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Abstract

A very old quest in campanology is the search for peals, which can be considered as
constrained searches for Hamiltonian cycles of a Cayley graph. Two particularly hard
problems are finding bobs-only peals of Stedman Triples and Erin Triples. We show how
to efficiently reduce them to boolean satisfiability and use a SAT solver to help find bobs-
only peals of Stedman Triples, and express the unsolved problem of bobs-only Erin Triples
as an unsolved SAT problem. This approach is based on the author’s very efficient gen-
eral reduction of the Hamiltonian Cycle Problem (HCP) to Boolean Satisfiability (SAT)
converting any Hamiltonian Cycle problem with n vertices and m directed edges to a SAT
problem with approximately n.log2(m) variables and 2m.(log2(n)+1) clauses.

1 Introduction

English style church bell ringing is performed by people each ringing a bell by means of a rope
attached to a wheel which is attached to a bell so that the bell rotates 360 degrees first one
way then reverses, the bell sounding at the end of each rotation. It is hard to explain concisely
so a viewing video clip[25] and animation[4] is helpful. The bells are not rung in tunes, or
haphazardly, but in sequences according to mathematically definable rules which lead to some
very hard mathematical problems. Change ringing is based on the idea of ringing bells in
different sequences, and analysis of it involves permutations, group theory, Hamiltonian cycles
and in this paper, boolean satisfiability.

Numbering. Each bell is given numeric identifier, from 1 to n where n is the number of bells.
[In practice they are numbered from 1, the lightest (highest pitched) to n, the heaviest (lowest
pitched).]

Row. Each bell rings exactly once, in some sequence, before any bell rings again. An example
of a sequence, or permutation, of the numbers 1 . . . n is known as a row as the term permutation
also occurs in other contexts.

Rounds. The initial sequence or row 1, . . . , n is known as rounds.

Change. One row is followed by a different row as the bells ring in a different order. The
permutation from one row to the succeeding row is a change. There is a change ringing rule
that each bell may only move at most one place in the order in the row when comparing two
successive rows. [This is because of physical constraint of the inertia of the bell (which weigh
from 100kg to 4000kg depending on the installation in the tower) means that changing the speed
is hard.] For example row 54321678 immediately followed by row 45312768 is permitted, but
row 54321678 followed by row 43512768 is not (as bell number 5 has jumped from ringing
first in the order to third in the order. This means that a valid change is one or more separate
adjacent transpositions. So 54321678 to 45312768 is the change (1 2)(4 5)(6 7).
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2 The Methods of Stedman Triples and Erin Triples

There are various methods of generating a sequence of different rows such that no row is repeated
before returning to the starting point. Two methods are Stedman Triples[30] and Erin Triples
which operate on 7 bells. [In practice they are rung on eight bells with the eighth bell ringing
last in each row to complete the octave of a diatonic scale.] Stedman Triples and Erin Triples
are the result of applying permutations (or changes) to successive rows as follows:

p1 = (2 3)(4 5)(6 7)

p3 = (1 2)(4 5)(6 7)

p5 = (1 2)(3 4)(6 7)

p7 = (1 2)(3 4)(5 6)

Q = p1 · p3 · p1 · p3 · p1 · {p7|p5}
S = p3 · p1 · p3 · p1 · p3 · {p7|p5}

Stedman Triples = [Q · S]
n

Erin Triples = Sn

(1)

Each application of p1, p3, p5 or p7 generates a successive row. The sequence of permutations
is divided into sets of six, where the last permutation of the six can be varied. Here p7 or p5
can be chosen freely to vary the sequence of rows. In practice permutation p7 is the default and
the ringers ring the sequence by learning the pattern, and the sequence of rows repeats when
n = 7, generating 84 different rows for Stedman Triples and 42 different rows for Erin Triples.
To extend the sequence further, a ringer called the conductor calls out bob at appropriate points
which is the signal for the ringers to replace p7 by p5. The absence of a bob is a plain.

Six. The 6 rows generated by any first row and the first 5 changes of Q or S are known as a
six.

Quick Six. A six generated by Q is known as a quick six.

Slow Six. A six generated by S is known as a slow six.

Bob. The application of permutation p5 as the change after the last row of a six.

Plain. The application of permutation p7 as the change after the last row of a six. The change
of p7 or p5 can be considered as a transition from one six to another.

Call. A variation to the sequence of changes of a method, such as a bob or plain.

