
EasyChair Preprint
№ 8331

Advantages of Anytime Algorithm for
Multi-Objective Query Optimization

Rituraj Rituraj and Annamária Várkonyi Kóczy

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 21, 2022

Advantages of Anytime Algorithm for Multi-Objective Query Optimization

1st Rituraj Rituraj

Doctoral school of applied informatics

and applied mathematics

Obuda University

Budapest, Hungary

rituraj88@stud.uni-obuda.hu

 2rd Annamária R. Várkonyi Kóczy

Institute of automation, Kandó Kálmán
Faculty of Electrical Engineering

Obuda University

Budapest, Hungary

varkonyi-koczy@uni-obuda.hu

Abstract— Data is becoming an important source of

information these days. According to the recent Forbes survey,

there are 2.5 quintillion bytes of data created each day at our

current pace. While getting these amounts of data, it is necessary

to process them in order to extract information. These data can

be accessed in many ways in order to get meaningful

information. This paper only deals with the query plans model

through multi-objective optimization process using anytime

algorithm. Query plans is an ordered stairway used for

accessing data in SQL relational database systems. Query plans

provides diverse tradeoff between conflicting cost matrices. The

cost matrices are execution time, energy consumption and

execution fees in multi-objective aspects. When SQL database

run the queries by choosing an optimum query execution plan

then it minimizes the query cost, which is very crucial for the

query optimizer. Multi-objective query optimization and

anytime algorithm possess very specific properties in order to

support an interactive process which dynamically add various

constraints and then finally select the best plan based on the

continuously refined visualization of optimal cost tradeoffs.

First, the anytime algorithms generate the multiple result plan

sets which increase the quality with low latency rate between

consecutive results. Second, the consecutive results will be

incremented to avoid regenerating query plans when being

invoked several times for the same query but with different user

constraints. This paper deals with the advantages of anytime

algorithm for the multi objective query optimization to analyze

the complexity which offers an attractive tradeoff between the

results. It can be used to update frequency, single invocation

time complexity and multiple time over invocations. These

properties make anytime algorithm suitable to be used within

an interactive query optimization process.

Keywords— Query plans, Multi-objective optimization,

Anytime algorithm.

I. INTRODUCTION

Traditionally, we cape of long cost matrices in query
processing execution time. However, nowadays we have
many scenarios which need to know about multiple cost
matrices to trade between them. This uses the cloud
computing. Cloud computing in terms of tradeoff execution
time is against monitoring fees. If we rent more, then all the
providers may refuse the execution time and set for optimal
cost tray of the given query [1]. This is also called
ParetoFrontier. In order to trade precisely against the
execution time, there are three cost matrices i.e. execution
time, execution fees, and result precision [2]. There are few
examples like:

• Concurrent systems: - System resources (cores,
buffer spaces), execution-time

• Energy- Aware computing: - Energy, execution-
time

• Crowd sourcing: - Fees, execution-time,
accuracy.

In summary, many scenarios of query processing are a
tradeoff between multiple cost matrices. It has a fundamental
effect on the query optimization problems. This is because
traditionally we have only one cost matric and the goal is to

minimize it. Nowadays, we have many matrices and the goal
is to find the best tradeoff out of them to integrate results of
user preferences into the optimization process. It is because
some users look for execution time, but some look for
execution fee [3].

Fig 1. Relation between Non-interactive and Interactive Approaches

In non- interactive approach, the user basically specifies the
preferences to get of the query as the problem input to the
optimizer. After this the optimizer will analyze those
preferences in order to find the optimal query output. The
problem is that the queries are generally very difficult to
formalize these preferences. The users don’t know what they
want before seeing it. So, from the users prospective and for
much more convenience, interactive model is approached [4].
At the first stage of this model, the user uses query to the
optimizer where optimizer visualizes result of optimal cost
matrices. After this it introduces a preferred tradeoff out of it.
The problem here is efficiency. It needs to calculate the
complete pareto-frontier which is sometimes not feasible. It
might take an hour for simple query. It can approximate the
real pareto-frontier, but it might take a minute and form an
interactive interface. This is still a long process. For that
reason, in the second stage user thought to increment the life
on the optimization process. This means that it divides the
optimization process into many small incremental steps. After
each step it provides an intermediate optimization results to
the user. This gives the possibilities to dynamically specify
cost-bounds for the optimizer. This helps in order to guide the
optimization towards positive result space. This is an anytime
algorithm because it doesn’t return one approximation of the
pareto-frontier but multiple approximation of increasing
qualities. There are incremental algorithms since it takes of
avoiding reductant graph over multiple approximation. It
always approximate pareto-frontier for the same query
multiple times. If it doesn’t pay attention, then it might have
many faults that will regenerates multiple times for same
instance [5]. In the figure 2, the user has issues to query plans
and the optimizer very quickly generates a cross -strait
approximation of the pareto-frontier. If the user doesn’t do
anything then these approximations is refined, and user wants

to restrict the execution fee. In this case, it can dynamically
identify the cost-round and the optimization will end. After
this, it will only be focusing on the area near to the cost bound.
This area is obtained by approximating the pareto frontiers by
using the anytime algorithm method. Finally, if the user feels
that the approximation is sufficiently closed to the desired
output then the user clicks on those pareto-frontier to get the
execution time and fee [6].

