When the Riemann Hypothesis Might Be False

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

When the Riemann Hypothesis might be false

Frank Vega

Abstract

Robin criterion states that the Riemann Hypothesis is true if and only if the inequality $\sigma(n)<e^{\gamma} \times n \times \log \log n$ holds for all natural numbers $n>5040$, where $\sigma(n)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. Let $q_{1}=2, q_{2}=3, \ldots, q_{m}$ denote the first m consecutive primes, then an integer of the form $\prod_{i=1}^{m} q_{i}^{a_{i}}$ with $a_{1} \geq a_{2} \geq \cdots \geq a_{m} \geq 0$ is called an Hardy-Ramanujan integer. If the Riemann Hypothesis is false, then there are infinitely many HardyRamanujan integers $n>5040$ such that Robin inequality does not hold and $n<$ $(4.48311)^{m} \times N_{m}$, where $N_{m}=\prod_{i=1}^{m} q_{i}$ is the primorial number of order m.

Keywords Riemann hypothesis • Robin inequality • sum-of-divisors function • prime numbers

Mathematics Subject Classification (2010) MSC 11M26 • MSC 11A41 • MSC 11 A 25

1 Introduction

In mathematics, the Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$ [4]. As usual $\sigma(n)$ is the sum-of-divisors function of n [2]:

$$
\sum_{d \mid n} d
$$

where $d \mid n$ means the integer d divides to n and $d \nmid n$ means the integer d does not divide to n. Define $f(n)$ to be $\frac{\sigma(n)}{n}$. Say Robins (n) holds provided

$$
f(n)<e^{\gamma} \times \log \log n
$$

F. Vega

CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France
ORCiD: 0000-0001-8210-4126
E-mail: vega.frank@gmail.com

The constant $\gamma \approx 0.57721$ is the Euler-Mascheroni constant, and \log is the natural logarithm. The importance of this property is:

Theorem 1.1 If the Riemann Hypothesis is false, then there are infinitely many natural numbers $n>5040$ such that Robins(n) does not hold [4].

We recall that an integer n is said to be square free if for every prime divisor q of n we have $q^{2} \nmid n$ [2]. Robins (n) holds for all natural numbers $n>5040$ that are square free [2]. In addition, we show that Robins(n) holds for some $n>5040$ when $\frac{\pi^{2}}{6} \times$ $\log \log n^{\prime} \leq \log \log n$ such that n^{\prime} is the square free kernel of the natural number n. Let $q_{1}=2, q_{2}=3, \ldots, q_{m}$ denote the first m consecutive primes, then an integer of the form $\prod_{i=1}^{m} q_{i}^{a_{i}}$ with $a_{1} \geq a_{2} \geq \cdots \geq a_{m} \geq 0$ is called an Hardy-Ramanujan integer [2]. Based on the theorem 1.1, we know this result:

Theorem 1.2 If the Riemann Hypothesis is false, then there are infinitely many natural numbers $n>5040$ which are an Hardy-Ramanujan integer and Robins (n) does not hold [2].

We prove if the Riemann Hypothesis is false, then there are infinitely many HardyRamanujan integers $n>5040$ such that Robins (n) does not hold and $n<(4.48311)^{m} \times$ N_{m}, where $N_{m}=\prod_{i=1}^{m} q_{i}$ is the primorial number of order m.

2 A Central Lemma

These are known results:
Lemma 2.1 [2]. For $n>1$:

$$
\begin{equation*}
f(n)<\prod_{q \mid n} \frac{q}{q-1} . \tag{2.1}
\end{equation*}
$$

Lemma 2.2 [3].

$$
\begin{equation*}
\prod_{k=1}^{\infty} \frac{1}{1-\frac{1}{q_{k}^{2}}}=\zeta(2)=\frac{\pi^{2}}{6} \tag{2.2}
\end{equation*}
$$

The following is a key lemma. It gives an upper bound on $f(n)$ that holds for all natural numbers n. The bound is too weak to prove $\operatorname{Robins}(n)$ directly, but is critical because it holds for all natural numbers n. Further the bound only uses the primes that divide n and not how many times they divide n.

