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Abstract—The Nvidia GPU architecture has introduced new
computing elements such as the tensor cores, which are special
processing units dedicated to perform fast matrix-multiply-
accumulate (MMA) operations and accelerate Deep Learning
applications. In this work we present the idea of using tensor
cores for a different purpose such as the parallel arithmetic
reduction problem, and propose a new GPU tensor-core based
algorithm as well as analyze its potential performance benefits
in comparison to a traditional GPU-based one. The proposed
method, encodes the reduction of n numbers as a set of m×m
MMA tensor-core operations (for Nvidia’s Volta architecture
m = 16) and takes advantage from the fact that each MMA
operation takes just one GPU cycle. When analyzing the cost
under a simplified GPU computing model, the result is that the
new algorithm manages to reduce a problem of n numbers in
T (n) = 5 logm2(n) steps with a speedup of S = 4

5
log2(m

2).
Index Terms—Reduction; NVIDIA Tensor Cores; GPU Com-

puting; matrix-multiply-accumulate;

I. INTRODUCTION

In the present day, the amount of data generated by all
sorts of media grows at an exponential rate, making each
year more difficult to process these data sets entirely. On top
of this, the rise of applications such as autonomous vehicle
platforms, pattern recognition in images, disease diagnosis,
weather forecasting, financial modeling, robotic and language
translation, among others impose an ever greater challenge
which is to perform in real-time. One important computational
pattern in many applications is the arithmetic reduction which
computes a single value from a set of n elements. Arithmetic
reductions are employed in many of the applications recently
mentioned as well as in Monte Carlo methods, physical
simulations such as the gravitational n-body problem and ray
tracing, among many others. Therefore, it is of high interest
to count with a fast reduction method and give the possibility
to reach real-time performance in these applications.

A. The GPU Programming Model

Today GPU Computing [12] is a useful computational tool
for attempting the solution to large problems in the big data
era, as it offers massively parallel computation for data-parallel
problems. This means that elements in a large data-set can
actually be processed by a parallel algorithm if the problem

can be defined as data-parallel. GPU Computing has been used
successfully in the recent years, giving important performance
speedups in physics [3], [13], all-pairs problems [11], medicine
[8], image processing [4], deep learning [18] and computer
graphics [5], among other fields.

When working with GPU Computing, its programming
model plays an important role in the design and development
of GPU accelerated programs, and it is governed by a three-
level hierarchy, which defines the parallel space of the GPU.
This hierarchy corresponds to the thread, block and grid (See
Figure 1). A thread is an abstract compute element that is in
charge of executing the kernel once. A block is a container
of threads, and has the property that all of its threads can
synchronize among themselves and can share information via
cache. Synchronization among blocks is not possible in the
current programming model, unless the kernel is terminated.
The grid is the last construct, and it contains all the blocks,
spatially identified, that will be employed in the execution of
the kernel. Lastly, the kernel is the function that will execute
in GPU by all threads. With the help of programming tools
such as OpenCL or CUDA, one can implement a parallel GPU
algorithm that will accelerate the data-parallel computations.

Fig. 1. The three-level hierarchy of the GPU Programming.

B. GPU Tensor Cores

With the latest rise of Machine Learning applications,
and more specifically the fast adoption of Deep Learning in
multiple fields of science and technology, CPU and GPU Com-
panies have started including application specific integrated
circuits (ASICs) to their processors to further accelerate the
computational tasks involved in the phases of training and
inference in Deep Learning applications. This change has led
to the inclusion of Tensor Core (TC) units in recent Nvidia
GPUs, which are special purpose processing units that sit next



to the GPU CUDA cores in the streaming multi-processors
(SM) of the chip, as shown in Figure 2.

Fig. 2. A processing group of the Nvidia Tesla V100 which has a total of
640 tensor cores. Image taken from the Nvidia CUDA programming guide
[16] .

