancers. 

The tumor mutational burden among GI cancers is high on 

gastric cancer and from clinical standpoint this conveys that 

immune therapy is suitable. 

There is also high correlation relationship between MSI and 

tumor mutation load for both GI and Colorectal cancers per 

[10] which essentially means that MSI is a good surrogate for 

a high mutational load. 

The disease control rate via immunotheraphy was about 

90% in the case of MMRD cancers and this was about 16% 

for MMRP cancers as per [5]. 

In order to identify a given cancer whether it is MSI or 

MSS, histological study needs to be done on the clinical data 

such as FFPE images. FFPE means a way of accessing cells   

or tissues from samples through a formula which is really 

good for the clinic. The paraffin-embedded process will slow 

down the cells which are extracted from tissues from dying  

off and killing themselves and starting the processes that will 

destroy things within the cells so forming them pauses and 

slows down a lot of those processes. It also keeps fitta cells 

and organelles and things the structure can remain the same for 

doing histological studies. An example of histlogical images 

derived from FFPE are shown in Figure 2. 

II. RELATED WORK 

One of the main goals of the computer vision and AI 

community in collaboration with the pathology community is 

at the moment to design and develop techniques to learn to 

represent tissue which is probably the most difficult things.  

The most difficult task in computational pathology in a modern 

sense is that we have different type of tissue types and we also 

have many different diseases. 

Generally a human pathologist reviews a glass slide under  

a microscope that contains a stained specimen which is called 

the pathology diagnosis. 

The challenges are the diversity and variety of this and that 

many of them are polymorphic. We have mitosis and also the 

manifestation in body parts which appear differently when we 

look in the microscope or a digital scanner. So that’s what we 

call in computer science np hardness which is a fancy word  

for saying that’s basically impossible. Since the representation 

of the tissues has large number of possible combinations, 

machine learning can be employed to resolve this complexity 

and classify MSI and MSS cancers. 

The whole idea recently is to digitize the details of the 

stained specimen via a scanner so that it is available in the 

form of a digital image. [11]. These digital image formats 

would pave way for exploiting machine learning and other 

techniques to assist the diagnosis. [12]. 

Initial application of machine learning algorithms  is  via 

the use of feature extraction methods which are manual in 

nature. The performance of these algorithms purely depend   

on the manual feature extraction methods using traditional ML 

algorithms. Efficiency depends on the annotation, filters used 

and combination of feature sets. [13] Several feature extraction 

techniques such as texture descriptors, lower-order and higher-

order histogram features, local binary patterns, gray-level co-

occurrence matrix, gabor filters, perception-like features etc 

were used. Also several classifiers such as 1- nearest 

neighbour, Linear and radial basis function support vector 

machine, Ensemble of decision trees, etc were tried. 

There were attempts in creating high-dimensional data by   

a process called Radiomics via the use of computational  

power that could transform medical images for prognosis and 

diagnosis of cancer. [14] highlights that tumor staging can be 

classified by the use of computed tomography (CT) images  

from which relevant features could be extracted. Studies were 

conducted to predict microsatellite instability using computed 

tomography images in colorectal cancer by extracting Ra- 

diomic features. [15] applied Radiomics feature selection in 

combination with Na ı̈ve Bayes classification and have got AUC 

of 0.598 for the clinical model. The Radiomics Model provided 

an AUC of 0.688 and the Combined(Radiomics+Clinical) 

Model achieved AUC of 0.752. 

In general the presence of proteins is considered as profi- 

cient MMR and if there are any proteins missing, it will be con- 

sidered as deficient MMR. Predictive biomarkers considered to 

be more effective as the immune checkpoint inhibitors (ICIs) 

though received reasonable achievements for gastrointestinal 

cancers, it didn’t create a wider impact due to its low response 

rate. The high tumor mutational burden (TMB) along with   

the mismatch repair/microsatellite instability are the categories 

where the predictive biomarkers can be used to guide. 