Lemma 2.3 Let $n>1$ and let all its prime divisors be $q_{1}<\cdots<q_{m}$. Then,

$$
f(n)<\frac{\pi^{2}}{6} \times \prod_{i=1}^{m} \frac{q_{i}+1}{q_{i}}
$$

Proof We use that lemma 2.1:

$$
f(n)<\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1} .
$$

Now for $q>1$,

$$
\frac{1}{1-\frac{1}{q^{2}}}=\frac{q^{2}}{q^{2}-1} .
$$

So

$$
\begin{aligned}
\frac{1}{1-\frac{1}{q^{2}}} \times \frac{q+1}{q} & =\frac{q^{2}}{q^{2}-1} \times \frac{q+1}{q} \\
& =\frac{q}{q-1}
\end{aligned}
$$

Then by lemma 2.2,

$$
\prod_{i=1}^{m} \frac{1}{1-\frac{1}{q_{i}^{2}}}<\zeta(2)=\frac{\pi^{2}}{6}
$$

Putting this together yields the proof:

$$
\begin{aligned}
f(n) & <\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1} \\
& \leq \prod_{i=1}^{m} \frac{1}{1-\frac{1}{q_{i}^{2}}} \times \frac{q_{i}+1}{q_{i}} \\
& <\frac{\pi^{2}}{6} \times \prod_{i=1}^{m} \frac{q_{i}+1}{q_{i}} .
\end{aligned}
$$

3 A Particular Case

We can easily prove that $\operatorname{Robins}(n)$ is true for certain kind of numbers:
Lemma 3.1 Robins(n) holds for $n>5040$ when $q \leq 5$, where q is the largest prime divisor of n.

Proof Let $n>5040$ and let all its prime divisors be $q_{1}<\cdots<q_{m} \leq 5$, then we need to prove

$$
f(n)<e^{\gamma} \times \log \log n
$$

that is true when

$$
\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1} \leq e^{\gamma} \times \log \log n
$$

according to the lemma 2.1. For $q_{1}<\cdots<q_{m} \leq 5$,

$$
\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1} \leq \frac{2 \times 3 \times 5}{1 \times 2 \times 4}=3.75<e^{\gamma} \times \log \log (5040) \approx 3.81
$$

However, we know for $n>5040$

$$
e^{\gamma} \times \log \log (5040)<e^{\gamma} \times \log \log n
$$

and therefore, the proof is complete when $q_{1}<\cdots<q_{m} \leq 5$.

4 Helpful Lemmas

For every prime number $p_{n}>2$, we define the sequence $Y_{n}=\frac{e^{\frac{1}{2 \times \log \left(p_{n}\right)}}}{\left(1-\frac{1}{\log \left(p_{n}\right)}\right.}$.
Lemma 4.1 For every prime number $p_{n}>2$, the sequence Y_{n} is strictly decreasing.
Proof For every real value $x \geq 3$, we state the function

$$
f(x)=\frac{e^{\frac{1}{2 \times \log (x)}}}{\left(1-\frac{1}{\log (x)}\right)}
$$

which is equivalent to

$$
f(x)=g(x) \times h(u)
$$

where $g(x)=e^{\frac{1}{2 \times \log (x)}}$ and $h(u)=\frac{u}{u-1}$ for $u=\log (x)$. We know that $g(x)$ decreases as $x \geq 3$ increases, Moreover, we note that $h(u)$ decreases as $u>1$ increases where $u=$ $\log (x)>1$ for $x \geq 3$. In conclusion, we can see that the function $f(x)$ is monotonically decreasing for every real value $x \geq 3$ and therefore, the sequence Y_{n} is monotonically decreasing as well. In addition, Y_{n} is essentially a strictly decreasing sequence, since there is not any natural number $n>1$ such that $Y_{n}=Y_{n+1}$.

In mathematics, the Chebyshev function $\theta(x)$ is given by

$$
\theta(x)=\sum_{p \leq x} \log p
$$

where $p \leq x$ means all the prime numbers p that are less than or equal to x.
Lemma 4.2 [5]. For $x \geq 41$.

$$
\theta(x)>\left(1-\frac{1}{\log (x)}\right) \times x
$$

Besides, we know that
Lemma 4.3 [5]. For $x \geq 286$:

$$
\prod_{q \leq x} \frac{q}{q-1}<e^{\gamma} \times\left(\log x+\frac{1}{2 \times \log (x)}\right)
$$

We will prove another important inequality:
Lemma 4.4 Let $q_{1}, q_{2}, \ldots, q_{m}$ denote the first m consecutive primes such that $q_{1}<$ $q_{2}<\cdots<q_{m}$ and $q_{m}>286$. Then

$$
\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1}<e^{\gamma} \times \log \left(Y_{m} \times \theta\left(q_{m}\right)\right)
$$