The aspect that make tensor cores an attractive feature is
the performance it can offer in comparison to the traditional
GPU cores. Today, the Nvidia Volta GPU Tesla V100, Quadro
V100 and Titan V all include around 640 tensor cores, and they
can offer up to 120 TFLOPS in mixed FP16-FP32 precision.
In comparison, the traditional CUDA cores, which are 5120
in total for the GPUs recently mentioned, offer up to ∼ 15
TFLOPS of performance in FP32 precision and around ∼ 7
TFLOPS in FP64 precision. Indeed, the fast performance of
tensor cores is an attractive opportunity to explore possible
applications that can take advantage of this new technology.
However, the use of tensor cores does not come free of
restrictions and potential issues. The first restriction is that
the programming of tensor cores is much more restrictive
than the programming of traditional GPU cores. In fact, the
only operation allowed when using tensor cores is the matrix-
multiply-accumulate (MMA) in matrices1 of 4× 4, i.e.,

D4×4 = A4×4 ×B4×4 + C4×4 (1)

which takes just one GPU cycle. Therefore, the only way to
make an algorithm to take advantage of tensor core accelera-
tion is to redesign it as a set of many 4×4×4 MMA operations
that can run in parallel.

The second restriction of tensor cores is the numerical
precision. Although the resulting D matrix can be stored in
FP32 precision, currently the operations A×B +C are done
in FP16 precision. This mixed mode of operation may have
negative effects in some applications. The reason of why tensor
cores operate at FP16 is because in general Deep Learning
applications do not suffer from numerical precision when
doing training and inference in FP16.

1Although GPU tensor cores work at hardware level with 4× 4 matrices,
the programming model exposes the operation in terms of 16× 16 matrices.

Given the importance of arithmetic reductions in the era of
big data and the recent advances in GPU Tensor Cores for
fast MMA computations, we formulate the following research
question: Can tensor core performance be exploited to ac-
celerate arithmetic reductions and speedup applications from
science and technology? This work aims at answering this
question by analyzing the potential performance improvement
one could encounter by doing arithmetic reductions with tensor
cores. For this, we propose a new parallel reduction strategy,
based on a hierarchy of MMA operations. Our findings show
that in theory a tensor core based reduction can be signif-
icantly faster than a traditional GPU one, as it only takes
T (n) = 5 logm2(n) time steps, with m being the linear size
of the MMA matrices involved.

The rest of the manuscript presents the related work (Section
II), an overview of the parallel reduction (Section III), the
formulation of the new tensor core algorithm and its analysis
(Section IV), and a discussion of the results obtained in
Section V.

II. RELATED WORK

The parallel reduction has been implemented using different
frameworks. In the case of OpenMP there are high level
abstract constructs that allow the programmer to express a
parallel reduction via OpenMP pragma commands [1]. In
the case of GPUs, the parallel reduction has been addressed
by Nickolls, Buck and Garland [14]. The authors propose a
parallel sum reduction of O(log2(n)) time, where each thread
loads one element of the input array, and then adds pairs of
values in parallel as x[i] = x[i] + x[i + p/2] where p is the
number of threads. The loop in this kernel implicitly builds
a summation tree over the input elements, and at the end of
this loop, the first data slot of each thread-block holds the
reduction result of one iteration, i.e., xB [0] =

∑p
i=0 xi. More

kernels are executed until the input problem is one value.
Harris optimized for CUDA an algorithm for parallel reduc-

tion [7] tree-based as well. In his work, the author illustrates
seven different optimizations that are relevant to the parallel
reduction, achieving a final version that is up to 30x times
faster than the initial GPU version presented. Harris mentions
that although the time complexity of the parallel reduction is
indeed O(log2(n)), the cost is not efficient if p = n/2 threads
are used. The author shows, with the help of Brent’s Theorem,
that using p = n/ log2(n) threads leads to a parallel efficient
cost algorithm.

Another alternative, simpler in design complexity but still
competitive in performance, is to use the intrinsic Atomic
Add [15] GPU instruction. The operation is atomic in the
sense that it is guaranteed to be performed without interference
from other threads, but can still run in parallel if threads are
using the atomic operation on different data addresses. The
atomic add reads a number at some address in global or shared
memory, adds another number to it, and writes the result back
to the same address, in one transaction.

In the case of distributed computing, there are two levels of
parallelism that must occur for the reduction to be completed;



(1) local reduction and (2) distributed reduction. For the local
reduction, the process may be carried with multi-core CPU
or GPU computation as recently described. For the case of
distributed computation, the results of different compute nodes
must be merged with message passing tools such as MPI [17].
The result is an hybrid OpenMP-MPI or GPU-MPI reduction
for massive scale systems. Recent tools such as MapReduce
[6] also offer a higher-level of abstraction to accomplish
parallel reduction in cluster environments.