Formalin-fixed paraffin embedded (FFPE) sections of 

tumors were leveraged to determine the mismatch repair status 

where immune checkpoint inhibitors were applied on those 

images. These were normalized and later standardized so that 

feature extraction is performed. The extracted features are then 

scaled using a sigmoid function and later a classifier such as 

linear support vector machine model was applied. The linear 

SVM classification model resulted in 0.74 AUC. [16] 



 
 

Fig. 2. Histological images of colorectal and gastrointestinal cancer - MSI (Top) and MSS (Bottom) 

 

Similar to [15] but with more sophisticated way, [17] has 

used domain experts such as radiologists where one of the 

them segmented the CT images manually around the tumor 

region using a special software called ITK-SNAP software 

while the other radiologist double checked the segmented 

tumor regions to ensure they were accurate enough. Three 

different approaches were adopted in [17] where clinical 

features were analyzed using univariate statistical analysis that 

could highlight MSI in the first approach which gave 0.74 

AUC. [18] 

The second approach depended on Wilcoxon rank-sum test 

that could leverage radiomic features and gave an AUC of 0.76. 

The 3rd model similar to [15] combined the first and second 

approaches that is, it used both the radiomic features and the 

clinical variables and unlike previous attempts used a random 

forest classifier which gave 0.79 as AUC. The third approach 

gave a better result than the previous approaches. 

Regression based methodologies were attempted on the 

analysis of data related to population in China. For this 

formalin-fixed paraffin-embedded tissue was used from which 

the DNA can be extracted and when immunohistochemical 

(IHC) analysis was applied, it enables to identify the protein 

expressions thus facilitating to identify the tumor MMR. 

Polymerase chain reaction (PCR) was used to analyze the 

MSI status and this MSI status was more efficiently identified 

through various machine learning techniques and in this case 

with the use of Unconditional logistic regression [19] which 

gave 0.8062 as AUC. So, this unique combination gave a high 

potential to detect MSI from majority of colorectal cancer 

populations. One of the primary limitation that was observed 

to be the inability to clarify the effect of MMR status due to 

unavailability of therapeutic information on clinical outcome. 

The approach of using Radiomic features continued in this 

study [20] similar to previous studies such as [15] and [17]. 

Contrast-enhanced computed tomography (CE CT) images 

were used to extract radiomic features to detect the DNA 

mismatch repair deficient (MMR-D) and tumor mutational 

burden-high in patients. 

The process adopted was to extract intra-tumoral radiomic 

features from contrast-enhanced computed tomography (CE 

CT) images where the tumor contours were used to form 

Peritumoral-rim after extending. 

Several edge detection techniques such as Sobel and Gabor 

were used from image processing from which appropriate Ra- 

diomic features were selected. This is done through generalized 

linear regression methodology and later the selected features 

are sent to a recursive feature elimination method and to a 

random forest classisfier which has achieved an AUC of 0.87. 

[20] Though the accuracy obtained was reasonable, the overall 

process is quite complex. 

A more recent attempt was done by [21] who has used 

Ensemble Patch Likelihood Aggregation (EPLA) methodology 

which leverages a unique hybrid approach that uses both deep 

learning and traditional machine learning techniques. 

This method has got 0.8848 as AUC to predict microsatellite 

status. This approach is based on histopathology images from 

asian colorectal cancer data which inturn comes from TCGA- 

COAD data set. This ensembling of traditional ML methods 

and deep learning has shown significant improvement in MSI 

detection to previous methods. [22][23]. 



III. THE PROPOSED TRANSFER LEARNING 

A. Digital Pathology 

Digital Pathology has become a standard workflow where a 

patient goes to the hospital and a biopsy/test is taken. The 

sample with tissue is taken to the lab usually and it gets 

processed which then goes to some sort of distribution channel 

and the tissue sample in the end goes to a pathologist. Since 

the sample is digitized in the process, this opens up a wider  

set of possibilities. 

There are some inherent challenges in the process of 

digitizing the sample such as blurring of the image and 

missing/fading of the tissue in the sample. Hence, its essential 

to have a nice quality digital sample for digital pathology. The 

validation analysis should see same information from the glass 

slide as that of the digital sample. There are publicly available 

data sets where we have the digital images which are then used 

to apply computer vision or AI related techniques. [24] 

B. Artificial Intelligence 

Artificial intelligence and machine learning is now com- 

monly getting in vogue in for medicine in general and also in 

sub-specialty practice of Gastroenterology. 

Artificial intelligence is the use of computer-based technol- 

ogy to help solve some of the repetitive tasks that humans have 

been doing over the last several years and the reason artificial 

intelligence is used here is that it not only can prevent humans 

making any errors because of these repetitive tasks but at the 

same time it improves the efficiency. It also helps in getting a 

lot of work in a very reasonably short period of time. 

