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Abstract 

 
All existing protein structure comparison methods return 

a score for similarity, but few give a deep underlying look 
at the parts of the structures which match. Zemla’s Global 
Distance Test (GDT) [1] partially does by identifying the 
largest region of a pair of structures whose superposition 
errors all fall under some threshold, but the region and its 
errors are dependent on that superposition, and smaller 
regions are not identified. By converting the Ca distances 
matrices of two structures into a graph, a maximum clique 
analysis can be used to identify the largest non-overlapping 
regions of similarity between structures. These regions can 
easily be visualized, and they lend themselves to a deep 
analysis of the underlying similarities between structures, 
complementing existing methods of comparison by 
providing additional information that is not readily 
available. Additionally, when applied to an analysis such 
as that performed for each CASP experiment, models 
which correctly represent each domain in a multi-domain 

structure but whose orientations differ from the native will 
be immediately apparent. A regions of similarity analysis 
can be performed on multi-domain targets without a priori 
knowledge of the domains. 
 
keywords: structural bioinformatics, protein structure 
comparison; max clique; protein structure prediction; 
conformational comparative analysis; CASP 
 

1    Introduction 
 
 Whether for analyzing the results of different protein 
structure predictors, different conformations of the same 
protein, or similar conformations of related proteins, the 
comparison and analysis of complex three-dimensional 
structures is a difficult yet fundamental task. Comparison 
of two or more protein structures requires a 
correspondence between reference points (usually the a 



 

 2 

backbone carbon atoms, or Cas) in one structure to 
reference points in the other. It is based on these 
correspondences that differences and similarities in the two 
structures can be assessed. Broadly speaking, there are two 
major categories of methods for protein structure 
comparison: superposition-based methods and contact-
based methods.  

In superposition-based methods, the correspondences 
between structures are the distances between analogous 
Cas following a superposition of one structure onto 
another. Two such methods are the Global Distance Test 
(GDT) [1] and the Template Modelling Score (TM-Score) 
[2]. TM-Score is a score originally designed to rank 
templates for the application of protein threading. It is the 
score given to the optimal superposition of a template onto 
a reference structure that minimizes its scoring function. 
Another method, GDT, identifies four sets of residues, a 
set for each of four thresholds: {1.0, 2.0, 4.0, and 8.0 Å}. 
Each set is the largest set of residues that can be 
superposed whose superposition errors all fall under its 
threshold. These residues can be highlighted in 
visualizations, but they are not encompassing of all of the 
potential similarity between two structures. Since GDT 
relies on superposition, if there are multiple areas of 
similarity – for example, two domains, each well-modelled 
(in the case of protein structure prediction efforts) but 
shifted relative to each other – GDT will, in most cases, 
only identify the largest domain. The difficulty ultimately 
is that the underlying information, the residue errors, are 
dependent on the superposition. Does an individual residue 
have a large superposition error because it is in a part of 
the structure that is not well-modelled or because of an 
unfavorable superposition?  

In contact-based methods, the correspondences are 
analogous contacts within the structures. For example, the 
Contact Area Difference score (CAD) examines the 
contact surface areas of pairs of residues within both 
structures [3], and the local Distance Difference Test 
(lDDT) method compares pairwise atomic distances within 
both structures [4]. lDDT measures the fraction of pairwise 
distances, all less than an inclusion radius Ro (by default 15 
Å) and not within the same residue, in a reference structure 
that are preserved in a model. By restricting the distances 
analyzed to those under the inclusion radius, lDDT acts a 
measure of the local accuracy of the structures.  

It is important to note that in protein comparison there is 
a distinction between the global and local accuracy of 
structures and that these two directions of structural 
analysis are often orthogonal. Globally accurate structures 
are those which orient the tertiary components of 
structures, such as domains, correctly relative to each other 
while locally accurate structures are those that get the 
details of the components correct. Structures which are 
globally accurate might not be locally accurate and vice 
versa. Domain movements in multi-domain structures will 

contribute to a poor global score even if the domains 
themselves are locally accurate. In general, superposition-
based methods tend to favor global accuracy since only 
those structures which are globally accurate will receive 
high scores for some optimal superposition. Likewise, 
contact-based methods tend to evaluate local accuracy 
since they rely on contacts – local measures which are 
reproduced in both a reference and a model. Balancing the 
orthogonal pull of the analysis global versus local accuracy 
remains a key difficulty in protein structural analysis. 
Ideally, methods to analyze the similarities of and 
differences between protein structures should have certain 
properties [5]: They should be quantitative and visualizable 
(i.e. they should produce an overall metric but rely on 
underlying information that can easily be visualized in a 
meaningful way). They should not only allow analysis 
across large data sets, but also allow insightful analysis 
into individual comparisons. They should be stable against 
large variations in small parts of the structures (i.e. large 
swings in variable loops or at the termini of a structure 
should not result in large leaps in the similarity score). 
Finally, any new method should provide information that is 
not easily accessible from other measures, and their 
assessments should be intuitive to understand.  

