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PROPERTIES OF THE ROBIN’S INEQUALITY

FRANK VEGA

Abstract. In mathematics, the Riemann hypothesis is a conjecture that the
Riemann zeta function has its zeros only at the negative even integers and

complex numbers with real part 1
2

. Many consider it to be the most important
unsolved problem in pure mathematics. The Robin’s inequality consists in

σ(n) < eγ × n × ln lnn where σ(n) is the divisor function and γ ≈ 0.57721

is the Euler-Mascheroni constant. The Robin’s inequality is true for every
natural number n > 5040 if and only if the Riemann hypothesis is true. We

prove the Robin’s inequality is true for every natural number n > 5040 when

15 - n, where 15 - n means that n is not divisible by 15. More specifically:
every counterexample should be divisible by 220 × 313 × 58 × k1 or either

220 × 313 × k2 or 220 × 58 × k3, where k1, k2, k3 > 1, 2 - k1, 3 - k1, 5 - k1,

2 - k2, 3 - k2, 2 - k3 and 5 - k3.

1. Introduction

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta
function has its zeros only at the negative even integers and complex numbers with
real part 1

2 . Many consider it to be the most important unsolved problem in pure
mathematics [3]. It is of great interest in number theory because it implies results
about the distribution of prime numbers [3]. It was proposed by Bernhard Riemann
(1859), after whom it is named [3]. It is one of the seven Millennium Prize Problems
selected by the Clay Mathematics Institute to carry a US 1,000,000 prize for the
first correct solution [3]. The divisor function σ(n) for a natural number n is defined
as the sum of the powers of the divisors of n,

σ(n) =
∑
k|n

k

where k | n means that the natural number k divides n [5]. In 1915, Ramanujan
proved that under the assumption of the Riemann hypothesis, the inequality,

σ(n) < eγ × n× ln lnn

holds for all sufficiently large n, where γ ≈ 0.57721 is the Euler-Mascheroni constant
[2]. The largest known value that violates the inequality is n = 5040. In 1984, Guy
Robin proved that the inequality is true for all n > 5040 if and only if the Riemann
hypothesis is true [2]. Using this inequality, we show an interesting result.
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2. Results

Theorem 2.1. Given a natural number n = pa11 × pa22 × . . . × pamm such that
p1, p2, . . . , pm are prime numbers, then we obtain the following inequality

σ(n)

n
<

m∏
i=1

pi
pi − 1

.

Proof. For a natural number n = pa11 × p
a2
2 × . . .× pamm such that p1, p2, . . . , pm are

prime numbers, then we obtain the following formula

(2.1) σ(n) =

m∏
i=1

pai+1
i − 1

pi − 1

from the Ramanujan’s notebooks [1]. In this way, we have that

(2.2)
σ(n)

n
=

m∏
i=1

pai+1
i − 1

paii × (pi − 1)
.

However, for any prime power paii , we have that

pai+1
i − 1

paii × (pi − 1)
<

pai+1
i

paii × (pi − 1)
=

pi
pi − 1

.

Consequently, we obtain that

(2.3)
σ(n)

n
<

m∏
i=1

pi
pi − 1

.

�

Theorem 2.2. Given some prime numbers p1, p2, . . . , pm, then we obtain the fol-
lowing inequality,

m∏
i=1

pi
pi − 1

<
π2

6
×

m∏
i=1

pi + 1

pi
.

Proof. Given a prime number pi, we obtain that

pi
pi − 1

=
p2i

p2i − pi
and that would be equivalent to

p2i
p2i − pi

=
p2i

p2i − 1− (pi − 1)

and that is the same as

p2i
p2i − 1− (pi − 1)

=
p2i

(pi − 1)× (
p2i−1
(pi−1) − 1)

which is equal to

p2i

(pi − 1)× (
p2i−1
(pi−1) − 1)

=
p2i

(pi − 1)× p2i−1
(pi−1) × (1− (pi−1)

p2i−1
)
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that is equivalent to

p2i

(pi − 1)× p2i−1
(pi−1) × (1− (pi−1)

p2i−1
)

=
p2i

p2i − 1
× 1

1− (pi−1)
p2i−1

which is the same as

p2i
p2i − 1

× 1

1− (pi−1)
p2i−1

=
1

1− p−2i
× 1

1− 1
(pi+1)

and finally
1

(1− p−2i )
× 1

1− 1
(pi+1)

=
1

(1− p−2i )
× pi + 1

pi
.

In this way, we have that
m∏
i=1

pi
pi − 1

=

m∏
i=1

1

1− p−2i
×

m∏
i=1

pi + 1

pi
.