The area of artificial intelligence and machine learning have 

several applications in the field of Gastroenterology. One of the 

areas that this technology helps is obviously image recognition 

where the machine can diagnose images based on certain 

characteristics that we input and these are the algorithms that 

are actually written and the machines are then able to over the 

time learn on its own and get better at it. 

Machines can also predict better than a human especially 

when certain parts of the GI tract might get missed out of   

sight via human eyes when doing endoscopy while artificial 

intelligence is able to predict certain lesion’s. 

Traditional Machine Learning methods leverage feature 

based approaches through algorithms such as Random Trees, 

Random Forests and Logistic Model Trees as shown in Fig- 

ure 3. These methods focus on extracting global features from 

the given data and then train the model using the extracted 

features. These approaches worked well for smaller datasets 

where the identification of datasets was relatively simple. As 

the dataset sizes increases, the level of complexity increases. 

This is the case for the digital pathology images which are of 

large size and this in turn requires the involvement of deep 

neural networks like convolutional neural networks which are 

popular in image classification and recognition tasks. 

A regular neural network has an input layer, hidden layers, 

and an output layer. The number of inputs depends on the 

number of dimensions of the input data and the hidden layers 

perform computations on these inputs. The outcome of the 

 
 

Fig. 3. Machine Learning Feature Based Approaches 

 

computations will pass through the output layer. Each of these 

layers contain neurons which consist of certain weight and 

they are in turn connected to neurons in the previous layer. 

There is absolutely no assumption what so ever about the data 

being fed into the network. These networks are quite nice with 

certain type data except data types such as images. 

C. Convolutional Neural Networks 

Convolutional neural networks introduced by [25] are spe- 

cial type of feed-forward artificial neural networks which is 

inspired from visual cortex. A small region in the brain called 

Visual cortex is a region of cells that are sensitive to specific 

regions of visual field. That is, few neurons in the  visual 

cortex fires when exposed to vertical edges while few fire when 

exposed to horizontal layers. Few fire and exposed to diagonal 

edges and that is the motivation behind convolutional neural 

network. 

If an image of 200 x 200 x 3 pixels is fed to a fully con- 

nected neural network, around 120 thousand bits are required 

at the first hidden layer itself which require a lot of parameters. 

Basically in a convolutional neural network each neuron in one 

layer is connected with another layer of the network that 

contains a small region of the layer before it. This topology 

results in a fewer weights between neurons as the number of 

connections between layers are low. 

CNN considers small segments of the image where these 

segments/patches are known as features or filters. By finding a 

matching feature in roughly the same positions in two images, 

CNN improves on learning the similarity between the whole 

image matching schemes. In convolution layer, one by one 

feature is taken and moved it through the entire image. While 

moving filter CNN’s multiplies the pixel value of the image 

with that of the corresponding pixel value of the filter and can 

be added and dividing by the total number of pixels to get the 

output. 

Generally a convolutional neural network has three layers. 

A convolution layer, pooling layer and towards the end a fully 

connected layer. Convolutional neural networks or CNNS can 

do some pretty interesting things when they are fed with a 

bunch of pictures.For instance when the face images are given 

as an input, the convolution neural networks learns some fo 

the features such as edges, dots and spots. These multi-layer 

neural networks learn these edges or gradients in the initial 

layers and the second layer learns some of the parts of objects 



 
 

Fig.  4.   Xception Network 

 

such as eyes, noses and mouths. The third layer learns objects 

such as faces. 

Convolution is a measure of overlap between two functions 

as one slides over the other. Mathematically it’s a sum of 

products the standard convolution operation is slow to perform 

however it can speed up with an alternative method called 

depth wise separable convolution. A scalar is returned from a 

regular convolution operation that computes the input’s and 

kernel’s sum of products. This operation is continued by 

sliding the kernel over the input. The concern now is with     

the cost of this convolution operation which has a number of 

multiplications required. 

 
 

D. Depth-wise Separable Convolution 

 

Depth-wise separable convolution which was  introduced 

by [26] applies convolution to a single input channel  at  a 

time. This is different from the standard convolution that 

applies convolution to all channels. The complexity of this 

convolution can be split into two parts depth-wise convolutions 

and point-wise convolutions. The number of multiplications 

thus obtained is the sum of multiplications in the depth-wise 

convolution stage plus the number of multiplications in the 

point-wise convolution stage. 

