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Abstract—This paper focuses on path tracing of a holonomic 

three wheel Omni drive system. Any path (curved, linear) is first 

sampled, where the coordinates of the path are stored in the 

local memory, at particular sampling rate which are then 

retrieved dynamically during the runtime to move the robot on 

the similar path. The task of moving the drive system from one 

coordinate to another is done by Deduced reckoning algorithm. 

This paper also proposes algorithm for minimizing overshoot 

(deviation from actual path) while moving in a curved 

trajectory. The proposed algorithm helps in keeping track of the 

robot very efficiently. The hardware employed to test the 

proposed algorithm used consists of a three wheeled Omni base, 

three high torque DC motors, three 6” Omni wheels, highly 

efficient DC motor drivers, high precision rotary encoders and 

a microcontroller powered by ARM® Cortex®-M3  processor. 

The robot controlled by the proposed algorithm was tested on 
wooden field while plying on curved paths. 

Keywords—Omni Direction, IMU, Rotary Encoders, 

Holonomic Drive, Deduced Reckoning. 

I. INTRODUCTION 

Holonomic drive systems[5] are primarily used in robotics 
and Omni directional movement applications , as the robot can 
move in any direction and also change its direction of motion 
without changing its orientation beforehand , this feature 
allows for better maneuverability in curved paths .This paper 
presents integration of path tracing in holonomic drive[8] with 
algorithm for minimum overshoot of the robot which provides 
better solutions for applications where reconfiguring the path 
of the robot, according to the changes in the conditions, is not 
possible. Path tracing[8] is done in two steps, the first being 
the sampling of the path where any path is broken down into 
straight lines and the corresponding coordinates, orientation 
and other metadata is stored. Then the robot is moved along 
straight lines, coordinates of which were stored during 
sampling along with other data using Deduced reckoning 
algorithm which is integrated with minimum overshoot 
algorithms to provide robustness and independence from any 
changes in the surface of the path. Along with providing 
robustness against changes the minimum overshoot algorithm 
also provides smoothness and stability to the system, as 
holonomic drives are prone to overshoot while changing 
direction of motion. The algorithms were tested on a Three 
wheel base made of mild-steel, electronic hardware involved 
microcontroller [11], gyroscope [10], encoder, motors [2].The 
existing methods involve the use of path/curve equations 
which govern the heading of the bot along the curved path but 
have a problem of overshoot due to slip, inertia and inability 
of motors to suddenly accelerate and decelerate, this prevents 
the bot to perform smooth path tracing. The seamless 

integration of deduced reckoning and minimum overshoot 
algorithm provide better results for most robotics applications 
as it enables the bot to reduce overshoot by performing sudden 
acceleration and deceleration where sharp turns are required.  

THREE WHEEL OMNI DRIVE 

A. Maneuverability  

As the word ‘OMNI’ (meaning- everywhere) suggests, the 
drive can move everywhere. But what stands out is the ability 
to maneuver sharp turns with or without changing the 
orientation. The drive developed as such can move in any 
direction without changing the orientation as well as it can 
move in a straight line while changing its direction, such that 
when both of these properties are combined, the developed 
drive system proves better performance around curved 
trajectory along with straight trajectory and ability to move in 
any direction. 

B. Omni wheels  

Holonomic drive systems requires special type of wheels , 
the wheels used in tank drive systems (commercial 
automobiles) cannot be used as the wheels used in these drives 
can be moved freely and without hindrance only in one 
direction , i.e.: forwards , backwards not along the axis of the 
wheels. Omni wheels are more suitable for holonomic 
applications as these wheels have beads/rollers attached on the 
circumference of the wheel to facilitate motion parallel to the 
axis of the wheel as shown in figure 1. We shall use the term 
‘rollers’ throughout the paper to maintain clarity and 
conciseness. The rollers on the wheel rotate on their axis thus 
allowing the wheel to move parallel to its axis. This type of 
wheels can be acquired from any robotics shop or online 
vendors.  

