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SELF-EXTENSIONALITY OF FINITELY-VALUED LOGICS:
ADVANCES

ALEXEJ P. PYNKO

Abstract. We start from proving general characterizations of both self-ex-
tensionality and structural completeness of sentential logics as well as admis-

sibility of rules in them, implying the decidability of these problems for (not

necessarily uniform) finitely-valued logics. And what is more, in case of either
implicative or both disjunctive and conjunctive finitely-valued logics [defined

by finitely many finite hereditarily simple {viz., having no non-simple subma-

trix} matrices], we then derive a characterization of self-extensionality yielding
a quite effective algebraic criterion of checking their self-extensionality [via ana-

lyzing homomorphisms between {viz., in the uniform case, endomorphisms of}
the underlying algebras of their defining matrices and equally being a quite
useful heuristic tool, manual applications of which are demonstrated within

the framework of  Lukasiewicz’ finitely-valued logics, unform three-valued log-

ics with subclassical negation (U3VLSN), uniform four-valued expansions of
Belnap’s “useful” four-valued logic as well as their {not necessarily uniform}
no-more-than-four-valued extensions, (uniform inferentially consistent proper
{in particular, no-more-than-three-valued} non-)classical ones proving to be
(non-)self-extensional]. Likewise, within the framework of classical (not nec-

essarily functionally complete) logics and U3VLSN as well as uniform four-
valued expansions of Belnap’s logic, we obtain quite effective algebraic cri-

teria of structural completeness, according to which, among other things,

any “classical logic”/“weakly disjunctive paracomplete (viz., intuitionistic)
U3VLSN”|“uniform four-valued expansion of Belnap’s logic” is structurally

complete iff it is maximally consistent/paracomplete (i.e., has no proper consis-

tent/paracomplete extension) iff/“only if” it has a theorem. And what is more,
any weakly [more, specifically, strongly] disjunctive paracomplete U3VLSN is

structurally complete iff it has no proper consistent non-classical extension [if

and] only if it has both a theorem and either no classical extension or no clas-
sical implication (viz., a secondary binary connective satisfying the Deduction

Theorem as well as both the Modus Ponens rule and the Pierce Law axiom).

Likewise, any [“weakly conjunctive”/implicative] paraconsistent/paracomplete
U3VLSN is structurally complete if[f]/“[if and] only if” it has no classical ex-

tension. In general, we prove that any either implicative or paraconsistent logic
with a consistent non-paraconsistent (in particular, classical) proper extension

is not structurally complete thus providing a new and quite transparent purely

logical insight into the structural incompleteness of  Lukasiewicz’ no-less-than-
three-valued logics.

1. Introduction

Perhaps, the principal value of universal logical investigations consists in discov-
ering uniform points behind particular results originally proved ad hoc. This thesis
is the main paradigm of the present universal logical study.

Recall that a sentential logic (cf., e.g., [7]) is said to be self-extensional, whenever
its inter-derivability relation is a congruence of the formula algebra (i.e. is pre-
served under subformula replacement). This feature is typical of both two-valued
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(in particular, classical)1 and super-intuitionistic logics as well as some interesting
many-valued ones (like Belnap’s “useful” four-valued one [2]). Here, we explore
self-extensionality laying a special emphasis onto the general framework of finitely-
valued logics and the decidability issue with reducing the complexity of effective
procedures of verifying self-extensionality, when restricting our consideration to
either implicative or both conjunctive and disjunctive (viz., having either classi-
cal implication or both classical conjunction and classical disjunction in Tarski’s
conventional sense) finitely-valued logics [especially, those defined by finitely many
hereditarily simple (viz., having no non-simple submatrix; i.e., having an equality
determinant in a sense extending [20]) finite matrices]. We then exemplify our uni-
versal elaboration by discussing four (perhaps, most representative) generic classes
of logics of the kind involved:  Lukasiewicz’ finitely-valued logics [8]; unform three-
valued logics with subclassical negation (U3VLSN); uniform four-valued expansions
of Belnap’s “useful” four-valued logic [2] as well as their (not necessarily uniform)
no-more-than-four-valued extensions, [uniform inferentially consistent proper {in
particular, no-more-than-three-valued} non-]classical ones proving to be [non-]self-
extensional.