The most recent and relevant work about CUDA GPU tensor
core programming is the one by Markidis et al. [10], in
which they studied current approaches to program NVIDIA
Tensor Cores, as well as the performance and the precision
loss due to computation in mixed precision. The authors show
how NVIDIA CUDA provided three ways of programming
the matrix-multiply-accumulate (MMA): CUDA Warp MMA
(WMMA) API, CUTLASS, and cuBLAS GEMM. The tensor
core programming is analyzed in different aspects such as pro-
grammability, performance and precision. The authors report
that the maximum performance obtained was with the cuBLAS
GEMM implementation, where they achieved 83 TFLOPS
in their test environment (approximately 74% of the theoretical
performance), followed by CUTLASS with 62 Tflops/s. The
WWMA implementation did not provide any performance
improvement, however the authors realized they did not use
shared memory in the process, which is an important aspect
in order to accomplish efficient tensor core computation. They
also observed that when the size of the input matrix increases,
the error may increase significantly in some cases. For this,
the authors include mechanisms to increase precision such as
the Kahan summation and iterative precision refinement.

In more general terms, the Google Tensor Processing Unit
(TPU), deployed for data-centers in 2015, is another processor
comparable to the tensor cores found in Nvidia GPUs, that
accelerates the inference phase of neural networks [9]. Norman
et al. compared the TPU to a server-class Intel Haswell CPU
and an Nvidia K80 GPU. They used workloads written with
the TensorFlow framework. The results showed that the TPU
was on average about 15× - 30× faster than its contemporary
GPU or CPU, and about 30× - 80× higher in TOPS/Watt
(Tensor Operations per Second per Watt).

III. OVERVIEW OF THE CLASSIC PARALLEL REDUCTION

Given an array of n elements, X = {x1, x2, ..., xn}, the
arithmetic reduction R(X) is defined as

R(X) =

n∑
i=1

xi (2)

On a serial processor, one would write a simple loop with
a single accumulator variable to construct the sum of all
elements. Such algorithm is the best sequential one (as in
principle no element can be left out) and it costs Θ(n).

A parallel reduction algorithm cannot solve the problem in
one time step, as there are dependencies and race conditions
to be fulfilled within the reduction process. Nevertheless, it
is known that a parallel reduction can sum pairs of values

in parallel at each time step, leading to a parallel cost of
Tp=n/2(n) = O(log2(n)) using p = n/2 processors. At
each time step k, we have a problem of size n

2k−1 and n
2k

threads prepared to do work. Each parallel thread sums a
pair of values, i.e, the i-th thread sums the elements xi and
xi+n/2k and stores the partial sum in X[i]. Such parallel step
costs O(1) time and cuts the problem in half. Consecutive
applications of this process lead to the recurrence

T (n) = O(1) + T (n/2) (3)

subject to T (2) = O(1), which by the master theorem it can
be shown that it is Tp=n/2(n) = O(log2(n)).

When considering the parallel cost, which is defined as
Cp = Tp(n) · p, with p the number of processors employed,
one can realize that using n/2 processors leads to a parallel
cost of

Cp(n) = log2(n)
n

2
= O(n log2(n)) (4)

which makes the algorithm cost inefficient as it is greater than
the O(n) cost of the sequential algorithm. To improve on this
cost, one can use Brent’s Theorem [2] that states the following
inequality

Tp(n) ≤ T1(n)

p
+ T∞(n) (5)

where in the case of the arithmetic reduction we have that
T1(n) = O(n) and T∞(n) = log2(n). With this, one can
choose the number of processors as p = n

log2(n)
without

sacrificing parallel time, i.e,

Tp(n) ≤ 2 log2(n) = O(log2(n)) (6)

With this change, the cost of the parallel algorithm is now
efficient, i.e,

Cp(n) = log2(n)
n

log2(n)
= O(n) (7)

It is important to consider that there is an asymptotic lower
bound of Ω(log2(n)) for the parallel reduction. Nonetheless,
one can still improve in the constants involved as in the base
of the logarithm, which can make an important difference in
experimental performance. Such is the case of reducing with
tensor cores, where a large number of arithmetic operations
can be encoded into MMA operations and executed in just
one GPU cycle, which is equivalent to one time unit.