3 Peals

Ringers like to ring a peal which with 7 bells changing means ringing all 7! = 5040 possible
rows without repetition starting and ending with rounds. It can be considered as a Hamiltonian
cycle of the Cayley graph generated by 〈p1, p3, p5, p7〉 of the symmetric group S7 subject to rules
about which edges can be used in which order. A performance of a peal takes about 3 hours of
non-stop ringing. The first peal of Stedman Triples was rung in 1731; the first of Erin Triples in
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1908. Those performances required an additional type of call such as single p567 = (1 2)(3 4).
Two of the hardest and oldest questions in the mathematics of bell ringing are whether a full
peal of Stedman Triples or Erin Triples can be rung just using bobs and plains. The answer
to the former was settled in 1994 by Wyld[37], though the solution was not published until
after another solution was discovered, performed and published by Johnson and Saddleton[14]
in 1995. Johnson then published additional solutions in 1995[10], 2012 and 2017[13]. Whether
a peal of Erin Triples can be rung with just bobs and plains is still an open question — the
bobs-only Erin Triples problem.

4 Peal Searches and Satisfiability

Composers of peals have since 1952[20] used computers for searches; the problem for Stedman
and Erin Triples is particularly hard as there are 840 places in a full peal of 5040 rows where a
bob might be called, giving a total of 2840 = 7.3× 10252 possibilities. Generally these searches
are done as depth-first tree searches and many peals have been composed using singles[23].
The problem can be considered as finding a Hamiltonian cycle in a restricted Cayley graph of
S7. See the papers by White[36] for further details of group theory and change ringing. The
paper by Haythorpe and Johnson[6] also shows it can be considered as a pure Hamiltonian cycle
problem using a special subgraph gadget to represent each six and the remainder of the graph
links the sixes.

4.1 Sixes and SAT Encoding

For the first time the problem has also been fully encoded using boolean satisfiability and the
technique of the author shown here has proved a practical method of approaching this problem.
For Stedman Triples the 5040 rows in a peal are divided into sixes, each containing 6 consecutive
rows, and each of the sixes has 6 possible forms which differ in the order the same 6 rows appear,
as shown in Table 1. Those rows cannot appear in any other six. For parity reasons rows such
as 1325476 or 1324567 cannot appear at the end of a six when just bobs and plains are used.
Each of the sixes can appear once only in a peal, otherwise a row is repeated, and must appear
once in some form for all possible rows to appear. Instead of considering the problem as a pure
Hamiltonian cycle with 27720 nodes (Stedman) or 13440 nodes (Erin) and converting it to SAT
the problem is better considered as a directed Hamiltonian cycle problem between 840 nodes
(the sixes) subject to rules about which exits from a six are permitted given how the six is
entered.

Quick six Quick six Quick six Slow six Slow six Slow six
2135476 3215476 1325476 1325476 2135476 3215476
2314567 3124567 1234567 3124567 1234567 2314567
3215476 1325476 2135476 3215476 1325476 2135476
3124567 1234567 2314567 2314567 3124567 1234567
1325476 2135476 3215476 2135476 3215476 1325476
1234567 2314567 3124567 1234567 2314567 3124567

Table 1: Forms of an example six all containing the same rows

See Table 2 for an example of part of a transition table. Each six can only be visited once,
but the possible exits depend on which six-type the six was entered with. The transition table
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is constructed by generating all the possible sixes, then generating all the types of each six and
numbering them such that all the types of one six have unique consecutive identifying integers.
For convenience the six-types can also be identified by the last row of the six. The transitions
from one six-type to another with a bob or plain are then calculated. The precise allocation
of identifying integers does not matter as they will not feature when the solution is translated
back to the original domain.

Source Destination Destination First row Identifier Six Type
with plain with bob of six (last row) index index

1 4 7 1325476 1234567SS 1 1
2 10 13 2135476 2314567SS 1 2
3 16 19 3215476 3124567SS 1 3
4 22 25 2143657 2416375SS 2 1
5 28 31 4213657 4126375SS 2 2
6 34 37 1423657 1246375SS 2 3
7 40 43 2143576 2415367SS 3 1
8 46 49 4213576 4125367SS 3 2
9 52 55 1423576 1245367SS 3 3