Likewise, a sentential calculus/logic is said to be structurally complete, whenever
every rule, being admissible in it (i.e., retaining its theorems [viz., axioms deriv-
able/satisfied in it]), is derivable/satisfied in it. Though the problem of verifying
structural completeness of (not necessarily uniform) finitely-valued logics is decid-
able, its computational complexity is normally too large to apply it expansively.
On the other hand, within the framework of classical (not necessarily functionally
complete) logics and U3VLSN as well as uniform four-valued expansions of Bel-
nap’s logic, we obtain quite effective algebraic criteria of structural completeness,
according to which, among other things, any “classical logic”/“weakly disjunctive
paracomplete U3VLSN”|“uniform four-valued expansion of Belnap’s logic” is struc-
turally complete iff it is maximally consistent/paracomplete (i.e., has no proper
consistent/paracomplete extension) iff/“only if” it has a theorem, subsuming, in
particular, the well-known structural completeness of genuinely classical logics and
providing it with a new purely logical insight. And what is more, a weakly [more
specifically, strongly] disjunctive paracomplete U3VLSN is structurally complete
iff it has no proper consistent non-classical extension [if and] only if it has both a
theorem and either no classical extension or no classical implication. Likewise, any
“weakly conjunctive”/implicative paraconsistent/paracomplete U3VLSN is struc-
turally complete iff it has no classical extension. In general, we prove that any
either implicative or paraconsistent logic with a consistent non-paraconsistent (in
particular, classical) proper extension is not structurally complete thus providing a
new and quite transparent purely logical insight into the structural incompleteness
of  Lukasiewicz’ no-less-than-three-valued logics.

The rest of the paper is as follows. The exposition of the material of the paper
is entirely self-contained (of course, modulo very basic issues concerning Set and
Lattice Theory, Universal Algebra and Logic to be found, if necessary, in standard
mathematical handbooks like [1, 4, 10, 11]). Section 2 is a concise summary of
particular basic issues underlying the paper, most of which, though having become
a part of algebraic and logical folklore, are still recalled just for the exposition to
be properly self-contained. Likewise, in Section 3, we then summarize certain ad-
vanced generic issues concerning simple matrices, equality determinants, intrinsic

1Properly speaking, within the context of General Logic, the notorious classical logic arises
just as the clone of miscellaneous functionally complete two-valued logics with classical negation.
Here, we follow this natural paradigm, equally adopted in [25] even without the stipulation of

functional completeness, calling functionally complete classical logics genuinely so, that naturally
gives rise to the conception of subclassical logic/negation.
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varieties as well as both disjunctivity and implicativity. Section 4 is a collection
of main general results of the paper concerning self-extensionality that are then
exemplified in Section 6 (aside from  Lukasiewicz’ finitely-valued logics, whose non-
self-extensionality has actually been due [21], as we briefly discuss within Example
4.17 — this equally concerns certain particular instances discussed in Section 6 and
summarized in Example 4.18). Likewise, in (mainly, motivational) Section 5 we dis-
cuss the decidability of the issue of structural completeness and its computational
complexity, advanced studying it within the framework of classical (not necessarily
functionally complete) logics and U3VLSN as well as uniform four-valued expan-
sions of Belnap’s logic being presented in Section 6. Finally, Section 7 is a brief
summary of principal contributions of the paper.

2. Basic issues

2.1. Set-theoretical background. We follow the standard set-theoretical con-
vention (cf. [11]), according to which natural numbers (including 0) are treated as
finite ordinals (viz., sets of lesser natural numbers), the ordinal of all them being de-
noted by ω. In this way, when dealing with n-tuples to be viewed as either [comma
separated] sequences of length n or functions with domain n, where n ∈ ω, πi,
where i ∈ n, denotes the i-th projection operator under enumeration started from
rather 0 than 1. (In particular, when n = 2, π0/1 denotes the left/right projection
operator, respectively.) The proper class of all ordinals is denoted by ∞. Also,
functions are viewed as binary relations (in particular, n-ary operations on a set
A, where n ∈ ω, are treated as (n + 1)-ary relations on A), while singletons (viz.,
one-element sets) are identified with their unique elements, unless any confusion
is possible. A function/mapping f /“to a set A” is said to be singular/surjective,
provided (img f) is one-element/“equal to A”, respectively.

Given a set S, let ∆S , {〈a, a〉 | a ∈ S}, relations of such a kind being referred
to as diagonal, functions with diagonal kernel being said to be injective, “bijective”
standing for “both injective and surjective”, and ℘[K](S) the set of all subsets of
S [of cardinality ∈ K ⊆ ∞], respectively. Then, given any equivalence relation
θ on S, viz., a transitive (in the sense that (θ ◦ θ) ⊆ θ) symmetric (in the sense
that θ−1 ⊆ θ) reflexive binary relation on S (in the sense that ∆S ⊆ θ ⊆ S2),
νθ denotes the function with domain S defined by νθ(a) , θ[{a}], for all a ∈ S,
while (T/θ) , νθ[T ], for every T ⊆ S. Next, any S-tuple (viz., a function with
domain S) is often written in the sequence form t̄, its s-th component (viz., the
value under argument s), where s ∈ S, being written as ts, in that case. Given
two more sets A and B, any relation R ⊆ (A × B) (in particular, a mapping
R : A→ B) determines the equally-denoted relation R ⊆ (AS×BS) (resp., mapping
R : AS → BS) point-wise. Furthermore, any f : Sn → S, where n ∈ ω, is
said to be R-monotonic, where R ⊆ S2, provided, for all ā ∈ Rn, it holds that
〈f(ā ◦ π0), f(ā ◦ π1)〉 ∈ R. Then, Tr(R) , {〈π0(a0), π1(am−1)〉 | m ∈ (ω \ 1), ā ∈
Rm,∀i ∈ (m − 1) : π1(ai) = π0(ai+1)} is the least transitive binary relation on S
including R, called the transitive closure of R. Finally, given any T ⊆ S, we have
the characteristic function/mapping χT

S , ((T × {1})∪ ((S \ T )× {0})) ∈ 2S of T
in S.