Fig 2. Anytime Algorithm Optimization Example

The scenarios for multi-objective query optimization in
ascending order of time constraints are optimization before
run time, optimization at run time, and optimization at run
time and interactive

II. ADVANTAGES OF ANYTIME ALGORITHM FOR

OPTIMIZER

Anytime algorithm is the algorithm which handle the case
of too many abrupt changes and their consequences in the
signal processing, monitoring, diagnostics, or larger scale
embedded systems [7]. The algorithm finds better and better
solutions as it keeps running for longer duration. In query
optimization process, the interactive optimizer plays an
important role in approaching the anytime algorithm. The user
interface takes the action of the user and control the resolution
and refinement. The incremental optimizer specifies that the
pareto-frontier should be approximated for the given
resolution and cost bound. Now the optimizer is incremented
because it makes a set of query plans across convocation and
generate result plan. The generated result plan might be
considered later when the resolution gets refined and cost
bound changed. The goal of optimizer design is to avoid
redundant work and keep optimization time proportional to
current resolution and bound. On high level, steps per
optimizer invocation includes a) retrieve candidates and
prune, in the first phase b) generate plans and prune, in the
second phase. Query are the syntactically valid parse trees
whose semantic meanings are reasonable and need to interpret
[8].

Fig 3. Overview of Interactive Optimizer

The main problem which arises on the high level is the
generation of plans twice. In order to avoid it, we need to be
careful in combining the plans. If we combine the one new
plan to another new plans, then the plan will generate twice.
Therefore, we must join the old plan with the new plan. In
such cases the optimize query plans do not contains any
similar items. This algorithm used to compute policies for
decision problems represented as multi- stage influences. It
helps to constructs policies incrementality which helps to
construct policies with more information available to the
decision make at each step [9].

Fig 4. Showing the Pruning Plans

Parallel correctness serves as a framework for studying
correctness. The implications of data partitioning are one-
round query process in evaluation algorithms. The algorithm
is useful in describing the compilation and monitoring
mechanism for the intelligent systems. It can control
deliberation time of the system. The algorithm is ideal for
bounded time pathfinding problems. It helps in finding the
feasible sub-optimal solution very quickly and improving it
until time runs out. Anytime rectangle expansion algorithm
used to run an accelerated sub-optimal search and then repairs
the sub-optimality. It provides narrower and more accurate
sub-optimality bounds of its solutions [10].

Fig 5. Showing Retrieving Plans

Anytime algorithm improves query plans via a multi-objective
version of hill climbing. This applies multiple transformations
in each climbing step for maximal efficiency. In each iteration
process of query optimization, anytime algorithm performs in
expected polynomial time. This is based on an analysis of the
expected path length between a random plan and local optima
reached by hill climbing. This algorithm can optimize queries
with hundreds of tables and performs other randomized
algorithms with multiple cost matrices.

III. COMPLEXITY ANALYSIS

The analysis of the complexity of algorithm is a mutable
process from the prospective of some similar query plans.
After it generated, it is indexed as candidates and might be re-
indexed as candidates couples of times before it is finally
indulging as a result plan or discarded. Then it shows the
whole life cycle happens only once over a series of
optimization convocation [11]. The number of times depends
on the re-indexed candidate which is bounded. Altogether it
means that the amount of work that has on the query plan is
bounded. The complexity analysis results in incrementing the
optimization process of query plans. The impact of
incrementality is a) the optimization time becomes
incremental part and moderately overhead b) optimization
time proportional to search space size [12].