10 58 61 3241657 3426175SS 4 1
11 64 67 4321657 4236175SS 4 2
12 70 73 2431657 2346175SS 4 3

...
2518 2348 2252 4312567 4135276SS 840 1
2519 2346 2247 1432567 1345276SS 840 2
2520 2370 2277 3142567 3415276SS 840 3

Table 2: six-type transition table for Erin Triples

There are 5040/6 = 7P4 = 840 possible sixes, and for Stedman Triples each can appear in
1 of 6 forms as shown in Table 1. For Erin Triples, only slow sixes occur, and so the sixes
each could appear in 1 of 3 forms. This suggests a simple encoding for each six, representing
which form of the six occurs. Possible encodings of the type index could be binary/log, direct
(one-hot), order or twisted-ring[12], as shown in Table 3. Twisted-ring is a new encoding,
representing n states with n/2 bits, and only requiring the testing of 2 bits to determine a
state. Valid states shows how to set the variables to represent each of the 6 states. Test bits
show which bits need to be tested to show that the variables represent that state. Invalid states
shows combinations of bits which need to be excluded to ensure that at exactly one state is
decoded by the test bits.

After the end of each six a bob call can be made. A simple single bit encoding is sufficient
to record whether a bob or a plain occurs. With these encodings the linkage between the sixes
can be encoded using clauses quite simply. The SAT clauses are generally of a support encoding
style; when a certain condition is present then other variables are forced to particular values.
Each six-type leads to another six-type depending on whether the six is followed with a plain or
a bob. For example, for Erin Triples with direct encoding of the six-type as in Table 4 encodes
six 1, type 1 followed by a bob going to six 3, type 1 as this DIMACs encoded CNF clause:

-841 -1 847 0

where variables 1 to 840 represent the call type of each six, variables 841 to 843 represent the
six-type of six 1 and variables 847 to 849 represent the six-type of six 3. Other clauses ensure
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Encoding Valid Test Invalid Number of Number
states bits states exclusion clauses of bits

Log 000 000 110 ≤ blog2(n− 1)c dlog2ne
001 001 111
010 010
011 011
100 1x0
101 1x1

Direct 000001 xxxxx1 xxxx11 n(n− 1)/2 + 1 n
(or one-hot) 000010 xxxx1x xxx1x1

000100 xxx1xx xx1xx1
001000 xx1xxx . . .
010000 x1xxxx 11xxxx
100000 1xxxxx 000000

Order 00000 xxxx0 xxx10 n− 1 n− 1
00001 xxx01 xx10x
00010 xx01x xx10x
00100 x01xx x10xx
01000 01xxx 10xxx
10000 1xxxx

Twisted-ring 000 0x0 010 n− 4 dn/2e
001 x01 101
011 01x
111 1x1
110 x10
100 10x

Table 3: 1 of n encoding showing ways of encoding 6 possible states

that exactly one of variables 841, 842 and 843 is true, and there are similar clauses for every
other six.

Six 1 followed by a plain encoded as variable 1 false.
Six 1 followed by a bob encoded as variable 1 true.
Six 2 followed by a bob encoded as variable 2 true.
...
Six 840 followed by a bob encoded as variable 840 true.
Six 1, type 1 encoded as variable 841 true.
Six 1, type 2 encoded as variable 842 true.
Six 1, type 3 encoded as variable 843 true.
Six 2, type 1 encoded as variable 844 true.
...
Six 3, type 1 encoded as variable 847 true.

Table 4: variable allocation for Erin Triples
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4.2 Previous Hamiltonian Cycle SAT Encodings

With just those constraints the graph of sixes would be linked into closed loops. The big problem
with encoding Hamiltonian cycle type problems into SAT is enforcing the only one loop require-
ment. There have been a variety of approaches to the problem, including Iwama[8], Creignou[1]
who saw HCP as SAT-hard but not SAT-easy, Plottikov[17], Nasu[16], Prestwich[18], Soh[26],
Velev and Gao[31][33][32].

Velev and Gao describe these as ‘complete occupancy constraints, enforcing that each posi-
tion in the permutation is occupied by a vertex;’ and ‘exclusivity positional constraints, ensuring
that only one vertex can appear at a given position in the permutation’.

Previously this was achieved by some of the following:

• Direct encoding of node position in the order: n bits per node, n nodes, n2 variables.

• Log encoding, where the node position is encoded as a binary number.

There can then be of order n2 variables and n3 clauses which is a very large number of clauses
to ensure no two nodes have the same node position. Velev and Gao’s later improvements[32]
note ‘that half of the ordering variables and two-thirds of the transitivity constraints can be
eliminated.’, but that still leaves a lot of variables and clauses. Soh et al. [26] note that with
Velev’s approach ‘the size of the encoded clauses which explodes to over 100 million even when
the input graph size is 500’. Soh’s approach requires an incremental SAT solver or native
boolean cardinality handling, which restricts the choice of solver.