                      

                Figure 1 Omni Wheel 

 

 



For higher controllability, the use of smaller wheels is advised, 
whereas higher speeds can be achieved using bigger wheels 
provided that the motors used can provide enough torque. We 
observed that there is a trade-off between speed and 
controllability, and the wheel size should be selected 
accordingly. The robot used for testing and verification of this 
paper uses a 6’ wheels for a combination of speed and higher 
controllability.  

 

C. Microcontroller  

The controller will be responsible for all the calculations 

and execution of commands by either issuing them to the 

motor driver controller or by producing the desired PWM 

outputs. The more number of motors in this structure 

strains on the use of a motor driver with inbuilt 

microcontroller which will accept the issued commands 

and execute them.  

The controller must be chosen according to the 

specifications of the design and must have sufficient pins 

and ports along with the hardware according to the 

designed skeleton. For example, if the drive is being 
controlled with an analog joystick, then the main 

controller must have an inbuilt ADC, if the feedback of 

angle is taken using Inter Integrated Circuit (I2C) then it 

is preferable to use a controller with inbuilt hardware I2C 

circuit. If the motor controller accepts commands using 

some standard communication protocol, then the 

hardware required for communication is also required to 

be taken into consideration. Any oscillator generating a 

clock above 1MHz will suffice for the calculations 

required to drive and control the structure. 

 

D. Gyroscope for feedback  

Feedback is added in the system to correct the small errors 

caused due to inertia or unbalanced system or unequal 

rpm of the motors. This feedback helps in maintaining the 

orientation of the robot while moving. The said feedback 

is in terms of current angle. The control algorithm then 

notes the current angle of the robot and makes the 
adequate changes in the speed of individual wheels to 

make the robot maintain its desired orientation. The 

feedback is quite necessary for driving three-wheel Omni 

drive and hence, the sensor providing the feedback must 

be as accurate as possible.  

 

The use of gyroscope for angle feedback has proved to be 

very useful due to its accurate output and relatively error 

free transfer of data (it does not send data using analog 

values which will lead to quantization error). The 

gyroscope used for verification and test purpose was 
MPU6050 which works on I2C protocol for data transfer 

giving the change in angle between consecutive fetch 

cycles. 

The new angle is calculated by adding the difference in 

angle acquired from the gyroscope to the present angle as, 

 

 

𝜃 =  𝜃 +  𝜕𝜃                             (1) 

 

 

II. DRIVE CONTROL 

The control of three wheel Omni drive rests upon basic but 
powerful trigonometric equations. In this drive system each 
wheel has separate control equation which is responsible for 
controlling the speed of that particular wheel relative to other 
two wheels to make the robot move in a particular direction  

A. Omni Drive  

Equations are a must as far as we want to drive our robot 
with/without control section embedded in it. These equations 
are not as simple as one might think and neither are they very 
hard to derive. Since our structure is not conventional with all 
wheels parallel to each other, the equations must include 
trigonometric components. 

 

           

  

             Figure 2 Robot Structure and convention 

 

As shown in figure 2, we shall regard the wheel in lower right 

corner as wheel 1, the wheel in lower left corner as wheel 2 

and the wheel on top as wheel 3. The axes are also shown 

alongside the figure with θ measuring from x-axis to y-axis. 

The convention is chosen for simplicity, one might 

completely ignore this convention to adapt a new convention 

and still, in essence, arrive at the same equations. For the 

following derivation, we assume that the heading of robot 

remains same and the equations can be tweaked for changing 

the heading and orientation of the robot. 

 
Let us assume that we want our robot to move at an angle θ 

to x-axis with speed ‘V’ keeping its orientation unchanged. 

The angle θ as well as the speed are variables and so we can 

solve the equations without having to re-check them for 

different values. 