Let A be a set. Then, an X ∈ S ⊆ ℘(A) is said to be meet-irreducible in/of
S, provided, for each T ∈ ℘(S), X ∈ T , whenever T = (A ∩

⋂
T ), in which case

X 6= A (when taking T = ∅), the set of all them being denoted by MI(S). Next,
a U ⊆ ℘(A) is said to be upward-directed, provided, for every S ∈ ℘ω(U), there
is some T ∈ U such that (

⋃
S) ⊆ T , in which case U 6= ∅, when taking S = ∅.

Further, a subset of ℘(A) is said to be inductive, whenever it is closed under unions
of upward-directed subsets. Further, a closure system over A is any C ⊆ ℘(A) such
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that, for every S ⊆ C, it holds that (A∩
⋂
S) ∈ C. In that case, any B ⊆ C is called

a (closure) basis of C, provided C = {A ∩
⋂
S|S ⊆ B}. Furthermore, an operator

over A is any unary operation O on ℘(A). This is said to be monotonic, whenever it
is (⊆∩℘(A)2)-monotonic. Likewise, it is said to be idempotent |transitive, provided,
for all X ⊆ A, it holds that (X|O(O(X))) ⊆ O(X), respectively. Finally, it is said
to be inductive/finitary, provided, for any upward-directed U ⊆ ℘(A), it holds that
O(

⋃
U) ⊆ (

⋃
O[U ]). Then, a closure operator over A is any monotonic idempotent

transitive operator over A, in which case imgC is a[n inductive] closure system over
A [iff C is inductive], determining C uniquely, as, for every basis B of imgC (in
particular, imgC itself) and each X ⊆ A, C(X) = (A∩

⋂
{Y ∈ B|X ⊆ Y }), C and

imgC being said to be dual to one another.

Remark 2.1. By Zorn Lemma, due to which any non-empty inductive subset of
℘(A) has a maximal element, MI(C) is a basis of any inductive closure system C

over A. �

2.2. Algebraic background. Unless otherwise specified, abstract algebras are de-
noted by Fraktur letters [possibly, with indices], their carriers (viz., underlying sets)
being denoted by corresponding Italic letters [with same indices, if any].

A (propositional/sentential) language|signature is any algebraic (viz., functional)
signature Σ (to be dealt with throughout the paper by default) constituted by
function (viz., operation) symbols of finite arity to be treated as (propositional/se-
ntential) [primary] connectives.

Given a Σ-algebra A, the set Con(A) of all congruences of A (viz., equivalence
relations θ on A such that primary operations of A — i.e., those of the form ςA,
where ς ∈ Σ — are θ-monotonic) is an inductive closure system over A2, the dual
closure operator (of congruence generation) being denoted by CgA. Then, a [partial]
endomorphism of A is any homomorphism from [a subalgebra of] A to A. Next,
given any function f with (dom f) = A and (ker f) ∈ Con(A), we have the Σ-
algebra f [A] with carrier f [A] and primary operations ςf [A] , f [ςA], where ς ∈ Σ.
In particular, given any θ ∈ Con(A), (A/θ) , νθ[A] is known as the quotient of A by
θ. Finally, given a class K of Σ-algebras, set hom(A,K) , (

⋃
{hom(A,B) | B ∈ K}),

in which case ker[hom(A,K)] ⊆ Con(A), so (A2 ∩
⋂

ker[hom(A,K)]) ∈ Con(A).
Given any rank, viz., α ⊆ ω, put x̄α , 〈xi〉i∈α and Varα , (img x̄α), elements of

which being viewed as (propositional/sentential) variables of rank α. (In general,
any mention of rank α within any context is normally omitted, whenever α = ω.)
Then, providing either α 6= ∅ or Σ has a nullary connective, in which case α is
called a Σ-rank, we have the absolutely-free Σ-algebra Fmα

Σ freely-generated by the
set Varα, “its endomorphisms”/“elements of its carrier Fmα

Σ (viz., Σ-terms of rank
α)” being called (propositional |sentential) Σ-substitutions/-formulas of {Σ-}rank
α. In this way, inverse Σ-substitutions of {Σ-}rank α are functions of the form
{〈X,σ−1[X]〉 | X ⊆ Fmα