4.3 New Hamiltonian Cycle SAT Encoding

The author’s invention[11] is to give each node a compact, encoded sequence number and to
define rules such that successor nodes receive a sequence number based on the predecessor
sequence number according to simple rules. Each node passes on the next sequence number
to the following node. By enforcing the rules that the first node has the first number and the
node which becomes the last and links to the first has the last possible sequence number the
ordering is established. Each node has to have a successor. This means there is either a long
chain to the final node, or a loop back to earlier in the chain. There cannot be a loop back to
an earlier node otherwise the sequence numbers from the two paths do not agree. Therefore all
the nodes must be in a chain, and the last node links to the first.

As a Hamiltonian cycle can be started at any point we can designate an arbitrary node as the
start without a sequence number; any successor of the start receives the first sequence number.
The last node, the predecessor of the start, must have the last possible sequence number.

Numbering of the nodes for the sequence number could be done using binary arithmetic but
a better scheme is to use the well known electronic engineering circuit of a linear-feedback shift
register(LFSR)[3][35][15] which generates a LFSR sequence of 2b − 1 states as this uses only
2(b + 1) or 2(b + 2) clauses for b bits, where b = dlog2ne.

For example this shows how to calculate a successor sequence number B1, B2, . . . , B10 from a
predecessor A1, A2, . . . , A10 using a LFSR sequence of length 1023 generated by a shift register
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of 10 stages with taps at (10, 7) feeding an exclusive-or gate ⊕.

B1 = A10

B2 = A1

B3 = A2

B4 = A3

B5 = A4

B6 = A5

B7 = A6

B8 = A7 ⊕A10

B9 = A8

B10 = A9

(2)

This can be encoded in a similar fashion, so if six 1 has sequence number variables 2521 to
2530 and six 3 has sequence number variables 2541 to 2550 then the following clauses show the
linkage, using direct encoding of six-type and call as in Table 4. The -841 -1 are gating literal
terms which when the variables are true force the literals to be false and so at least one of the
literals in the remainder of the clause must be true.

c wrap

-841 -1 -2530 2541 0

-841 -1 2530 -2541 0

c copy up

-841 -1 -2521 2542 0

-841 -1 2521 -2542 0

-841 -1 -2522 2543 0

-841 -1 2522 -2543 0

-841 -1 -2523 2544 0

-841 -1 2523 -2544 0

-841 -1 -2524 2545 0

-841 -1 2524 -2545 0

-841 -1 -2525 2546 0

-841 -1 2525 -2546 0

-841 -1 -2526 2547 0

-841 -1 2526 -2547 0

c XOR clauses

-841 -1 -2527 -2530 2548 0

-841 -1 2527 2530 2548 0

-841 -1 -2527 2530 -2548 0

-841 -1 2527 -2530 -2548 0

c copy up

-841 -1 -2528 2549 0

-841 -1 2528 -2549 0

-841 -1 -2529 2550 0

-841 -1 2529 -2550 0

These techniques were useful in the Flinders Hamiltonian Cycle Project[2] Challenge[5],
which had 1001 Hamiltonian graphs from 66 vertices up to 9528 vertices. The author gained
a comfortable second place with 614 solved problems out of 1001 (compared to the winner
with 985). Interestingly, all the unsolved problems of the winner were based on Hamiltonian
Stedman graphs, so Stedman Triples provides particularly tricky mathematical problems.
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4.4 Variable and Clause Counts

We can now calculate the number of variables and clauses required to encode the problems in
SAT.

4.4.1 Erin Triples

For Erin Triples there are only slow sixes, so 3 types per six. This can be encoded in 2 bits. There
are 840 sixes; the first does not need to be numbered, so 839 sixes requiring sequence numbers.
At least 10 bits are required for 839 different numbers. The call after each six (plain or bob)
needs to be encoded, requiring a bit each time. This requires 840×2+839×10+840×1 = 10910
variables.

For the clauses, enforcing the six-type restriction for binary encoding requires 840×1 = 840
clauses to exclude the invalid type {11}. For the 6 possible successor six-types (3 after a plain,
3 after a bob) for a six, 4 need two variables to be set/cleared for the six type, and 2 need just
one as six-type 3 is fully determined by {1x}. This means that 10 clauses are needed per six to
set the successor six-type, so 840× 10 = 8400 clauses.