However, we know that
m∏
i=1

1

1− p−2i
<

∞∏
j=1

1

1− p−2j
where pj is the jth prime number and we have that

∞∏
j=1

1

1− p−2j
=
π2

6

as a consequence of the result in the Basel problem [5]. Consequently, we obtain
that

(2.4)

m∏
i=1

pi
pi − 1

<
π2

6
×

m∏
i=1

pi + 1

pi
.

�

Definition 2.3. We recall that an integer n is said to be squarefree if for every
prime divisor p of n we have p2 - n, where p2 - n means that p2 does not divide n
[2].

Theorem 2.4. Given a squarefree number n = q1×. . .×qm such that q1, q2, . . . , qm
are odd prime numbers, 3 - n and 5 - n, then we obtain the following inequality

(2.5)
π2

6
× 3

2
× σ(n) ≤ eγ × n× ln ln(219 × n).

Proof. This proof is very similar with the demonstration in Theorem 1.1 from the
article reference [2]. By induction with respect to ω(n), that is the number of
distinct prime factors of n [2]. Put ω(n) = m [2]. We need to prove the assertion
for those integers with m = 1. From the equation (2.1), we obtain that

(2.6) σ(n) = (q1 + 1)× (q2 + 1)× . . .× (qm + 1)

when n = q1 × q2 × . . . × qm. In this way, for any prime number pi ≥ 7, then we
need to prove

(2.7)
π2

6
× 3

2
× (1 +

1

pi
) ≤ eγ × ln ln(219 × pi).
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For pi = 7, we have that

π2

6
× 3

2
× (1 +

1

7
) ≤ eγ × ln ln(219 × 7)

is actually true. For another prime number pi > 7, we have that

(1 +
1

pi
) < (1 +

1

7
)

and

eγ × ln ln(219 × 7) < eγ × ln ln(219 × pi)
which clearly implies that the inequality (2.7) is true for every prime number pi ≥ 7.
Now, suppose it is true for m − 1, with m ≥ 2 and let us consider the assertion
for those squarefree n with ω(n) = m [2]. So let n = q1 × . . .× qm be a squarefree
number and assume that q1 < . . . < qm for qm ≥ 7.

Case 1 :qm ≥ ln(219 × q1 × . . .× qm−1 × qm) = ln(219 × n).
By the induction hypothesis we have

π2

6
× 3

2
×(q1+1)×. . .×(qm−1+1) ≤ eγ×q1×. . .×qm−1×ln ln(219×q1q1×. . .×qm−1)

and hence
π2

6
× 3

2
× (q1 + 1)× . . .× (qm−1 + 1)× (qm + 1) ≤

eγ × q1 × . . .× qm−1 × (qm + 1)× ln ln(219 × q1 × . . .× qm−1)

when we multiply the both sides of the inequality by (qm + 1). We want to show
that

eγ × q1 × . . .× qm−1 × (qm + 1)× ln ln(219 × q1 × . . .× qm−1) ≤
eγ×q1× . . .×qm−1×qm× ln ln(219×q1× . . .×qm−1×qm) = eγ×n× ln ln(219×n).

Indeed the previous inequality is equivalent with

qm × ln ln(219 × q1 × . . .× qm−1 × qm) ≥ (qm + 1)× ln ln(219 × q1 × . . .× qm−1)

or alternatively

qm × (ln ln(219 × q1 × . . .× qm−1 × qm)− ln ln(219 × q1 × . . .× qm−1))

ln qm
≥

ln ln(219 × q1 × . . .× qm−1)

ln qm
.

From the reference [2], we have that if 0 < a < b, then

(2.8)
ln b− ln a

b− a
=

1

(b− a)

∫ b

a

dt

t
>

1

b
.

We can apply the inequality (2.8) to the previous one just using b = ln(219 × q1 ×
. . .× qm−1 × qm) and a = ln(219 × q1 × . . .× qm−1). Certainly, we have that

ln(219 × q1 × . . .× qm−1 × qm)− ln(219 × q1 × . . .× qm−1) =

ln
219 × q1 × . . .× qm−1 × qm

219 × q1 × . . .× qm−1
= ln qm.

In this way, we obtain that

qm × (ln ln(219 × q1 × . . .× qm−1 × qm)− ln ln(219 × q1 × . . .× qm−1))

ln qm
>
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qm
ln(219 × q1 × . . .× qm)

.

Using this result we infer that the original inequality is certainly satisfied if the
next inequality is satisfied

qm
ln(219 × q1 × . . .× qm)

≥ ln ln(219 × q1 × . . .× qm−1)

ln qm

which is trivially true for qm ≥ ln(219 × q1 × . . .× qm−1 × qm) [2].
Case 2 :qm < ln(219 × q1 × . . .× qm−1 × qm) = ln(219 × n).
We need to prove

π2

6
× 3

2
× σ(n)

n
≤ eγ × ln ln(219 × n).