Depth-wise separable convolution decreases the computa- 

tion and number of parameters when compared to standard 

convolution. Depth-wise separable convolution is a combina- 

tion of depth wise convolution and point wise convolution. 

Depth-wise convolution is the filtering step and point wise 

convolution can be thought of as the combination step. Figure 5 

illustrates the working of depth-wise seperable convolution. 

E. Xception Network 

Xception is a convolution neural network architecture based 

entirely on depth-wise separable convolution layers. Large 

datasets such as Google’s jft image dataset are applied to 

Xception network which showed exceptional performance. It’s 

a repository of 350 million images with 17,000 class labels. To 

put this into perspective the popular ImageNet took 3 days to 

train, however to train even a subset of this jft dataset it took   

a month and it didn’t even converge. In fact it would have 

approximately taken about three months to converge, how’d 

they let it run to its full length. Xception is pushing convolution 

neural networks to use depth-wise separable convolution as the 

de facto. 

Generally a pre-trained model is used to make predictions so 

that the results are great. Classifying images into the categories 

 

 
Fig. 5. Depth-wise Seperable Convolution 



used by the original models is simple but what if the new use 

case don’t categorize images in exactly the same way as the 

categories for the pre-trained model are. A new model can be 

built from scratch for this specific purpose but to get good 

results it needs thousands of images with labels for which 

might be not practical in all scenarios. For these requirements 

transfer learning will give good results with far less data. 

F. Transfer Learning 

Transfer learning is one of the method of training machine 

learning algorithms unlike other methodologies like supervised 

machine learning and unsupervised semi-supervised machine 

learning. Transfer learning has a special feature where we train 

for one task and try to actually use that knowledge for another 

related task. Let’s say the objective is to train a convolutional 

network image classifier to identify Cheeta but we only have a 

thousand images of cheetah which isn’t good enough to train 

the convolutional neural network model. 

We can actually use an existing pre-trained CNN models 

which is probably trained with millions of animals and already 

understands how the animal looks like along with all the fea- 

tures of the animals. This pre-trained network is downloadable 

and can help us simplify training process were there are less 

number of training images. 

G. DataSet 

The dataset used in this work comes from [27] which has 

histological images of gastrointestinal cancer that can be used 

to classify MSI Vs MSS. The original dataset has 411,890 

unique images from original SVS slides of cancer patients of 

TCGA cohort. In this work a subset of 192,312 images were 

taken which amounts to approximately 5GB of data. 

Formalin-fixed paraffin-embedded (FFPE) slides are the 

source of these images and these slides were pre-processed 

prior to formulation of this dataset. The resolution of the 

images is at 0.5 micro metre/px and the images are tailored    

to 224 x 224 pixels. All the images were reformatted into the 

specified resolution and in JPG format and the images were 

color normalized using Macenko method [28]. The patients  

were categorized by specialists into MSI and MSS categories 

so that dataset has labels. The sample image of this dataset  

can be seen in Figure 2. The dataset is divided into training, 

validation and testing in the ratio of 80%, 10% and 10% 

respectively. 

IV. TRANSFER LEARNING IMPLEMENTATION 

A. Architecture 

The architecture of the convolutional neural network used 

in this work comes from the Xception Network. The Xception 

network uses depth-wise seperable convolutions which are 

quite simple from compute perspective when compared to 

regular convolutions. The overall flow in the Xception network 

is detailed in Figure 4 with input histological image dimensions 

as 224x224x3. 

This network is already pre-trained with larger datasets and 

hence all the layers in the network are have pre-set weights. 