For the sequence number, the first six needs to set 6 possible successor six sequence numbers
to the initial value depending on the six-type and call of the first six. This needs 6× 10 = 60
clauses. The 6 possible final six-types need to check that sequence number is the final number
if the six-type links back to the start, for a further 6 × 10 = 60 clauses. There are then 839
sixes each with 3 six-types each going to two (plain or bob) possible other six-types, excluding
the final six-types above. These require 22 clauses, so need (839 × 2 × 3 − 6) × 22 = 110616.
This means that 840 + 8400 + 60 + 60 + 110616 = 119976 clauses.

4.4.2 Stedman Triples

For Stedman Triples, there are 840 sixes, each with a possible call following, so 840× 1 = 840
variables for calls. For the six-type, there are 6 possible values, so with binary encoding, 3
variables per six are needed for 840× 3 = 2520 variables.

There is a strict alternation between quick sixes and slow sixes according to the rules for
Stedman Triples, so to save variables we can have the rule that slow sixes have the same sequence
number as the preceding quick six. This halves the range of the sequence number and so removes
a variable per six. Also the first six does not need a number — we define special rules that
any of the successor sixes have the first sequence number if they are chosen as the second six,
and the last six must have the last possible six number when it links back to the first six. We
therefore need 420 different sequence numbers, requiring 9 bits. So we need (840−1)×9 = 7551
variables for the sequence number. The total is then 840 + 2520 + 7551 = 10911 variables.

For clauses for Stedman Triples, each possible six has one of 6 types. With binary encoding,
the two unused values out of eight must be excluded; this can be done with one clause per six.
Each six has 6 types, each of which has two possible destinations depending on the call, (plain
or bob). For a particular six, 4 of the six-types require 3 of 3 variables to be set/cleared to
fully define the six-type, and because of restrictions in coding 6 out of 8 in binary the other
two only require 2 variables to be set/cleared. With 12 destinations, 8 require 3 variables and
so 3 clauses and 4 require 2 variables and so 2 clauses, so we need 840× (8× 3 + 4× 2) = 26880
clauses. Similarly to Erin setting the initial sequence number for 12 successor sixes to the
first six requires 12 × 9 = 108 clauses, and checking the final sequence number also requires
12 × 9 = 108 clauses. The quick six to slow six transition requires 9 × 2 = 18 clauses to
copy the sequence number; this applies to 839 sixes each with 3 quick six-types and 2 calls
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except for the 6 quick six-types which with the appropriate call precede the first six, so for
a total of (839 × 3 × 2 − 12) × 18 = 90504 clauses. For the slow six to quick six transition
with the LFSR transition involving exclusive-or, 20 clauses instead of 18 are required per
sequence number, for a total of (839 × 3 × 2 − 12) × 20 = 100560 clauses. The total is then
840 + 26880 + 108 + 108 + 90504 + 100560 = 219000 clauses.

4.4.3 Efficiency

These variable and clause counts are much smaller than the counts with Velev’s absolute or
relative encodings or even the counts for Soh’s incremental coding of a 900 node graph. Gener-
ating these SAT clauses is also a quick process as no complex calculations are required, so can
easily be done in seconds.

5 Variations Using Groups

Restricted versions of the problem can be considered by searching for cycles in the Schreier coset
graph[36]. Only certain groups are suitable, and the identifier [0.01] etc. is from Price[19]. This
maps multiple sixes into each node of the new graph, as cosets of the chosen group[21], so the
new graph is smaller and is faster to search. A Hamiltonian cycle in the coset graph translates
to one or more loops in the original graph, so once they have been expanded other techniques
can be used to attempt to link the cycles into one big cycle. The following graphs in Table 5
and Table 6 have the possibility of inducing an odd number of loops in the original Sted1 and
Erin1 graphs. An odd number of loops is advantageous as there is the possibility of replacing
three suitably chosen bobs (p5) with three plains (p7) or vice versa, linking three loops into one
big loop via a 3-way shuffle. With some of the groups there is even the chance of a single loop
in Sted1, and the resultant peal is in repeated parts, a great aid to the conductor. Other groups
which also divide the Sted1 and Erin1 graphs but always induce an even number of loops in
the original graph are shown in Table 7 and Table 8.