Σ}, where σ is an endomorphism of Fmα
Σ. Any homomor-

phism h from Fmα
Σ to a Σ-algebra A(= Fmα

Σ) is uniquely determined by {and so
identified with} h′ = (h�(Varα(\V ))) (where V ⊆ Varα such that h�V is diago-
nal) as well as often written in the standard assignment (resp., substitution) form
[v/h(v)]v∈(dom h′), ϕA〈[〉h〈]〉, where ϕ ∈ Fmα

Σ, standing for h(ϕ) (the algebra super-
script being normally omitted just like in denoting primary operations of A). Then,
given any n ∈ ω, a secondary n-ary connective of Σ is any Σ-formula ϕ of rank
m = max(1, n), in which case, given any Σ-algebra A, an f : An → A is said to
be secondary/“(term-wise) definable {by ϕ}” of/in A, provided, for all ā ∈ Am, it
holds that f(ā�n) = ϕA[xi/ai]i∈m. For the sake of formal unification, any primary
n-ary connective ς ∈ Σ is identified with the secondary one ς(x̄n). A θ ∈ Con(Fmα

Σ)
is said to be fully-invariant, if, for every Σ-substitution σ of rank α, it holds that
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σ[θ] ⊆ θ. Recall that, for any [surjective] h ∈ hom(A,B), where A and B are
Σ-algebras, it holds that:

(2.1) [hom(Fmα
Σ,B) ⊆]{g ◦ h | g ∈ hom(Fmα

Σ,A)}) ⊆ hom(Fmα
Σ,B).

Any 〈φ, ψ〉 ∈ Eqα
Σ , (Fmα

Σ)2 is referred to as a Σ-equation/-indentity of {Σ-
}rank α and normally written in the standard equational form φ ≈ ψ. In this
way, given any h ∈ hom(Fmα

Σ,A), kerh is the set of all Σ-identities of rank
α true/satisfied in A under h. Likewise, given a class K of Σ-algebras, θα

K ,
(Eqα

Σ ∩
⋂

ker[hom(Fmα
Σ,K)]) ∈ Con(Fmα

Σ), being fully invariant, in view of (2.1),
is the set of all all Σ-identities of rank α true/satisfied in K, in which case we
set Fα

K , (Fmα
Σ/θ

α
K). (In case α as well as both K and all elements of it are

finite, the class I = Iα
K , {〈A, h〉 | A ∈ K, h ∈ hom(Fmα

Σ,A)} is a finite set
— more precisely, |I| =

∑
A∈K |A|α, in which case, putting, for each i ∈ I,

Ai , π0(i) ∈ K, hi , π1(i) ∈ hom(Fmα
Σ,Ai) and Bi , (Ai�(img hi)), we have

hom(Fmα
Σ,

∏
i∈I Bi) 3 g : Fmα

Σ → (
∏

i∈I Bi), ϕ 7→ 〈hi(ϕ)〉i∈I with (ker g) = θ , θα
K,

and so, by the Homomorphism Theorem, e , (ν−1
θ ◦ g) is an isomorphism from Fα

K

onto the subdirect product (
∏

i∈I Bi)�(img g) of 〈Bi〉i∈I . In this way, the former
is finite, for the latter is so — more precisely, |Fα

K | 6 (max{|A| | A ∈ K}|I|.)
The class of all Σ-algebras satisfying every element of an E ⊆ Eqω

Σ is called the
variety axiomatized by E. Then, the variety V(K) axiomatized by θω

K is the least
variety including K and is said to be generated by K, in which case θα

V(K) = θα
K, and

so Fα
V(K) = Fα

K.
Given a fully invariant θ ∈ Con(Fmω

Σ), by (2.1), Fmω
Σ/θ belongs to the variety V

axiomatized by θ, in which case any Σ-identity satisfied in V belongs to θ, and so
θω
V = θ. In particular, given a variety V of Σ-algebras, we have Fα

V ∈ V.
Throughout the rest of the paper, o/(�|Z |Y | A) is supposed to be a unary/binary

secondary connective of Σ.
Finally, let Var : Fmω

Σ → ℘ω(Varω) be the mapping assigning the set of all
actually occurring variables.

2.2.1. Lattice-theoretic background.
2.2.1.1. Semi-lattices. A Σ-algebra A is called a �-semi-lattice, provided it satisfies
semi-lattice identities for � (viz., idempotence (x0 � x0) ≈ x0, commutativity (x0 �
x1) ≈ (x1 � x0) and associativity (x0 � (x1 � x2)) ≈ ((x0 � x1) � x2) ones), in which
case we have the partial ordering ≤A

� on A, given by (a ≤A
� b) def⇐⇒ (a = (a �A b)),

for all a, b ∈ A. Then, in case the [dual] poset 〈A, (≤A
� )[−1]〉 has the least element

(viz., lower bound), this is called the [dual] 〈�−〉bound of A and denoted by [δ]βA
� ,

while A is referred to as a �-semi-lattice with [dual] bound {a, whenever a = [δ]βA
� }.