   

The velocity   at an angle θ, when broken into components 

along and perpendicular to wheel 3, resolves as 𝑉.𝑐𝑜𝑠θ î + 

𝑉.𝑠𝑖𝑛θ ĵ, where î and ĵ are unit vectors along x and y axis 

respectively. As these wheels cannot apply force 
perpendicular to them, we shall equate them with components 

parallel to them. Thus,  

 

  𝑣3 = 𝑣 ∗ 𝑠𝑖𝑛𝜃                                 (2) 



 

Where 𝑉3 is velocity of wheel three.  Similarly, when we 

resolve the   along wheel 1 and 2, we get  

        

  𝑣1 = 𝑣 ∗ cos (𝜃 + 30)         (3)                                       

  𝑣2 = 𝑣 ∗ cos (𝜃 − 30)        (4) 

 

These equations when simplified, give us three equations in 

which we have to substitute the value of speed and the angle 

at which the robot is supposed to move. The final equations 

are: 

 

𝑣1 =  − (
1

2
) ∗ 𝑣 ∗ 𝑠𝑖𝑛𝜃 + (

√3

2
) ∗ 𝑣 ∗ 𝑐𝑜𝑠𝜃           (5) 

              𝑣2 =  (
1

2
) ∗ 𝑣 ∗ 𝑠𝑖𝑛𝜃 + (

√3

2
) ∗ 𝑣 ∗ 𝑐𝑜𝑠𝜃               (6) 

                  𝑣3 =  𝑣 ∗ 𝑠𝑖𝑛𝜃               (7) 
 

(5), (6) and (7) are the ones commonly used and quite 

efficient when used with feedback to stop the unwanted drift 

in orientation. 

 

B. Deduced Reckoning using rotary encoders   

    

The holonomic drive is quite versatile due to its ability to 

change its direction of motion without changing its 

orientation and vice versa. But it is this versatility which 

makes it quite difficult to precisely calculate its coordinates 

using laser sensors and other non-contact based distance 

measurement techniques as it would require the robot to 

know its surroundings even before it sets sail. As the robot 

turns the walls around it might change in unexpected manner 

which shall require pre-known map of the surroundings as 

well as some quite complex equations and very precise 
measurements. To avoid this scenario altogether we have 

used rotary encoders even if they have drawback of 

incremental error along with the need to be continuously 

polled for change. But these drawbacks are overcome by its 

supreme advantage which is absolute reference which is 

independent of change in surroundings. 

 

For simplicity, we shall consider the orientation of the robot 

to be constant while calculating the current coordinates of the 

robot. For The calculation let us assume that ‘pulse_vert’ is 

the number of pulses from the encoder facing the heading of 
the robot and ‘pulse_horz’ is the number of pulses from the 

encoder perpendicular to the heading of the robot. Thus, we 

can write it as: 

  

 ∆𝑑𝑖𝑠𝑣𝑒𝑟𝑡 = 𝑃𝑢𝑙𝑠𝑒_𝑣𝑒𝑟𝑡 ∗  𝑑𝑖𝑠𝑝𝑒𝑟𝑝𝑢𝑙𝑠𝑒                      (8) 

 ∆𝑑𝑖𝑠ℎ𝑜𝑟𝑧 = 𝑃𝑢𝑙𝑠𝑒_ℎ𝑜𝑟𝑧 ∗  𝑑𝑖𝑠𝑝𝑒𝑟𝑝𝑢𝑙𝑠𝑒                  (9) 

 

Where, 𝑑𝑖𝑠𝑝𝑒𝑟𝑝𝑢𝑙𝑠𝑒  is the distance travelled by the encoder 

per pulse. It can easily be calculated as: 

 

   𝑑𝑖𝑠𝑝𝑒𝑟𝑝𝑢𝑙𝑠𝑒 =
2𝜋𝑅

𝑃𝑝𝑟
                                   (10)                                                    

Where R is the radius of the encoder and PPR stands for Pulse 

Per Revolution of the rotary encoder. 

Now that we know about the distance travelled by robot in 

the form of ∆𝑑𝑖𝑠ℎ𝑜𝑟𝑧  and∆𝑑𝑖𝑠𝑣𝑒𝑟𝑡 , we can update the current 

coordinates of the robot by following equations  

  

             𝑋𝑑𝑖𝑠 =  𝑋𝑑𝑖𝑠 +  ∆𝑑𝑖𝑠𝑣𝑒𝑟𝑡             (11) 

             𝑌𝑑𝑖𝑠 =  𝑌𝑑𝑖𝑠 + ∆𝑑𝑖𝑠ℎ𝑜𝑟𝑧            (12) 

 

 
 

C. Travelling in Straight Line 

 
Using (8),(9),(11),(12) we are able to get the current 

coordinates of the robot travelling in any direction as the 
vector addition of horizontal and vertical components will 
always equal the distance travelled by the robot . 