Graph Sixes LFSR Variables Clauses Satisfiability Solve
bits (Solutions) time

Sted1 [0.01] 840 9 10911 219000 SAT
Sted2 [4.07] 420 8 5032 99324 SAT
Sted3 [6.33] 280 8 3352 66144 SAT
Sted4 [6.26] 210 7 2303 44538 SAT
Sted5 [5.05] 168 7 1841 35226 SAT (4) ≈1 week on Colossus
Sted6 [6.32] 140 7 1533 29628 SAT (132)
Sted7 [7.07] 120 6 1194 22338 UNSAT
Sted10 [5.04] 84 6 834 15562 SAT (4) ≈3s
Sted20 [7.12] 42 5 373 6734 SAT (6) <1s
Sted21 [7.05] 40 5 355 6408 UNSAT <1s

Table 5: Stedman graphs

If a mixed-parity group is used then the sixes can appear in 12 forms (for Stedman) and
6 forms (for Erin). These groups also induce an even number of loops in the Sted1 and Erin1
graphs, but provide further hard SAT problems. They are shown in Table 9 and Table 10 As
the sixes appear in more forms additional variables and clauses are needed over the even parity
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Graph Sixes LFSR Variables Clauses Satisfiability Solve
bits time

Erin1 [0.01] 840 10 10911 119976 UNKNOWN
Erin2 [4.07] 420 9 5031 54888 SAT
Erin3 [6.33] 280 9 3351 36548 UNSAT ≈2w Colossus
Erin4 [6.26] 210 8 2302 24870 UNSAT ≈1d
Erin5 [5.05] 168 8 1840 19872 UNSAT ≈10m
Erin6 [6.32] 140 8 1532 16540 UNSAT
Erin7 [7.07] 120 7 1193 12732 UNSAT ≈1m
Erin10 [5.04] 84 7 833 8880 UNSAT <1s
Erin20 [7.12] 42 6 372 3894 UNSAT <1s
Erin21 [7.05] 40 6 354 3704 UNSAT <1s

Table 6: Erin graphs

Graph Sixes LFSR bits Variables Clauses Satisfiability (Solutions)
Sted4 [4.04] 210 7 2303 44538 UNKNOWN
Sted4 [6.35] 210 7 2303 44538 SAT
Sted8 [6.23] 105 6 1044 19677 UNSAT
Sted12 [6.14] 70 6 694 13062 SAT (248)
Sted12 [7.33] 70 6 694 13062 UNSAT
Sted24 [6.09] 35 5 310 5631 UNSAT
Sted24 [7.28] 35 5 310 5631 UNSAT
Sted60 [6.05] 14 3 95 1542 SAT (20)
Sted168 [7.03] 5 2 28 393 UNSAT

Table 7: additional Stedman graphs

group graphs. These Erin graphs require 3 variables per six for the six type and the Stedman
graphs require 4 variables, with binary encoding. So for Erin2m [2.01m], there are 420 sixes,
420 variables for the call type, 420 × 3 = 1260 variables for the six-type, and 419 × 9 = 3771
variables for the sequence number.

There is further scope for reducing the clauses when there are 6 six-types per six by using
a twisted-ring encoding. Then only 2 clauses are required to set any type, but 2 clauses are
required per six to exclude invalid types. This reduces Sted1 down to 213120 clauses, and
Erin2m to 111456 clauses.

Note that Sted8, Sted24 and Sted168 are trivially non-satisfiable by inspection because the
length of each part is not a multiple of 12, so the alternation of Q and S cannot be maintained
around a loop. This may not be obvious to a SAT solver, rather like the pigeon-hole problem.

6 Solving the SAT Problems

Once a solution to the SAT problem is found it is then translated back into the original domain
as a sequence of bobs and plains. One way is to find the six-type for the first six (the one
without a sequence number) and the call type from the state of the variables. That call (bob or
plain) is then recorded. The next six and six-type is then found by reference to the transition
table using the six-type and call type. The call following that six is then recorded. This process
is repeated until the first six is reached again. The result is a sequence of bobs and plains which
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Graph Sixes LFSR bits Variables Clauses Satisfiability
Erin4 [4.04] 210 8 2302 24870 UNSAT
Erin4 [6.35] 210 8 2302 24870 UNSAT
Erin8 [6.23] 105 7 1043 11127 UNSAT
Erin12 [6.14] 70 7 693 7382 UNSAT
Erin12 [7.33] 70 7 693 7382 UNSAT
Erin24 [6.09] 35 6 309 3329 UNSAT
Erin24 [7.28] 35 6 309 3329 UNSAT
Erin60 [6.05] 14 4 373 6734 UNSAT
Erin168 [7.03] 5 3 94 922 UNSAT

Table 8: additional Erin graphs

Graph Sixes LFSR bits Variables Clauses Satisfiability (Solutions)
Sted2m [2.01m] 420 8 5452 208308 UNKNOWN
Sted4m [4.05m] 210 7 2513 93906 SAT
Sted4m [4.06m] 210 7 2513 93906 UNKNOWN
Sted8m [4.03m] 105 6 1149 41769 UNSAT
Sted10m [7.14m] 84 6 918 33348 UNSAT
Sted20m [5.03m] 42 5 415 14358 SAT (24)

Table 9: mixed parity group additional Stedman graphs

could be given to a conductor in order to ring a peal.