Lemma 2.2. Let A and B be �-semi-lattices with bound and h ∈ hom(A,B).
Suppose h[A] = B. Then, h(βA

� ) = βB
� .

Proof. There is some a ∈ A such that h(a) = βB
� , in which case (a �A βA

� ) = βA
� , so

h(βA
� ) = (h(a) �B h(βA

� )) = (βB
� �B h(βA

� )) = βB
� , as required. �

2.2.1.2. Lattices. A Σ-algebra A is called a [distributive] (Z,Y)-lattice, provided
it satisfies [distributive] lattice identities for Z and Y (viz., semi-lattice identities
for both Z and Y as well as absorption (x0 �0 (x0 �1 x1)) ≈ x0 [and distributivity
(x0 �0 (x1 �1 x2) ≈ ((x0 �0 x1) �1 (x0 �0 x2))] identities for Z and Y, for all bijective
�̄ : 2 → {Z,Y}), in which case ≤A

Z and ≤A
Y are inverse/dual to one another, and so,

in case A is a Y-semi-lattice with bound (in particular, when A is finite), βA
Y is the

dual Z-bound of A (viz., the greatest element of the poset 〈A,≤A
Z 〉). Then, in case

A is a {distributive} (Z,Y)-lattice, it is said to be that with zero|unit (a), whenever
it is a (Z|Y)-semi-lattice with bound (a).
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2.2.1.2.1. Bounded lattices. Let Σ〈∅〉{+}[01] , (∅{∪{∧,∨}}[∪{⊥,>}]) be the {[bo-
unded] lattice} signature {with binary ∧ (conjunction) and ∨ (disjunction)} [{as
well as} with nullary ⊥ and > (falsehood/zero and truth/unit constants, respec-
tively)]. Then, a Σ+[01]-algebra A is called a [bounded] (distributive) lattice, when-
ever it is a (distributive) (∧,∨)-lattice [with zero ⊥A and unit >A] {cf., e.g., [1]}.
Given any signature Σ′ ⊇ Σ+ and any φ, ψ ∈ Fmω

Σ′ , φ / ψ stands for φ ≈ (φ ∧ ψ).
Likewise, given any Σ′-algebra A with Σ+-reduct being a lattice, ≤A stands for ≤A

∧ .
Then, given any n ∈ (ω \ 2), Dn[01] denotes the [bounded] distributive lattice with
carrier (n÷ (n− 1)) , { m

n−1 | m ∈ n} and ≤Dn[01] , (6 ∩D2
n[01]).

2.3. Logical background.

2.3.1. Propositional calculi and logics. A (propositional‖sentential) [finitary |una-
ry |axiomatic] Σ-rule/-calculus {of 〈Σ−〉-rank α} is any element/subset of the set
℘[ω|(2\1)|1](Fmω{∩α}

Σ ) × Fmω{∩α}
Σ , any Σ-rule 〈Γ, ϕ〉 being normally written in the

standard sequent form Γ ` ϕ, “the left”/“any element of the right” component|side
of it being referred to as the/a conclusion/premise of it. Then, we set σ(Γ `
ϕ) , (σ[Γ] ` σ(ϕ)), where σ is a Σ-substitution. Axiomatic Σ-rules are called
(propositional/sentential) Σ-axioms and are identified with their conclusions.

A (propositional/sentential) Σ-logic (cf., e.g., [7]) is any closure operator C over
Fmω

Σ that is structural in the sense that σ[C(X)] ⊆ C(σ[X]), for all X ⊆ Fmω
Σ

and all σ ∈ hom(Fmω
Σ,Fmω

Σ), that is, imgC is closed under inverse Σ-substitutions.
Then, we have the equivalence relation ≡α

C , {〈φ, ψ〉 ∈ Eqα
Σ | C(φ) = C(ψ)} on

Fmα
Σ, where α is a Σ-rank, called the inter-derivablity relation of C, whenever

α = ω. A congruence of C is any θ ∈ Con(Fmω
Σ) such that θ ⊆ ≡ω

C , the set of
all them being denoted by Con(C). Then, given any θ, ϑ ∈ Con(C), Tr(θ ∪ ϑ),
being well-known to be a congruence of Fmω

Σ, is then that of C, for θω
C , being an

equivalence relation, is transitive. In particular, any maximal congruence of C (that
exists, by Zorn Lemma, because Con(C) 3 ∆Fmω

Σ
is both non-empty and inductive,

for Con(Fmω
Σ) is so) is the greatest one to be denoted by a(C). Then, C is said to

be self-extensional, whenever ≡ω
C ∈ Con(Fmω

Σ). that is, a(C) = ≡ω
C .