Inspired by the work done on GDT and lDDT we 
propose a novel method that we believe supplements these 
techniques and allows a more detailed analysis of the 
similarities of and differences between protein structures. 
Regions of Similarity, the method proposed in this paper, 
is a contact-based method most like lDDT in spirit. Like 
lDDT, it is based on pairwise distances, but instead of 
finding the fractions of preserved local distances between 
two structures, it uses the same distance information to 
perform a graph analysis of the similarity between the two 
structures. It is through this graph analysis that a detailed 
assessment of the similarities and differences between 
structures can be performed. 
 

2    Materials & Methods 
 

2.1    Definition of Regions of Similarity 
 

A Region of Similarity is a set of aligned residues 
between two protein structures whose intra-structure Ca 
distances are all the same – within a tolerance threshold – 
in both structures and which all form a cohesive unit within 
the structures. Rigorously defined, given a reference and a 
model structure whose residues have been aligned, a region 
of similarity is a set of residues whose: 

1. Size is at least 10 residues. 
2. Pairwise Ca atomic distances are all the same, 

within a tolerance threshold, in both structures. 
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3. Contact map in the model forms a connected 
graph. 

The third condition ensures that the residues in a region 
all come from some local part of the model. It forces a 
region to contain contiguous residues in three-dimensional 
space and enforces the idea that a region should represent a 
set of residues that take the shape they do because they are 
strongly interacting with one another. Without this 
condition, it would be possible to have residues from 
distant parts of the structures forming a region because 
they are coincidentally the same distance apart in both 
structures.  
 

2.2    Finding Regions of Similarity 
 
 To find the largest region of similarity between two 
protein structures, first their sequences are aligned. Then 
the distance differences matrix is calculated: 𝐷",$ = 𝑅",$ −
𝑀",$ where i and j are aligned residues, R is the Ca distance 
matrix for the reference structure, M is the Ca distance 
matrix for the model structure, and D is the distance 
differences matrix. A similarity graph is then built from 
𝐷",$. Every residue is a vertex, and there is an edge 
between two vertices if their value in 𝐷",$	is less than a 
tolerance threshold, 𝑡 = 1.0Å by default. The maximum 
clique of this graph reveals the set of potential residues for 
the region of similarity. The last step is to select only those 
which form the largest spatially contiguous region in the 
model. To find this region, a graph is built from the contact 
map of the model (all residues are vertices and there is an 
edge between two residues if their Cas are less than 10.0 Å 
apart), and the largest component found by a depth-first 
search of this graph reveals the final residues in this region. 
If this region contains at least 10 residues, return it, 
otherwise there is no region of similarity between the 
structures. 

A disjoint set of regions of similarity (denoted simply as 
RoS) can be found by iteratively identifying regions on the 
same similarity graph 𝐺. After each region is found, its 
residues are removed from 𝐺 to prevent residues from 
being assigned into multiple regions. This continues until 
no more regions are found. If the two structures are 
identical, there will be a single region containing all 
residues. If the structures consist of two identical domains 
that are shifted relative to each other, then there will be two 
regions of similarity, one for each domain. 
 Regions of similarity can also be used to perform a 
threshold tiered test inspired by GDT: RoS-GDT. Given a 
set of thresholds {1.0, 2.0, 4.0, and 8.0 Å}, four regions of 
similarity are identified: 𝑅0.1, 𝑅2.1, 𝑅3.1, and 𝑅4.1. Each 
region is the largest region of similarity in the similarity 
graph built under its threshold which, for each threshold 
except the first, completely encompasses the region of 