In practice solving of these problems is improved by choosing appropriate encodings. Gener-
ally direct encoding of the six-type works best as it leads to simpler and fewer clauses expressing
the presence or absence of a certain six-type. Adding redundant clauses based on higher level
restrictions of the problem can also help. These include:

• Disallow certain sequence numbers (such as all zeroes, or numbers beyond the last se-
quence number or before the first).

• Disallow two simultaneous inbounds (both source six-type and source call) to a particular
six-type.

• Disallow two simultaneous inbounds (both source six-type and source call) to a particular
six.

• Disallow an inbound (both source six-type and source call) to a particular six if the six
is already of a different six-type.

• Disallow a six-type if it does not have at least one input six-type with the right call
available. This is a very important optimisation, without it sted20 takes 2209 seconds,
with it takes 1.54 seconds using Cryptominisat5[27][28].

• Disallow a six-type if both exits (with a plain or a bob) do not have an available destination
six-type.

• Check that according to some complex reasoning bobs come in sets of three.

11
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Graph Sixes LFSR bits Variables Clauses Satisfiability (Solutions)
Erin2m [2.01m] 420 9 5451 114396 UNKNOWN
Erin4m [4.05m] 210 8 2512 52050 SAT
Erin4m [4.06m] 210 8 2512 52050 UNKNOWN
Erin8m [4.03m] 105 7 1148 23409 UNSAT
Erin10m [7.14m] 84 7 917 18684 UNSAT
Erin20m [5.03m] 42 6 414 8250 SAT (4)

Table 10: mixed parity group additional Erin graphs

• If a six is of a particular type and we do not yet know which of the source sixes will be
the source, but both source sixes have a common variable value for a sequence number
bit then we can set the associated sequence number bit variable of this six.

• If a six is of a particular type and we do not yet know which of the destination sixes
will be the destination, but both destination sixes have a common variable value for a
sequence number bit then we can set the associated sequence number bit variable of this
six.

• Force a call to be a bob if all the destination six-types from a six with a plain are
unavailable and vice versa.

• If all the destination sixes from the quick six-types of this six are unavailable then this
six must be of one of the slow six-types, and vice versa.

• If all the destination sixes from the quick six-types of this six with a bob are unavailable
then this six must be of one of the slow six-types or the call must be a plain, and vice
versa.

• At least one source six-type for any one of the six-types of this six must be available.

• At least one destination six-type for any one of the six-types of this six must be available.

• When generating a long list of related clauses, use subsumption to eliminate redundant
clauses.

• Choose different LFSR taps and modes.

The largest problems can be hard to solve directly (Sted1, Sted2, Sted3, Sted4, Erin1,
Erin2); some of the graphs have been solved through various other techniques. The solution
can then be used to set some of the SAT variables, making the SAT problem quicker to solve.
The number of set variables can easily be adjusted to vary the difficulty of the problem.

Although many of the Erin graphs are unsatisfiable there are modified problems which are
satisfiable. For example the Hamiltonian cycle restriction can be removed allowing multiple
loops in the graph. Also, one of those solutions can then be selected and the longest loop
chosen (length m) and a partial Hamiltonian cycle restriction imposed for a loop of length m
starting from one of the sixes in that loop. The remaining sixes link freely in loops, aided by
the LFSR sequence number characteristic that the state of all zeroes is followed by the state
of all zeroes, so any length of loop can link to the start. A restriction of only one inbound link
per six does need to be imposed however.

Other encodings can be used. For the six-type the options considered were: direct (one-hot)
encoding, order encoding, twisted-ring encoding and binary/log encoding. The twisted-ring

12
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encoding looked promising on paper with only two variables to be tested, but it did not work
out that way.