IV. A NEW REDUCTION ALGORITHM BASED ON MMA

In this section we present the new algorithm for parallel
arithmetic reductions using tensor cores operations and ana-
lyze its parallel time in both asymptotic and non-asymptotic
forms.

A. Formulation

The tensor core programming model exposes a single op-
eration to the programmer, the matrix-multiply-accumulate
(MMA). That is, given three matrices A,B,C, the MMA
operation computes

D = A×B + C (8)



In one GPU cycle. The tensor core computing model allows
many MMA operations to occur simultaneously in parallel.
It is interesting to note that in the programming model the
tensor core MMA operation is exposed in terms of 16 × 16
matrices to the programmer, even when the actual operation at
hardware level is carried in terms of 4×4 matrices. The process
of splitting the 16× 16 workload into smaller 4× 4 works is
done automatically by the GPU scheduler, but splitting a large
problem of size n into several 16×16 matrices is not automatic
and the partition must be designed manually. This last aspect
is the one important for the research, as it is related to the
research question of wether a reduction problem of size n can
be encoded into multiple MMA operations. The presentation
of the new reduction algorithm will proceed in terms of m×
m MMA matrices, as it favors the analysis in the next sub-
section.

The main intuition behind a tensor core MMA based reduc-
tion is to produce many partial summations of groups of m2

numbers, in parallel. To achieve this, we employ two MMA
operations. For the first MMA operation, m2 elements of the
input array X[ ] are inserted in Am×m in parallel such that
Am,m is actually the m2-th element of the group. Then we
set Bm×m as an all-ones matrix, also in parallel, and C is
a zero-matrix, also set in parallel. When the MMA operation
is executed on A,B and C, the result is a matrix, namely
Dm×m = Am×m ×Bm×m + Cm×m, of the form

D =

x11 . . . x1m

...
. . .

...
xm1 . . . xmm

× [
1
]
m×m

+
[
0
]
m×m

(9)

=


∑m

i=1 x1i . . .
∑m

i=1 x1i

...
. . .

...∑m
i=1 xmi . . .

∑m
i=1 xmi

 (10)

where each column k,j holds the whole set of partial summa-
tions from the group of m2 elements.

The second MMA operation is in charge of reducing the
partial summations found in the columns of D, now into
a single value. It is relevant to notice that dealing with
one column of D is sufficient has it holds all the partial
summations. The other columns of D hold copies of the result.
At the same time, given the rigidness of the MMA operation,
it takes less time to process the whole matrix within the MMA
operation instead of filtering or doing extra considerations to
just process a single column. As long as the result of one
column is not compromised, doing a full MMA operation
is still the most convenient approach in this contexts as we
preserve the one GPU cycle cost per MMA.

The second MMA operation proceeds by changing the order
of the multiplying matrices, and re-uses the output matrix D
in the position of B, while using B in the position of A.
With these changes, the second MMA operation becomes the

following expression

D′ =
[
1

]
×


∑m

i=1 x1i . . .
∑m

i=1 x1i

...
. . .

...∑m
i=1 xmi . . .

∑m
i=1 xmi

 +
[
0

]
(11)

=


∑m

i=1

∑m
j=1 xij . . .

∑m
i=1

∑m
j=1 xij

...
. . .

...∑m
i=1

∑m
j=1 xij . . .

∑m
i=1

∑m
j=1 xij

 (12)

The resulting matrix D′ contains the reduction of the m2

numbers, replicated in all of its elements. Once the second
MMA operation finishes, the thread in charge proceeds to write
the reduction result, e.g, D′1,1, into global memory as part of
the new array of partial sums.

The global idea of the algorithm is to subdivide the domain
of n numbers into n

m2 blocks of m2 elements and execute the
2-step MMA reduction proposed for each group in parallel.
This reduces the problem size by a factor of m2. In the next
iteration, the idea is to take the smaller version of the problem,
of size n′ = n

m2 and reduce it again with the 2-step MMA
operations for all the possible groups of m2 elements. This
process is carried iteratively until the reduction set fits in
just one group of m2 elements, for which a final tensor core
reduction returns the result of the whole reduction problem of
size n.