Proof From the theorem 4.2, we know that

$$
\theta\left(q_{m}\right)>\left(1-\frac{1}{\log \left(q_{m}\right)}\right) \times q_{m}
$$

In this way, we can show that

$$
\begin{aligned}
\log \left(Y_{m} \times \theta\left(q_{m}\right)\right) & >\log \left(Y_{m} \times\left(1-\frac{1}{\log \left(q_{m}\right)}\right) \times q_{m}\right) \\
& =\log q_{m}+\log \left(Y_{m} \times\left(1-\frac{1}{\log \left(q_{m}\right)}\right)\right)
\end{aligned}
$$

We know that

$$
\begin{aligned}
\log \left(Y_{m} \times\left(1-\frac{1}{\log \left(q_{m}\right)}\right)\right) & =\log \left(\frac{e^{\frac{1}{2 \times \log \left(q_{m}\right)}}}{\left(1-\frac{1}{\log \left(q_{m}\right)}\right)} \times\left(1-\frac{1}{\log \left(q_{m}\right)}\right)\right) \\
& =\log \left(e^{\frac{1}{2 \times \log \left(q_{m}\right)}}\right) \\
& =\frac{1}{2 \times \log \left(q_{m}\right)} .
\end{aligned}
$$

Consequently, we obtain that

$$
\log q_{m}+\log \left(Y_{m} \times\left(1-\frac{1}{\log \left(q_{m}\right)}\right)\right) \geq\left(\log q_{m}+\frac{1}{2 \times \log \left(q_{m}\right)}\right) .
$$

Due to the theorem 4.3, we prove that

$$
\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1}<e^{\gamma} \times\left(\log q_{m}+\frac{1}{2 \times \log \left(q_{m}\right)}\right)<e^{\gamma} \times \log \left(Y_{m} \times \theta\left(q_{m}\right)\right)
$$

when $q_{m}>286$.

5 Proof of Main Theorems

The next theorem implies that $\operatorname{Robins}(n)$ holds for a wide range of natural numbers $n>5040$.

Theorem 5.1 Let $\frac{\pi^{2}}{6} \times \log \log n^{\prime} \leq \log \log n$ for some $n>5040$ such that n^{\prime} is the square free kernel of the natural number n. Then Robins(n) holds.

Proof Let n^{\prime} be the square free kernel of the natural number n. Let n^{\prime} be the product of the distinct primes q_{1}, \ldots, q_{m}. By assumption we have that

$$
\frac{\pi^{2}}{6} \times \log \log n^{\prime} \leq \log \log n
$$

For all square free $n^{\prime} \leq 5040, \operatorname{Robins}\left(n^{\prime}\right)$ holds if and only if $n^{\prime} \notin\{2,3,5,6,10,30\}$ [2].
However, Robins (n) holds for all natural numbers $n>5040$ when $n^{\prime} \in\{2,3,5,6,10,15,30\}$ due to the lemma 3.1. When $n^{\prime}>5040$, we know that Robins $\left(n^{\prime}\right)$ holds and so

$$
f\left(n^{\prime}\right)<e^{\gamma} \times \log \log n^{\prime}
$$

By the previous lemma 2.3:

$$
f(n)<\frac{\pi^{2}}{6} \times \prod_{i=1}^{m} \frac{q_{i}+1}{q_{i}} .
$$

Suppose by way of contradiction that Robins(n) fails. Then

$$
f(n) \geq e^{\gamma} \times \log \log n
$$

We claim that

$$
\frac{\pi^{2}}{6} \times \prod_{i=1}^{m} \frac{q_{i}+1}{q_{i}}>e^{\gamma} \times \log \log n .
$$

Since otherwise we would have a contradiction. This shows that

$$
\frac{\pi^{2}}{6} \times \prod_{i=1}^{m} \frac{q_{i}+1}{q_{i}}>\frac{\pi^{2}}{6} \times e^{\gamma} \times \log \log n^{\prime}
$$

Thus

$$
\prod_{i=1}^{m} \frac{q_{i}+1}{q_{i}}>e^{\gamma} \times \log \log n^{\prime},
$$

and

$$
\prod_{i=1}^{m} \frac{q_{i}+1}{q_{i}}>f\left(n^{\prime}\right)
$$

This is a contradiction since $f\left(n^{\prime}\right)$ is equal to

$$
\frac{\left(q_{1}+1\right) \times \cdots \times\left(q_{m}+1\right)}{q_{1} \times \cdots \times q_{m}} .
$$

Theorem 5.2 If the Riemann Hypothesis is false, then there are infinitely many HardyRamanujan integers $n>5040$ such that Robins (n) does not hold and $n<(4.48311)^{m} \times$ N_{m}, where $N_{m}=\prod_{i=1}^{m} q_{i}$ is the primorial number of order m.