Now, let us assume that the robot is currently at coordinates 
(X1, Y1) and the destination coordinates are (X2, Y2). 

              

              Figure 3 Straight line path 

 

Using the Triangulation method depicted in Figure 3, the 

straight line between two coordinates represents the shortest 

path and 𝜃 represents the heading of the robot for travelling 

in straight line.  

 

 

𝜃 = tan−1(
𝑌2−𝑌1

𝑋2−𝑋1
)       (13) 

 

The 𝜃 calculated from (13) can be substituted in (5), (6), (7) 
to get the velocity values for individual wheels. By providing 
the speed values to the wheels the robot can be moved in 
straight line from (X1, Y1) to (X2, Y2). 

 

D. Minimum Overshoot  

 

Ideally, Speed and angle values calculated from (13), (5), (6), 

(7) at the starting of motion will make the robot reach the 

destination. But in Practical Scenario, because of irregularity 

in surface, different friction values for each wheel and uneven 

weight distribution the three wheel Omni drive system 

becomes prone to instability and often deviates from the path 

, this is where minimum overshoot algorithm comes into play. 

 

The minimum overshoot algorithm comprises of mainly two 
parts namely, Path Overshoot, Speed Control. This algorithm 

is applied parallel to the perpetually running PID algorithms 

with the angle provided from gyroscope as the error variable 

to maintain the orientation of the robot during the motion and 

not allowing the robot to spin along the perpendicular axis of 

the wheel base. 

 

 



1. Path Overshoot  

 
    Figure 4 offset paths for straight line 

 

 Offset paths 1 and 2 depicts the possible overshoot 

that can occur during straight line motion. Taking help of 

Triangulation method in Figure3 and (13) to calculate ∆ 𝜃 

Which is the offset heading.  
 

          𝜃 =  𝜃 − ∆ 𝜃       (14) 

          𝜃 =  𝜃 + ∆ 𝜃        (15) 

 

Now, if the robot is on the offset path 1 then offset heading 

calculated can be substituted in (14) correct the path 

overshoot making the robot move on actual path as shown in 

Figure4 similarly , if the robot is on offset path 2 (14) can be 

used to correct the path error.  

For further decreasing the overshoot the above mentioned 

correction method should be applied periodically or be placed 
in the main loop where the drive velocity is controlled for 

individual wheels , this will prevent path error to accumulate 

over the period of the motion resulting in closest path to the 

ideal straight line . 

 

2. Speed Control 

 

For speed control let us introduce some new variables 

‘x_start’ , ‘x_end’ , ‘y_start’ , ‘y_end’  , ‘diff_x’ , ‘diff_y’.  

 

            𝑑𝑖𝑓𝑓_𝑥 =  𝑥_𝑒𝑛𝑑 – x_start           (16) 

            𝑑𝑖𝑓𝑓_𝑦 =  𝑦_𝑒𝑛𝑑 – y_start           (17) 

 

As indicated by the names variables ‘x_start’ , ‘y_start’ are 

updated at the starting of the main control loop using 

(11),(12) and similarly ‘y_start’ , ‘y_end’ , ‘diff_x’ , ‘diff_y’  

are calculated at the end of the loop using (11),(12),(16),(17). 

The variables ‘diff_x’ and ‘diff_y’ represent the distance 

travelled by the robot during the execution of the main loop 

in programme, here time taken by the main loop in the 

programme is taken as a reference, these variables are then 

fed into PID algorithm as error parameter which will increase 
or decrease the speed of the robot against the preset speed 

limit, in the form of limit values of ‘diff_x’ and ‘diff_y’, 

hence preventing the robot from fluctuating from desired 

speed ,as depicted in the following flow chart. 