similarity found for the previous threshold. To find these 
regions, four similarity graphs, 𝐺0.1, 𝐺2.1, 𝐺3.1, and 𝐺4.1, 
are constructed as described above. To start, the largest 
region of similarity in 𝐺0.1 is found. This is 𝑅0.1. Then, the 
subgraph in 𝐺2.1 consisting of the residues from 𝑅0.1 is 
identified and all residues which are neighbors of this 
subgraph and which have an edge to every residue in this 
subgraph are selected. The maximum clique found within 
these residues in 𝐺2.1 is the maximum set of residues which 
can be combined with those in 𝑅0.1 and still form a clique 
in 𝐺2.1. Within this combined set of residues, the largest 
connected component in the contact map graph is found, 
and the residues in this component are returned as 𝑅2.1. 
The same process is repeated for 𝑅3.1 and 𝑅4.1. The 
thresholds {0.5, 1.0, 2.0, and 4.0 Å} can be used to 
perform an RoS-GDT-HA test. The set of regions found by 
RoS-GDT is called an expanded region of similarity.  
 The regions found by RoS-GDT show tiers of modelling 
quality, but they only encompass one part of a pair of 
structures. Like the original GDT, in a multi-domain 
structure where separate domains are well modelled but 
shifted relative to each other, RoS-GDT will identify only 
the largest domain. To identify multiple areas of a pair of 
structures that are similar, a disjoint set of Expanded 
Regions of Similarity (ERoS) can be identified. Each 
expanded region of similarity has tiers of residues found 
using the thresholds {1.0, 2.0, 4.0, and 8.0 Å}. To start, a 
set of disjoint regions of similarity is identified under the 
first threshold. Then, for each subsequent threshold, each 
region of similarity, in the order of initial discovery, is 
expanded to the next threshold using the similarity graph 
for that threshold omitting all residues found in all other 
regions so far. At the end of the process, a set of Expanded 
Regions of Similarity is returned. A score similar to 
GDT_TS can be calculated from this set: the average of the 
percent of residues under each threshold. 	𝐸𝑅𝑜𝑆_𝑠𝑐𝑜𝑟𝑒 =
	0
3
=𝑅>? + 𝑅>A + 𝑅>B + 𝑅>CD, where 𝑅>E is the sum of the 

fractions of residues that fall under the 𝑛>G threshold over 
all of the expanded regions of similarity. Each fraction is 
calculated with respect to the number of residues in the 
reference structure. 
 Expanded Regions of Similarity can also be generated 
using twenty thresholds: {0.5, 1.0, 1.5, …, 10.0}. The 
fraction of residues under each threshold can be used to 
generate plots which show the percent of the structures 
which match under decreasing levels of accuracy. This 
technique is denoted as ERoS-Plot. 
 
2.3    Visualizations 
 

Local accuracy maps can be generated from regions of 
similarity. They show, at the sequence level, which 
residues in a model are within which region of similarity. 
Up to five regions can be colored: blue, green, purple, 
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brown, and yellow. If a single threshold is used, such as 
when finding disjoint regions of similarity, the region with 
the largest number of residues is colored blue and the 
region with the smallest number of residues is colored 
yellow. If expanded regions of similarity are being 
visualized, the colors are determined in the same order by 
the size of the regions identified using the most stringent 
threshold. Residues which are not in any of the top five 
regions are colored red, and those that are not in the 
reference or the model are colored white. The colors have 
been chosen to be visually distinct. If expanded regions of 
similarity are being visualized, within each color, the 
shades vary uniformly in saturation and luminosity to 
indicate under which threshold that residue was added to 
the region. Darker shades indicate more stringent 
thresholds. Finally, if RoS-GDT regions are being 
represented, a divergent color scheme from blue to peach is 
used. Red residues are not in any of the regions. 
 ERoS plots can be generated from the ERoS-Plot data. 
For each model, the total fraction of residues identified 
under each threshold is plotted and the result shows how 
well that model represents the target. Those models which 
include larger portions of their structure within regions of 
similarity under tighter thresholds are the better models.  
 Regions of similarity can also be visualized on the three-
dimensional structural representations of proteins as well. 
Both PyMOL [6] and Chimera [7] scripts can be generated 
to select and color residues belonging to each region and 
threshold so that individual structure pairs can be examined 
in detail. 
 

2.4    Feasibility Study 
 
Identifying regions of similarity relies on solving instances 
of the NP-complete problem of finding maximum cliques. 
To ensure the feasibility of the technique, a study was 
performed on a set of 88,758 pairs of different 
experimentally determined structures for identical proteins 
provided by Kufareva [5]. This dataset contains a variety 
of structures of varying sizes and levels of similarity. The 
smallest structures contain less than 20 residues and the 
largest over 1000. Measured by LGA_S, the least similar 
pairs have scores less than 10 and the most similar have 
scores of 100. For each pair, RoS, RoS-GDT, RoS-GDT-
HA, ERoS, and ERoS-Plot were generated. The runtimes 
were recorded and are presented below. 
 