 
 

Algorithm  1 Transfer Learning using Xception Network  

1: Initialize the Keras Libraries and Colab 

2: Download the Dataset 

3: Get the Train and Test sets with labels 

4: Normalize the images 

5: Data Augmentation 

6: for each sample image do 

7: Rescale and Rotate image by 45 degree 

8: Width and Height Shift by 20% 

9: Flip image Horizontally 

10: Zoom the image by 50% 

11: end for 

12: Build Neural Network 

13: Download pre-trained Xception Network 

14: The input dimensionality is set to 224x224x3 

15: Create a Keras Sequential Model 

16: Embed pre-trained Xception model as starting block 

17: Pre-trained model o/p to Global Average Pooling 

18:  The network ends with a Dense network layers  

19: Compile Transfer Learning model using SGD 

20: Train, Validate and Test 

21: Batch Size of 64 is suitable 

22: Train the network for just 5 epochs and validate 

23: Test the trained model with test data images 

24: Save the weights of the network 
 

 

 
This indicates that all the initial layers have been already 

trained to capture edges and gradients in a given image. Also 

the later layers understand the features such as textures and 

parts of objects. Once the pre-trained Xception network is 

imported from the Keras applications, the later layers of the 

network contain a dense network whose outputs are forwarded 

to global average pooling layer. 

B. Data Augmentation 

In order to make the model more robust, the training image 

data can be augmented. This will address any issue of overfit- 

ting and the model gets more generalized. The input training 

images are rescaled and then rotated  by  45  degrees.  Then 

the images are shift by 20% both vertically and horizontally. 

Later the images are flipped horizontally and zoomed by 50%. 

This overall process augments the images and improves the 

validation accuracy. 

C. Network Hyperparameters 

Some of the most important network hyper parameters are 

learning rate, epochs and batch-size. It is very important to 

tune these parameters in such a way that good performance is 

obtained. The batch size of 64 was observed to be working well 

for the given dataset and this batch size is also very suitable 

for GPU architecture to handle 64 images in parallel. For the 

training Stochastic Gradient Descent optimizer is used with 

exponentially decaying learning rate and 0.6 momentum 

with 



 
 

Fig. 6. Labeled Training Images 

 
the decay of 0.8. Algorithm 1 depicts the architecture of neural 

network used. 

V. RESULTS 

A. Training and Validation 

The training of the pre-trained Xception network is done 

with histological training images of the dataset. The training 

dataset has the labeled MSI and MSS images as shown in 

Figure 6. The overall training images are 153,849 and the 

overall validation images are about 19230. The overall program 

execution was done in Google Colab which provides free GPU 

access. 

The training was done for up to 5 epochs which is sufficient 

as the initial layers of the Xception network are already pre- 

trained to identify edges, gradients, textures, etc. The training 

data is augmented as per the specifications mentioned in the 

algorithm 1. The validation accuracy of 93.18% is obtained as 

shown in Figure 7 and the overall time taken for training the 

network took about 4 and half hours. 

B. Testing 

The trained Xception network was then tested with test 

histological images of the dataset. The overall test images are 

about 19230. The resulting testing accuracy is about 90.17% 

with test AUC of 0.932 which indicates the ability of the pre- 

trained Xception network on these histological images. The 

predicted test images labels are shown in Figure 8 and all 

those images are predicted correct. 

VI. CONCLUSION AND FUTURE WORK 

This paper demonstrates that MSI and MSS gastrointestinal 

cancer classification can be most accurately done using transfer 

learning methodology in deep learning. A brief review of 

literature is performed on the classification accuracies of 

gastrointestinal cancer datasets and various model behaviors 

has been investigated. This gives an overall idea of research 

 

 
 

Fig. 7.   Training and Validation  Accuracy 



 
 

Fig. 8. Predicted Labels for Test Images 

 

focus to this work and in turn facilitates to identify the gaps 

and direction to undertake. 

The required pre-requisites have been captured and design 

of the deep neural network using pre-trained Xception network 

has been performed. The formulated pre-trained model is then 

trained on Google Colab research platform as training these 

models is compute intensive requiring GPU. 

The implementation of the pre-trained model illustrates the 

usage of GPU on Google cloud platform for training deep 

learning models. The algorithm has been coded in Python 

along with Keras API which uses the TensorFlow backend. 

As a future work, other gastrointestinal cancer datasets can 

be trained with the pre-trained Xception model developed in 

this work. Other pre-trained networks can also be attempted 

with this dataset and other datasets as well. Also, hybrid 

combined networks can be tried for improving AUC. 

The robustness of the  model  in  this  work  is  improved  

by implementing suitable data augmentation techniques which 

in turn enhanced the classification accuracy of the classifier. 

Thus this work demonstrates that MSI Vs MSS gastrointestinal 

cancer classification performance is reasonable to be imple- 

mented in production and more research in these areas can 

help patients be diagnosed accurately and especially at the 

right time. 
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