Definition 2.3 (cf. [17]). Given a Σ-logic C, the variety IV(C) axiomatized by
a(C) is called the intrinsic variety of C. �

Next, a Σ-rule Γ → ϕ is said to be satisfied/derivable in a Σ-logic C, provided
ϕ ∈ C(Γ), Σ-axioms satisfied in C being referred to as theorems of C. A (set
of) Σ-formula(s) Φ is said to be a[n]/ [in]consistent one/ of/in C, if C(Φ) is [not]
distinct from Fmω

Σ.

Definition 2.4. A Σ-logic C ′ is said to be a (proper) [K-]extension of a Σ-logic
C [where K ⊆ ∞], whenever (C ′ 6= C and) C(X) ⊆ C ′(X), for all X ∈ ℘[K](Fmω

Σ),
C being said to be a (proper) [K-]sublogic of C ′, in which case C ′ is said to be
axiomatized by a Σ-calculus C relatively to C, whenever C ′ is the least (w.r.t.
the extension partial ordering) extension of C satisfying every rule in C, while C ′

is said to be ( {C-relatively} 〈pre-〉maximally)/ [inferentially] consistent/inconsis-
tent, provided ∅[∪{x0}] is consistent/inconsistent in C ′ (and every 〈but, at most,
one〉 [inferentially] consistent extension of C ′{∩C} is a sublogic of C ′)/“in which
case ≡ω

C = Eqω
Σ ∈ Con(Fmω

Σ), and so C is self-extensional“, the only inconsis-
tent Σ-logic being denoted by ICΣ [whereas C ′ and C are said to be K-equivalent
(C ≡K C ′, in symbols), whenever they are K-extensions of one another, axiomati-
cally/finitely/inferentially standing for 1/ω/(∞\ 1)]. �

Further, a Σ-rule R is said to be admissible in a Σ-logic C, provided the exten-
sion of C relatively axiomatized by R is axiomatically-equivalent to C. Clearly, R
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is admissible in C, whenever it is derivable in C. If the converse holds in general,
that is, every Σ-rule is derivable in C, whenever it is admissible in C, then C is said
to be structurally/deductively/inferentially complete|maximal. Clearly, C is struc-
turally complete iff it has no proper axiomatically-equivalent extension. In general,
(
⋂

C′∈S(imgC ′)) 3 C(∅), where S 3 C is the set of all Σ-logics axiomatically-
equivalent to C, is a closure system over Fmω

Σ closed under inverse Σ-substitutions,
in which case the dual closure operator over Fmω

Σ is the greatest axiomatically-
equivalent (and so structurally complete) extension of C, called the structural com-
pletion of C. Furthermore, we have the greatest finitary sublogic C` of C, defined
by C`(X) , (

⋃
C[℘ω(X)]), for all X ⊆ Fmω

Σ, called the finitarization of C, in
which case C` ≡ω C, and so C` is axiomatically-equivalent to C.

Next, C is said to be (strongly)/weakly {classically} Z-conjunctive, provided
C({x0, x1}) = / ⊆ C(x0 Z x1). Likewise, C is said to be (strongly)/weakly {classi-
cally} Y-disjunctive, if C(X ∪ {φ Y ψ}) = / ⊆ (C(X ∪ {φ}) ∩ C(X ∪ {ψ})), where
(X ∪ {φ, ψ}) ⊆ Fmω

Σ, “in which case”/“that is, the first two — viz., (2.2) —- of”
the following four rules:

xi ` (x0 Y x1), where i ∈ 2,(2.2)
(x0 Y x1) ` (x1 Y x0),(2.3)
(x0 Y x0) ` x0(2.4)

are satisfied in C. Further, C is said to have/satisfy Deduction Theorem (DT) with
respect to a (possibly, secondary) binary connective A of Σ (fixed throughout the
paper by default), provided, for all φ ∈ X ⊆ Fmω

Σ and all ψ ∈ C(X), it holds that
(φ A ψ) ∈ C(X \ {φ}), in which case the following axioms:

x0 A x0,(2.5)

x0 A (x1 A x0)(2.6)

are satisfied in C. Then, C is said to be weakly {classically} A-implicative, if it has
DT w.r.t. A as well as satisfies the Modus Ponens rule:

(2.7) {x0, x0 A x1} ` x1,

in which case the following axiom:

(2.8) (x0 ]A (x0 A x1)),

where (x0 ]A x1) , ((x0 A x1) A x1) is the intrinsic disjunction of (implication)
A, is satisfied in C. Likewise, C is said to be (strongly) {classically} A-implicative,
whenever it is weakly so and satisfies the Peirce Law axiom (cf. [12]):

(2.9) ((x0 A x1) ]A x0).