2.5    Software & Hardware 
 

All algorithms for finding regions of similarity have 
been implemented in jProt, a java protein comparisons 
library freely available at https://github.com/amaus/jProt. 
Maximum cliques are found using Li, Fang, and Xu’s C 

program implementation of their IncMaxCLQ algorithm 
[8]. Molecular graphics were produced with UCSF 
Chimera, developed by the Resource for Biocomputing, 
Visualization, and Informatics at the University of 
California, San Francisco, with support from NIH P41-
GM103311. Local accuracy maps and ERoS plots were 
generated using gnuplot.  

The feasibility study was performed on the lee2 cluster 
at the University of New Orleans. This cluster consists of 
36 compute nodes, each with dual XEON X5650 CPUs. 
Lee2 has a total of 1.1 TB of RAM. 
 

3    Results & Discussion 
 
3.1    Illustrating Regions through Local 
Accuracy Maps 
  
 Local accuracy maps can be generated using each of 
three major techniques: RoS, ERoS, and RoS-GDT. Figure 
1 illustrates the differences between them using the two-
domain target T0976 from the CASP13 experiment [9]. 
This target was chosen because most models roughly 
represent each domain (and some do accurately), but they 
generally shift the domains relative to each other with 
respect to the reference structure. In these plots, the top 
four models ranked according to their ERoS_Score are 
displayed. 

The regions identified by RoS and ERoS show that in 
these structures, there are two large regions, blue and 
green, that are well-modelled. Since the residues in these 
regions are not sequential, it is likely that these are 
elements of secondary structure that are accurately 
representing parts of the tertiary structure of the reference. 
Additionally, in the top model, in each half there are 
sequential segments of the sequence, brown and yellow, 
that are likely secondary structures shifted relative to the 
others. Comparing these plots against the three-
dimensional structures illustrated in Figure 2, the two large 
regions correspond to the two domains and the yellow and 
brown regions are alpha helices shifted relative to their 
domains.  

The information in these maps is information that 
regions of similarity can present in addition to the 
information provided by other methods of comparison. For 
example, while lDDT gives each residue a local accuracy 
score, regions of similarity can identify the sets of residues 
that together are all locally accurate as a group. While 
regions of similarity, like lDDT, is a measure of local 
accuracy, GDT is a measure of global accuracy. It tends to 
rank structures favorably that are globally accurate since 
structures with accurate global orientations are more likely 
to capture larger parts of the structures in an optimal 
superposition. In the case of T0976, GDT will rank well 
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the models which have the domains in the same orientation 
as the reference structure. In conjunction with GDT, 
regions of similarity can then identify which parts of the 
structures that are globally accurate are locally accurate as 
well. 
 

3.2    ERoS Plots 
 

ERoS plots can be generated for one or more models of 
some reference structure. They show how well each 
structure models the reference by plotting the percent of 
residues within all regions of similarity under each of 
twenty thresholds {0.5, 1.0, 1.5, …, 10.0 Å}. The larger 
the fraction of a structure that is included within regions of 
similarity under each of the thresholds, the better that 
structure will perform in the plot. Given that the underlying 
analysis relies on regions of similarity, ERoS Plots 
illustrate how well each of a set of structures match their 
reference structure locally across the whole of their 
structures. 

Figure 3 shows the ERoS plot for the “first models” 
submitted for the dual-domain CASP13 target T0976 
shown in Figure 2. In a CASP experiment, each group may 
submit multiple models for each target. The models plotted 
in Figure 3 are those each group submitted as their “first 
model”, the model they wish to be included in the default 
rankings for the experiment. The curves of the models 
T0976TS043_1, T0976TS472_1, and T0976TS322_1 are 
highlighted in blue, green, and purple respectively. The 
first is the top ranked model by ERoS_Score. It should also 
be noted that this model is ranked first by lDDT as well 
[10]. This is not surprising given the similarity between 
these two scores, but the scores are not directly analogous. 
The next two models are those ranked as the first and 
second place models respectively according to GDT_TS. 
The plot shows that while TS472_1 has a better global 
score, TS322_1 has more of its structure within regions of 

similarity across the majority of the thresholds. In other 
words, TS322_1’s local geometries are a better 
representation of the native. 