This new tensor core MMA based reduction, namely
Rtc(X), with X = {x1, . . . , xn}, can be described by the
following recurrence

Rtc(X) = Rtc(M(x1..xm2), . . . ,M(x(k−1)m2+1..xkm2))
(13)

where M(...) is the tensor core based MMA reduction and the
initial condition is defined as

Rtc(x1..xm2) = M(x1..xm2) (14)

In the following subsection we perform a fine analysis (con-
sidering constants) of the performance of the tensor core based
reduction algorithm.

B. Analysis of Performance

In order to analyze the cost of the tensor core based
reduction algorithm, we utilize a simplified GPU Computing
model similar to the PRAM but with extra restrictions related
to the GPU architecture. In this simplified model, the costs for
the different types of parallel operations are:
• Coalesced read/write operations cost 1 unit of time.
• non-Coalesced read/write operations cost w units of time.
• Parallel tensor core MMA operations cost 1 GPU cycle.
• Simultaneous r/w into tensor core matrices costs 1 unit

of time.
In the case of a GPU reduction, it is possible to produce

coalesced memory acceses, by not using a stride in the access
pattern, and instead make threads access the array X in
blocks without gaps among them. Once threads read their
corresponding data, which takes one unit of time, they can load



this data into the tensor core matrices, which reside in cache
memory near the tensor cores. This loading of information
takes another unit of time. Then, the algorithm proceeds and
executes the 2-step tensor core MMA reduction simultaneously
for all the m2 groups that can be made for the array X[1..n].
Lastly, once the reduction of a group is done, the thread in
charge writes this result in its corresponding location in X ,
taking another unit of time. Combining these costs into one
expression leads to the following recurrence

Ttc(n) = 5 + Ttc(
n

m2
) (15)

that stops at Ttc(m
2) = 5. Solving the recurrence leads to the

final cost of
Ttc(n) = 5 logm2(n) (16)

For comparison, a typical GPU reduction, under the same
cost model, would take unit of time for reading the first
element of each thread, another unit of time for reading the
second element, a unit of time for adding two numbers, and
another unit of time for storing the value back to memory. The
recurrence for such algorithm would be T (n) = 4 + T (n/2)
which solves into T (n) = 4 log2(n). Based on this cost model,
the potential speedup for the tensor core based reduction would
become

S =
T (n)

Ttc(n)
=

4 log2(n)

5 logm2(n)
=

4

5
log2(m2). (17)

A value of m ≥ 2, which is the minimum value m could
take in order for the reduction to work, is already sufficient to
provide a result of S > 1.

V. DISCUSSION AND CONCLUSIONS

The main contribution of this work is the presentation
and analysis of a new tensor core based reduction based on
matrix-multiply-accumulate operations. The intuition behind
the algorithm lies in defining each iteration of the parallel
reduction as a sequence of two MMA operations that act
together to provide the summation for groups of m2 values.
In the first MMA operation the elements are inserted in the
A matrix, while B is all-one and C is a zero matrix. In the
second MMA operation, A is an all-one matrix, B is the result
of the previous MMA, and C is zero again.

The main results obtained from the analysis are the time
cost of the algorithm, which is Ttc(n) = 5 logm2(n), and
the speedup with respect to a classic parallel GPU reduction,
in which we obtained a factor of S = (4/5) log2(m2). It is
interesting to note that the minimum value that makes the
reduction work, i.e. m = 2, already makes S > 1 and leads
to a favorable result. Current GPUs perform 4× 4× 4 MMA
operations in one cycle at hardware level, therefore there is an
important chance that the potential speedup one could observe
with current GPUs, such as Tesla V100 or Titan V, would be
S ≈ 3.2 if we consider m = 4, and S ≈ 6.4 if we consider
m = 16 which is the value exposed to the programmer. In
either case, the performance speedup is significant and would
contribute greatly to the problem of parallel reductions.

The results obtained in this work have shown that there
is an important amount of potential performance that can
be exploited from tensor cores, with applications in fields
that are not necessarily related to machine learning. Indeed,
it remains unknown what is the level of precision loss by
performing reductions in FP16, and future work should include
experimental results validating both the speedup values and the
% of precision loss observed in different types of reductions.
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