Proof Let $\prod_{i=1}^{m} q_{i}^{a_{i}}$ be the representation of some natural number $n>5040$ as a product of primes $q_{1}<\cdots<q_{m}$ with natural numbers as exponents a_{1}, \ldots, a_{m}. The primes $q_{1}<\cdots<q_{m}$ must be the first m consecutive primes and $a_{1} \geq a_{2} \geq \cdots \geq a_{m} \geq 0$ since the natural number $n>5040$ could be an Hardy-Ramanujan integer. We assume that Robins (n) does not hold. Indeed, we know there are infinitely many HardyRamanujan integers such as $n>5040$ when the Riemann Hypothesis is false according to the theorem 1.2. From the lemma 4.4, we know that

$$
\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1}<e^{\gamma} \times \log \left(Y_{m} \times \theta\left(q_{m}\right)\right)=e^{\gamma} \times \log \log \left(N_{m}^{Y_{m}}\right)
$$

when $q_{m}>286$. In this way, if Robins (n) does not hold, then $n<N_{m}^{Y_{m}}$ since by the lemma 2.1 we have that

$$
f(n)<\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1} .
$$

That is the same as $n<N_{m}^{Y_{m}-1} \times N_{m}$. We can check that $q_{m}^{Y_{m}-1}$ is monotonically decreasing for all primes $q_{m}>286$ due to the lemma 4.1. Certainly, the function

$$
\left.g(x)=x^{\left(\frac{e^{\frac{1}{2 \times \log (x)}}}{\left(1-\frac{1}{\log (x)}\right)}-1\right.}\right)
$$

complies that its derivative is lesser than zero for all real numbers $x>286$. Indeed, a function $g(x)$ of a real variable x is monotonically decreasing in some interval if the derivative of $g(x)$ is lesser than zero and the function $g(x)$ is continuous over that interval [1]. We know that q_{m} could comply with $q_{m} \geq 1000000$! for infinitely many Hardy-Ramanujan integers $n>5040$ such that Robins (n) does not hold, where (...)! is the factorial function. Certainly, if q_{m} would have an upper bound by some positive value, then there would not be infinitely many natural numbers $n>5040$ which are an Hardy-Ramanujan integer and Robins (n) does not hold because of the theorem 5.1. Consequently, it is enough to show that

$$
q_{m}^{Y_{m}-1} \leq g(1000000!)<4.48311
$$

for all primes $q_{m} \geq 1000000$!. Moreover, we would obtain that

$$
q_{m}^{Y_{m}-1}>q_{j}^{Y_{m}-1}
$$

for every integer $1 \leq j<m$. Finally, we can state that $n<(4.48311)^{m} \times N_{m}$ since $N_{m}^{Y_{m}-1}<(4.48311)^{m}$ when $n>5040$ could be any of the infinitely many HardyRamanujan integers such that Robins (n) does not hold and $q_{m} \geq 1000000$!.

Acknowledgments

I thank Richard J. Lipton and Craig Helfgott for helpful comments.

References

1. Anderson, G., Vamanamurthy, M., Vuorinen, M.: Monotonicity Rules in Calculus. The American Mathematical Monthly 113(9), 805-816 (2006). DOI 10.1080/00029890.2006.11920367
2. Choie, Y., Lichiardopol, N., Moree, P., Solé, P.: On Robin's criterion for the Riemann hypothesis. Journal de Théorie des Nombres de Bordeaux 19(2), 357-372 (2007). DOI doi:10.5802/jtnb. 591
3. Edwards, H.M.: Riemann's Zeta Function. Dover Publications (2001)
4. Robin, G.: Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann. J. Math. pures appl 63(2), 187-213 (1984)
5. Rosser, J.B., Schoenfeld, L.: Approximate Formulas for Some Functions of Prime Numbers. Illinois Journal of Mathematics 6(1), 64-94 (1962). DOI doi:10.1215/ijm/1255631807