LFSR sequences for 8 bits normally require a 4-tap register, e.g. (8,6,5,4). Sometimes a
short-cycle counter such as (8,5) with a period of 217 states is acceptable such as for Erin4
with 210 sixes, and so 210− 1 = 209 required states. XORs can also be avoided by combining
counters with twisted-ring counters. For example a 10-bit sequence can be made by combining
an 8-bit LFSR (8,5) with a 2-bit twisted-ring counter giving a sequence of LCM(217, 2× 2) =
217×2×2 = 868 states and a 8-bit sequence by combining a 6-bit LFSR and a 2-bit twisted-ring
counter using a logical-not ¬ giving 63× 4 = 252 states.

B1 = A8 B2 = A1

B3 = A2 B4 = A3

B5 = A4 B6 = A5 ⊕A8

B7 = A6 B8 = A7

B9 = ¬A10 B10 = A9

(3)

A top-bottom[34] hybrid LFSR with a cycle length of 255 can also be implemented as follows:

B1 = A6 ⊕A8 B2 = A1

B3 = A2 B4 = A3

B5 = A4 B6 = A5

B7 = A6 B8 = A7 ⊕A8

(4)

Bits Taps Length Notes
2 (2,1) 3
3 (3,2) 7
4 (4,3) 15
5 (5,3) 31
6 (6,5) 63
7 (7,6) 127
8 (8,5) 217 non-maximal
8 (8,7,6) 255 top-bottom hybrid
8 (8,6,5,4) 255
9 (9,5) 511

10 (10,9) (8,5) 868 non-maximal LFSR with twisted-ring counter
10 (10,7) 1023

Table 11: LFSR Taps

These combined LFSR and twisted-ring counters sometimes had an advantage in SAT solve
time for other counter lengths. Example counters are shown in Table 11.

An interesting factor in possible solutions is the total number of bobs as minimising this
number makes the job of calling the composition from memory easier for the conductor. The
number of places where three bobs could be replaced by three plains thus changing the linkage
of loops in the full Sted1 graph is also of interest. Arithmetic is generally hard for SAT solvers,
but these are smallish totals (up to 840 bobs) and are well handled by a bitonic sorting network
which has a major advantage of coping with partial information as the solver progresses towards
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a solution. These networks can add up to 60,000 variables and 150,000 clauses but performance
and solution times can still be acceptable.

With suitable additional constraints Erin7 can be proved UNSAT in less than a minute
on a laptop. A search of Sted10 finds a solution takes 2.611 seconds (Glucose) or 21 seconds
(MiniSat) depending on options compared to 21 seconds for the first solution from a depth-
first search. All four solutions to Sted10 can be found in a few minutes. Erin3 and Sted5 can
be searched and proved UNSAT by a supercomputer cluster over a period of a week or two.
Restricted versions of Sted3 can be searched, but it appears full versions of Sted3 and Erin2
are too big to search without some hints as to possible solutions. This is a significant advance
over direct tree searches, where Sted6 and Erin5 searches required several weeks on a 1000 node
supercomputer. A complete search of Sted5 was completed in less than a week (Glucose) on
the Flinders University Colossus supercomputer with over 1000 nodes. Unexpectedly [22] no
results were found other than the already known Sted10 blocks. A complete search for Erin5
was completed in 10 minutes on a Thinkpad W520 with an Intel Core I7-2720QM 2.2GHz
processor running a Windows/Cygwin version of Glucose 4 [24] (single threaded) and MiniSat
[29] V1.14. Previously a depth-first search had taken many weeks on Colossus. No solutions
were found. A complete search of the Erin4 graphs (3 different groups) takes a few hours. A
complete search of Erin3 was perfomed on Colossus in about 2 weeks, but there is no solution.
A solution to Erin2 was found by seeding a search with part of a solution to Erin20. These
new SAT problems will be good benchmarks for SAT solvers. Some were included in SAT
Competition 2018[7] (see Main.zip final/Johnson).

The encoding of Stedman Triples in SAT made possible some restricted Sted3 searches
which allowed the author to find some new bobs-only peals using just a Thinkpad W550s with
an Intel Core i7-5600U 2.60GHz processor. One of these peals was rung at the church of St
James Garlickhythe, London, by a band of 8 ringers from the Cambridge University Guild of
Change Ringers, in a performance[9] lasting 2 hours and 46 minutes of non-stop ringing. Since
then the composition has been performed another four times.

This new encoding of Hamiltonian Cycle type problems to Boolean Satisfiability using LFSR
sequences will have general applicability — not just for pure Hamiltonian Cycle problems but
for many other problems with permutation or ordering type constraints.
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