In any structural comparison, structures with a high 
degree of global similarity, such as domains being in 
proper orientations, may not have a high degree of local 
similarity and vice versa. ERoS plots can be used in 
conjunction with global measures such as GDT or TM-
Score to identify those structures which not only match 
globally but locally as well. Combined with local accuracy 
maps and three-dimensional representations, the structures 
which exhibit both global and local similarity can then be 
further analyzed to identify exactly which parts of the 
structures match. 
 

 
Figure 1: Local Accuracy Map showing the comparison of the three Regions of Similarity methods on target T0976 from CASP13 (A) RoS: A 
disjoint set of regions of similarity (identified under the default threshold of 1.0 Å), colored in order of largest to smallest: blue, green, purple, brown, 
then yellow. Red indicates that a residue is not in any of the five largest regions highlighted. (B) ERoS: The Expanded Regions of Similarity. Starting 
from those regions found by RoS, each region has been expanded in turn to include residues at looser thresholds. The coloring is the same except that 
different shades indicate under which threshold the residue was added to the region. Darker shades indicate more stringent thresholds. (C) RoS-GDT: A 
test analogous to GDT. The largest region of similarity is identified and expanded through the GDT thresholds. The divergent color scheme indicates 
decreasing modeling accuracy from blue to light red for this region. Bold red indicates that a residue is not included under any of the thresholds. 
 

 
 
Figure 2: Regions of similarity identified for T0976 and 
T0976TS043_1. Left: T0976 (the reference) and on the right is 
T0976TS043_1 (the model) colored according to the expanded regions 
of similarity illustrated in Figure 1 Right: Despite the fact that the two 
domains in this structure are oriented differently between the reference 
and the model, the regions of similarity can still be identified and the 
overall similarity between the structures is apparent. 
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3.3    Feasibility Analysis 
 
 Since finding regions of similarity relies on solutions to 
instances of an NP-complete problem (finding the 
maximum clique of a graph), these techniques were 
rigorously tested on a set of 88,758 pairs of different 
structures for identical proteins [5]. Table 1 summarizes 
the results.  

In Table 1, the runtime statistics for five different 
comparison techniques are presented. As the table shows, 
the most intensive technique is ERoS-Plot. This matches 
expectations as ERoS-Plot has the largest number of 
thresholds to evaluate and therefore depends on solving 
more instances of the maximum clique problem than any 
other method. Its average runtime is 7.3 seconds. The 
maximum time recorded for any individual comparison is 
238 seconds. This time is for the structure pair 2drd_C and 
2j8s_A. Three of the largest runtimes in Table 1, those for 
RoS, RoS-GDT, and ERoS, are all for the same pair of 
structures, 3hhm_A and 2rd0_A. These results speak to the 
nature of instances of NP-complete problems. For many 
cases, the solution will be easy, but for some, the solution 
will be difficult. For the majority of the comparisons, the 
solutions took on the order of seconds. For a few, the time 
required was on the order of minutes.  

 The identical proteins dataset is a rigorous test of these 
techniques. As an example of a practical application, the 
most intensive technique, ERoS-Plot, was run on the 
CASP12 dataset containing 131 targets with a total of 9545 
models. The average runtime was 1.5 seconds with a 
median runtime of 553 ms and a maximum runtime of 23 
seconds. 
 Figure 4 shows the ERoS-Plot runtimes for both the 
identical proteins and CASP12 datasets in Figures 4A and 
4B respectively. In the plots, the structure pairs are ordered 
by groups of identical proteins in Figure 4A and by models 
for a given target in Figure 4B. In the identical proteins 
plot, the outlying runtimes group together. These runtimes 
are from comparisons within sets of multiple structures of 
the same protein. While a full discussion is beyond the 
scope of this paper, it should be noted that there is some 
feature within the similarity graphs that were constructed 
for these structures that make them difficult instances of 
the max clique problem. No simple correlation was found 

 

 
Figure 4: ERoS-Plot Runtimes for the identical proteins dataset and the 
CASP12 dataset. Top: The identical proteins dataset. Two outlying 
structure pairs are labeled. The “spikes” are sets of identical structures all 
pairwise compared with each other. Identical sets tend to have similar 
runtimes. There is some undetermined property of their underlying 
similarity graphs that make them difficult instances of the max clique 
problem. Bottom: The CASP12 dataset. The most prominent “spikes” are 
labeled by the CASP target the structure pairs in it belong to. Note the scale 
for the runtimes. The range is 0-25 seconds, compared against Figure 4.7 
with a runtime range of 0-250 seconds. Evaluation of the CASP12 dataset is 
feasible with this technique. 