Furthermore, C is said to be [ {axiomatically} (pre)maximally] o-paraconsistent [cf.
[16] as well as the reference [Pyn95 b] therein], where o is a {possibly, secondary}
unary connective of Σ, tacitly fixed throughout the paper by default, provided it
does not satisfy the Ex Contradictione Quodlibet rule:

(2.10) {x0, ox0} ` x1

[and has no (more than one) proper o-paraconsistent {axiomatic} extension]. Like-
wise, C is said to be {maximally} [inferentially] (Y, o)-paracomplete, whenever it
does not satisfy the [inferential version of] the Excluded Middle Law axiom

(2.11) [x1 `](x0 Y ox0)

{and has no proper [inferentially] (Y, o)-paracomplete extension}. Given any [Σ′′ ⊆
]Σ′ ⊆ Σ, the Σ′-logic C ′, defined by C ′(X) , (Fmω

Σ′ ∩C(X)), for all X ⊆ Fmω
Σ′ ,

is called the [ Σ′′-conservative] Σ′-fragment of C, in which case C is referred to as
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a ( Σ-)expansion of C ′. Then, ≡ω
C′ = (≡ω

C ∩ Eqω
Σ′), and so C ′ is self-extensional,

whenever C is so. Finally, C is said to be theorem-less/purely-inferential, whenever
it has no theorem, that is, ∅ ∈ (imgC). In general, (imgC)∪{∅} is a closure system
over Fmω

Σ closed under inverse Σ-substitutions, for imgC is so, in which case the
dual closure operator C+0 over Fmω

Σ is the greatest purely-inferential sublogic of
C, called the purely-inferential version of C and being inferentially-equivalent to C
(cf. Definition 2.4), so

(2.12) ≡ω
C = ≡ω

C+0

(in particular, C+0 is self-extensional iff C is so).

Remark 2.5. Any Σ-logic axiomatically-equivalent to a (Y,∼)-paracomplete/con-
sistent one is itself (Y,∼)-paracomplete/consistent. In particular, any maximally
(Y,∼)-paracomplete/consistent Σ-logic is structurally complete. �

Remark 2.6. Let C be a Σ-logic and φ “a theorem”/“an inconsistent formula” of
C, in which case, by the structurality of C, ψ , (φ[xi/x0]i∈ω) is one of rank 1/“,
for (Varω \Var(φ)) 6= ∅, as Var(φ) is a finite subset of the infinite set Varω”, and
so C is weakly ψ-disjunctive/-conjunctive. �

2.3.2. Logical matrices. A (logical) Σ-matrix (cf., e.g., [7]) is any pair of the form
A = 〈A, DA〉, where A is a Σ-algebra, called the underlying algebra of A, while A is
called the carrier/“underlying set” of A, attributes (such as cardinality, elements,
subsets, etc.) of A being referred to as those of A, whereas DA ⊆ A is called the
truth predicate of A, elements of A[∩DA] being referred to as [distinguished] values
of A, the Σ-matrix ∂(A) , 〈A, A \DA〉 being referred to as (truth-)dual to A. (In
general, matrices are denoted by Calligraphic letters [possibly, with indices], their
underlying algebras being denoted by corresponding capital Fraktur letters [with
same indices, if any].) Then, A is said to be [no-more/less-than-]n-valued, where
n ∈ (ω \ 1), provided |A| = [6/>]n. Next, it is said to be [in]consistent, whenever
DA 6= [=]A, respectively. Likewise, it is said to be truth[-non]-empty, whenever
DA = [6=]∅. Further, it is said to be truth-/false-singular, if |((DA/(A \DA))| ∈ 2.
Finally, A is said to be finite[ly generated]/“generated by a B ⊆ A”, if A is so.

Given any Σ-rank α and any class M of Σ-matrices, we have the closure operator
Cnα

M over Fmα
Σ dual to the closure system with basis Bα

M , {h−1[DA] | A ∈ M, h ∈
hom(Fmα

Σ,A)}, in which case:

(2.13) Cnα
M(X) = (Fmα

Σ ∩Cnω
M(X)),

for all X ⊆ Fmα
Σ. Then, by (2.1), Cnω

M is a Σ-logic, called the logic of/“defined by”
M. A Σ-logic is said to be {“unitary‖uniform[ly]”|double|finitely} (no-more/less-
than-)n-valued, where n ∈ (ω \ 1), whenever it is defined by a {one-element|two-
element|finite} class of (no-more/less-than-)n-valued Σ-matrices /{in which case it
is finitary, as the logic of any finite set of finite Σ-matrices is so; cf. [7]}. Then,
a [uniform{ly}] n-valued Σ-logic, where n ∈ (ω \ 2), is said to be minimal(ly) so,
unless it is [uniformly] no-more-than-(n− 1)-valued.