Fig 6. Query Plan Life Cycle

Anytime algorithm in the query optimization process is
used for the simultaneous coalition of the structured query
plans and indexed candidates. This optimization problems
have many real-world applications which include minimizing

the total cost associated with the execution of a request. These
associated costs are function of the access time cost for input
and output of the system which is involved in accessing the
physical data stored on disk. To evaluate the algorithm’s
performance, we extend established methods we extend
established methods for synthetic problem set generation. The
benchmark of the algorithm is using randomized data sets of
varying distribution and complexity. The algorithm solves the
problem of assigning query plans to regions in a major
commercial strategy game. This shows that the algorithm can
be utilized in query optimization to coordinate smaller sets of
agents in real-time. Anytime algorithm computes a polytopic
underapproximation of the stochastic result plans set. It
synthesizes an open-loop controller using convex
optimization [13]. Query optimization typically tries to
approximate the optimum by comparing several common-
sense alternatives. The complexity of the model can be tuned
both by evaluating only a query model and by improving the
existing model increasing the granulation in the knowledge of
new information. Fuzzy logic with Tsukamoto inference
system can be used in order to have a much faster query
response time. This can accelerate query response time. Thus,
by combining fuzzy and anytime techniques it is a possible
way to overcome the difficulties caused by the high and
explosive complexity of the applied models and algorithms
[14].

IV. CONCLUSION

 It is very difficult to formalize the user preferences; therefore,
multi-objective query optimization should be an interactive
process. Anytime algorithm is very helpful in designing the
interactive optimizer for the whole process to be carried out
within the limited time. The query optimization motivates
incremental anytime algorithm. Fuzzy and anytime algorithm
could be the better option for query optimization.

ACKNOWLEDGMENT

I heartily thank my Ph.D. supervisor Annamária R.
Várkonyi Kóczy from the Obuda University for providing me
the sufficient data and prior scientific papers to start with the
topic. She continuously discussed the methods of writing a
conference paper in the first semester of Ph.D. I also thank my
friends Awaish Qadir, Neerendra Kumar and Yatish Bhatla
for making me understand the topic and templates for writing
the paper.

REFERENCES

[1] Trummer I, Koch C. An incremental anytime algorithm for multi-
objective query optimization. InProceedings of the 2015 ACM
SIGMOD International Conference on Management of Data 2015 May
27 (pp. 1941-1953). ACM.

[2] Stulova N, Morales JF, Hermenegildo MV. Some trade-offs in
reducing the overhead of assertion run-time checks via static analysis.
Science of Computer Programming. 2018 Apr 1;155:3-26.

[3] Blelloch GE, Gu Y, Shun J, Sun Y. Parallel write-efficient algorithms
and data structures for computational geometry. InProceedings of the
30th on Symposium on Parallelism in Algorithms and Architectures
2018 Jul 11 (pp. 235-246). ACM.

[4] Tian R, Qiu J, Zhao Z, Liu X, Ren B. Transforming query sequences
for high-throughput B+ tree processing on many-core processors.
InProceedings of the 2019 IEEE/ACM International Symposium on
Code Generation and Optimization 2019 Feb 16 (pp. 96-108). IEEE
Press.

[5] Kolchinsky I, Schuster A. Join query optimization techniques for
complex event processing applications. Proceedings of the VLDB
Endowment. 2018 Jul 1;11(11):1332-45.

[6] Leis V, Radke B, Gubichev A, Mirchev A, Boncz P, Kemper A,
Neumann T. Query optimization through the looking glass, and what
we found running the join order benchmark. The VLDB Journal—The
International Journal on Very Large Data Bases. 2018 Oct 1;27(5):643-
68.

[7] Goyal D, Pabla BS. Condition based maintenance of machine tools—
A review. CIRP Journal of Manufacturing Science and Technology.
2015 Aug 1;10:24-35.

[8] Kossmann D, Ailamaki A, Balazinska M. SIGMOD Officers,
Committees, and Awardees. SIGMOD Record. 2016 Mar;45(1):1.

[9] Horsch MC, Poole D. An anytime algorithm for decision making under
uncertainty.). Morgan Kaufmann Publishers Inc. InProceedings of the
Fourteenth conference on Uncertainty in artificial intelligence 1998 Jul
24 (pp. 246-255

[10] Li C, Bi W. ANYTIME RECTANGLE EXPANSION A*
ALGORITHM FOR TIME-LIMITED PATHFINDING An Zhang.
International Journal of Robotics and Automation. 2019;34(3).

[11] Prékopa A, Szántai T, Zsuffa I. Secondary Stochastic Processes and
Storage Reservoir Optimization. Acta Polytechnica Hungarica. 2018
Jan 1;15(1).

[12] Dulai T, Dósa G, Werner-Stark Á. Multi-Project Optimization with
Multi-Functional Resources by a Genetic Scheduling Algorithm. Acta
Polytechnica Hungarica. 2018 Jan 1;15(4):101-19.

[13] Vinod AP, Oishi MM. Stochastic reachability of a target tube: Theory
and computation. arXiv preprint arXiv:1810.05217. 2018 Oct 11.

[14] Várkonyi-Kóczy AR. Fuzzy approaches in anytime systems. InOn
Fuzziness 2013, Springer, Berlin, Heidelberg (pp. 725-735).

.