 

The rotary encoders are enabled and the heading, required 

speed, Kp, preset ticks are passed as input parameters to the 

system. Current encoder ticks serve as initial ticks 

(x_start,y_start) and as the flow of program progresses 

different subroutines ,sensor updates and interrupt service 

routines ,after this interval encoder ticks are again accepted 
as final ticks (x_final,y_final).The error is calculated between 

the preset ticks and the tick difference which is the difference 

of final ticks and initial ticks, upon this error, PID is applied 

and corrected speed is calculated. 

 

 

 
 
                    Figure 5 Flow chart for speed control 
 

III. PATH SAMPLING 

––– 
The idea behind path sampling is that every curved path can 
be formed from sequential juxtaposing of miniscule straight 
lines. Figure 6 depicts the curve made by combination of 
straight lines, the smoothness of the curve represented in 
Figure can be improved by increasing the sampling rate which 



reduces the length of the straight lines, removes sharp edges 
and discontinuities hence resulting in a smooth curve. 

  

                        Figure 6 Curve made of straight lines 

 

The segmentation of the curve in straight lines helps to 

manoeuvre the robot into complicated curves by using simple 
and efficient straight line equations which consumes less 

computational power and provide reliability and robustness. 

 

The path sampling is done by manually moving the robot 

along a curve path while simultaneously storing the 

coordinates using (11), (12) periodically at high frequency or 

high sampling rate, to increase the resolution and accuracy of 

the stored curve. After all the coordinates are stored 

Triangulation method and (13) are used , in the same 

sequence as the stored coordinates, to transform the distinct  

coordinate pairs into miniscule straight lines which 
eventually combine together to form a curve .    

 

For applications with less memory constraints and more 

computational capabilities orientation of the robot at each 

coordinate and speed at each coordinates can also be stored 

to bolster the accuracy and reliability of the sampling.  

 

  

IV. PATH FOLLOWING 

 

Path following is done in robot by sequentially hopping from 

one straight line to another until the whole curve is traced. 
The motion in straight is performed by employing deduced 

reckoning algorithm along with reduced overshoot to 

accurately mimic the straight line path which is sampled.  

 

 

V. RESULTS 

 

The algorithms were tested on a Three wheel base made of 

mild-steel, electronic hardware involved microcontroller 

[11], gyroscope [10], encoder, motors [2]. Li-PO batteries 

(22.5V, 4500mAh).The surface involved a ply wood floor 
with metal/oil paint.  

 

The robot weighed approximately 30 Kg. The initial tests 

involved analysis of performance without the use of 

algorithm, the robot was made to follow a ‘S’ shaped path, 

where sudden acceleration and deceleration were required for 

smooth direction change, but the robot could be accelerated 

from 0 to its  maximum  speed  of  5 m/sec  which  required  

2 sec  pickup  time  due  to slip  of  Omni wheels and low 

friction between wheels  and  floor,  maintenance of  desired  

constant  speed was difficult. Upon implementation of 

Reduced Overshoot algorithm the pickup time and  
maintenance of constant  desired  speed  was  dramatically  

improved and the robot  was  able  to  decrease  it’s  speed 

from 5m/sec to 2m/sec in 1 sec during direction change and 

thus reducing the considerable effects of inertia easily in 

situations where sudden  acceleration  and  deceleration  are  

required  like  curve  tracing.                  
  

 

 

 

                Figure 6 Software model and Real implementation 

 

VI. CONCLUSION 

 

The proposed algorithms when tested on specified hardware 

and structure provided improved results by damping the 

effects of inertia while changing paths and resulted in smooth 

motion of the robot throughout the curve. Our approaches 

were mainly focused on motion of three wheel Omni 

framework, but the proposed algorithms for speed reduction 

and curve tracing methods can also be implemented on other 
holonomic frameworks .The integration of proposed 

algorithm and three wheel framework along with specified 

hardware finds applications in various scenarios like 

industrial automation, domestic application robot for carrying 



payloads from one place to another irrespective of the path 

between the two places. Another major benefit of the 

proposed method is that any path can be traced by only 

sampling the path once then the robot can adjust to the 

variations and changes that take place in the route 

dynamically in real time and without any reprogramming. 
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