We know that 3
2 < 1.6 = 4×6

3×5 . Nevertheless, we could have that

3

2
× σ(n)

n
× π2

6
<

4× 6× σ(n)

3× 5× n
× π2

6
=
σ(3× 5× n)

3× 5× n
× π2

6
≤ eγ × ln ln(219 × n)

where this is possible because of 3 - n and 5 - n. If we apply the logarithm to the
both sides of the inequality, then we obtain that

ln(
π2

6
) + (ln(3 + 1)− ln 3) + (ln(5 + 1)− ln 5) +

m∑
j=i

(ln(qj + 1)− ln qj) ≤

γ + ln ln ln(219 × n).

From the reference [2], we note that

ln(p1 + 1)− ln p1 =

∫ p1+1

p1

dt

t
<

1

p1
.

In addition, note also that ln(π
2

6 ) < 1
2 . It is enough to prove that

1

2
+

1

3
+

1

5
+

1

q1
+ . . .+

1

qm
≤

∑
p≤qm

1

p
≤ γ + ln ln ln(219 × n)

where p ≤ qm means all the prime lesser than or equal to qm. However, we know
that

γ + ln ln qm < γ + ln ln ln(219 × n)

since qm < ln(219 × n) and therefore, we would only need to prove that∑
p≤qm

1

p
≤ γ + ln ln qm

which is true according to the Lemma 2.1 from the article reference [2]. In this way,
we finally show the Theorem is indeed satisfied. �

Theorem 2.5. Given a natural number n = 2a1 × 3a2 × 5a3 > 5040 such that
a1, a2, a3 ≥ 0 are integers, then the Robin’s inequality is true for n.

Proof. Given a natural number n = pa11 × pa22 × . . . × pamm > 5040 such that
p1, p2, . . . , pm are prime numbers, we need to prove that

σ(n)

n
< eγ × ln lnn
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that would be the same as

(2.9)

m∏
i=1

pi
pi − 1

< eγ × ln lnn

according to Theorem 2.1. Given a natural number n = 2a1 × 3a2 × 5a3 > 5040
such that a1, a2, a3 ≥ 0 are integers, we have that

m∏
i=1

pi
pi − 1

≤ 2× 3× 5

1× 2× 4
= 3.75 < eγ × ln ln(5040) ≈ 3.81.

However, we know for n > 5040, we have that

eγ × ln ln(5040) < eγ × ln lnn

and thus, the proof is completed. �

Theorem 2.6. The Robin’s inequality is true for every natural number n > 5040
when 15 - n. More specifically: every counterexample should be divisible by 220 ×
313 × 58 × k1 or either 220 × 313 × k2 or 220 × 58 × k3, where k1, k2, k3 > 1, 2 - k1,
3 - k1, 5 - k1, 2 - k2, 3 - k2, 2 - k3 and 5 - k3.

Proof. Given a natural number n = pa11 × pa22 × . . . × pamm > 5040 such that
p1, p2, . . . , pm are prime numbers, then we will check the Robin’s inequality for
n. We know this true when the greatest prime divisor of n is lesser than or equal
to 5 according to Theorem 2.5. Another case is when 3 - n and 5 - n. We need to
prove the inequality (2.9) for that case. In addition, the inequality (2.9) would be
true when

π2

6
×

m∏
i=1

pi + 1

pi
< eγ × ln lnn

according to the Theorem 2.2. Using the properties of the equation (2.2), we obtain
that will be equivalent to

π2

6
× σ(n′)

n′
< eγ × ln lnn

where n′ = q1× . . .×qm is the squarefree representation of n. However, the Robin’s
inequality has been proved for all integers n not divisible by 2 (which are bigger
than 10) [2]. Hence, we need to prove when 2 | n′. In addition, we know the
Robin’s inequality is true for every n > 5040 such that 2k | n for 1 ≤ k ≤ 19 [4].
Consequently, we only need to prove that for all n > 5040 such that 220 | n and
thus, we have that

eγ × n′ × ln ln(219 × n′

2
) < eγ × n′ × ln lnn

because of 219 × n′

2 < n when 220 | n and 2 | n′. In this way, we only need to prove
that

π2

6
× σ(n′) ≤ eγ × n′ × ln ln(219 × n′

2
).

According to the equation (2.6) and 2 | n′, we have that

π2

6
× 3× σ(

n′

2
) ≤ eγ × 2× n′

2
× ln ln(219 × n′

2
)
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which is the same as

π2

6
× 3

2
× σ(

n′

2
) ≤ eγ × n′

2
× ln ln(219 × n′

2
)

which is true according to the Theorem 2.4. In addition, we know the Robin’s
inequality is true for every n > 5040 such that 3i | n and 5j | n for 1 ≤ i ≤ 12 and
1 ≤ j ≤ 7 [4]. To sum up, we have finally proved this result. �
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