 

Table 1: Regions of Similarity Techniques Runtimes (ms) 
Technique RoS RoS-GDT RoS-GDT-HA ERoS ERoS-Plot 

Average 1352 964 935 1749 7315 

Median 991 620 539 1226 4350 

Max 90457 89791 17813 98558 237509 

 

 

 
Figure 3: ERoS Plot for CASP13 target T0976. T0976TS043_1 (blue), 
T0976TS472_1 (green), and T0976TS322_1 (purple) are highlighted. The 
first is the model ranked best by ERoS_Score. The next two are the top two 
models ranked by GDT_TS. While TS472_1 is a slightly better global 
representation of the target (GDT_TS score of 59.2 vs 58.2 for TS322_1), the 
plot shows that TS322_1 is a better local representation. 
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between the size or the density of the graph and the 
runtime, but it can be noted that the longest runtimes tend 
to belong to large structures that are very similar. 
 

4    Conclusion 
 

Many protein structure comparison methods provide an 
overall similarity score for structure pairs, but few take an 
in-depth look at the underlying information of the 
comparison. GDT [1] partially does by allowing the largest 
set of residues from a model whose superposition errors on 
some reference are all under some threshold, but the set 
identified depends on the superposition and multiple sets 
are not identified. lDDT [4] allows for an in-depth look at 
the residues of the structures. It gives each residue a score, 
measuring how well its local environment (defined as all 
atoms within some radius of the that residue) is reproduced 
in a model by finding the fraction of preserved contacts 
within that environment. Both methods provide scores for 
individual residues, but they do not identify sets of residues 
whose environment as a whole is reproduced.  

Regions of Similarity is a contact-based protein structure 
comparison suite which provides a graphical analysis of 
the similarities between protein structures by performing a 
detailed analysis of the contacts between them. A region of 
similarity is a set of residues that together are 
geometrically similar in both structures. That is, all of their 
inter-residue distances are the same, within some tolerance 
threshold. Based on a maximum clique analysis on the 
graph representing pairwise residue contact similarities 
between a pair of structures, regions are found 
independently of the superposition of the structures. 
Disjoint regions of similarity, those which are independent 
of each other and possibly shifted relative to each other, 
can be found. As a result, regions of similarity can be 
identified in multi-domain structures irrespective of 
domain movements. It must also be noted that while this 
method relies on solutions to the NP-complete problem of 
finding maximum cliques, it has been tested against a 
rigorous dataset of similar proteins and found to be 
feasible. 

Regions of similarity can easily and meaningfully be 
visualized. At the sequence level, residues can be colored 
according to their region and the tolerance threshold at 
which they were added to that region, showing not only 
which parts of the sequence form regions of similarity, but 
also giving an indication of the relative local accuracy of 
each residue. These local accuracy maps can be generated 
for sets of structures, allowing a group of models to be 
compared against some reference structure. These same 
regions can also be visualized on the individual three-
dimensional structures using either PyMOL or Chimera. 
Lastly, overall accuracy plots (ERoS-Plots) can be 
produced. These plots show, for each structure in some set 

compared against a reference, how the fraction of residues 
identified within regions of similarity changes as the 
tolerance threshold of similarity is increased from 0.5 Å to 
10.0 Å in increments of 0.5 Å. These plots allow for a 
whole set of structures to be quickly evaluated and for 
different models within a set to be compared against each 
other. Those models which are locally accurate over larger 
portions of the structures will be evident. 

Regions of similarity evaluates the local accuracy of 
pairs of protein structures. While different use cases may 
have different requirements, binding site analysis may 
require high levels of local similarity and conformational 
analysis may focus more on global similarity, in general, 
when evaluating models against some reference structure, 
the best models are those which exhibit both global and 
local accuracy, orthogonal modes of comparison. Only by 
combining both global and local methods can the 
similarities and differences between protein structures be 
fully explored. In conjunction with global measures such 
as GDT_TS and TM-Score, regions of similarity can be 
used to identify which of the models that are globally 
accurate are also locally accurate and furthermore, exactly 
which parts of models are accurate representations of their 
corresponding parts in their reference structures. By 
providing access to information that was not previously 
available, Regions of Similarity allows for a novel and 
intuitive look into the similarities and differences between 
protein structures and can be used in concert with existing 
metrics to provide a complete global and local comparative 
analysis of proteins structures. 
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