As usual, Σ-matrices are treated as first-order model structures (viz., algebraic
systems; cf. [10]) of the first-order signature Σ ∪ {D} with unary predicate D,
in which case any [in]finitary Σ-rule Γ ` φ is viewed as the [in]finitary equality-
free basic strict Horn formula (

∧
Γ) → φ under the standard identification of any

propositional Σ-formula ψ with the first-order atomic formula D(ψ), as well as
is true/satisfied in a class M of Σ-matrices (in the conventional model-theoretic
sense; cf., e.g., [10]) iff it is satisfied in the logic of M, theorems/“inconsistent
{sets of} formulas” of which being referred to as tautologies/“inconsistent {sets
of } formulas” of M. (Clearly, inconsistent formulas of M are exactly tautologies
of ∂[M], unless M contains an inconsistent element.)
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Remark 2.7. Since any rule with[out] premises is [not] true in any truth-empty
matrix, given any class M of Σ-matrices, the theorem-less version of the logic of M
is defined by that of the form M∪ S with only truth-empty elements of S 6= ∅. �

Let A and B be two Σ-matrices. A (strict) [surjective] {injective} homomor-
phism from A [on]to B is any {injective} h ∈ hom(A,B) such that [h[A] = B

and] DA ⊆ h−1[DB](⊆ DA), the set of all them being denoted by hom[S]
(S)(A,B), in

which case B/A is said to be a (strictly) [surjectively] {injectively} homomorphic
image/counter-image ([{as well as called an isomorphic copy}]) of A/B, respec-
tively. Then, by (2.1), we have:

(hom[S]
S (A,B) 6= ∅) ⇒ (Cnα

B(X) ⊆ Cnα
A(X)[⊆ Cnα

B(X)]),(2.14)

(homS(A,B) 6= ∅) ⇒ (Cnα
A(∅) ⊆ Cnα

B(∅)),(2.15)

for all Σ-ranks α and all X ⊆ Fmα
Σ. Further, A[6= B] is said to be a [proper]

submatrix of B, whenever ∆A ∈ homS(A,B), in which case we set (B�A) , A.
Injective/bijective strict homomorphisms from A to B are called embeddings/iso-
morphisms of/from A into/onto B, in case of existence of which A is said to be
embeddable/isomorphic into/to B.

Given a Σ-matrix A, (χA/θA) , (χDA

A )/(kerχA)) is referred to as the character-
istic function/relation of A. Then, for any θ ∈ Con(A) [such that θ ⊆ θA], νθ is a
[strict] surjective homomorphism from A onto (A/θ) , 〈A/θ,DA/θ〉 [in which case
θ is called a congruence of A, the set of all them being denoted by Con(A)]. Given
any θ, ϑ ∈ Con(A), Tr(θ ∪ ϑ), being well-known to be a congruence of A, is then
that of A, for θA, being an equivalence relation, is transitive. In particular, any
maximal congruence of A (that exists, by Zorn Lemma, because Con(A) 3 ∆A is
both non-empty and inductive, for Con(A) is so) is the greatest one to be denoted
by a(A), that is traditionally called the Leibniz congruence of A but denoted, for
quite unclear reasons, by rather Ω(A) than, e.g., Λ(A) (here we though naturally
adapt more coherent conventions adopted in [25] to use its results immediately). Fi-
nally, A is said to be [(finitely) hereditarily] simple, whenever it has no non-diagonal
congruence [as well as no non-simple (finitely-generated) submatrix].

Remark 2.8. Let A and B be two Σ-matrices and h ∈ hom(A,B) strict [and surjec-
tive]. Then, χA = (h◦χB) (in particular, θA = h−1[θB]) and, for every θ ∈ Con(B),
h−1[θ] ∈ Con(A) [while h[h−1[θ]] = θ]. Therefore:

(i) for every θ ∈ Con(B), h−1[θ] ∈ Con(A) [while h[h−1[θ]] = θ].
In particular (when θ = ∆B), by (i), we have (kerh) = h−1[∆B ] ∈ Con(A), so:

(ii) h is injective, whenever A is simple.
[Likewise, for any θ ∈ Con(B), by (i), we have h−1[θ] ∈ Con(A), in which case we
get h−1[θ] ⊆ a(A), and so, by (i), we eventually get θ = h[h−1[θ]] ⊆ h[a(A)] (in
particular, ∆B ⊆ θ ⊆ ∆B , whenever a(A) ⊆ (kerh)).] Thus:
[(iii) B is simple, whenever A is so.]
(iv) A/a(A) is simple. �

Definition 2.9. A Σ-matrix A is said to be a [K-]model of a Σ-logic C {over A}
[where K ⊆ ∞], provided C is a [K-]sublogic the logic of A 〈cf. Definition 2.4〉, the
class of all (simple of) them being denoted by Mod(∗)

[K](C{,A}), respectively. Then,

FiC(A) , π1[Mod(C,A)], whose elements are called filters of C over A, is a closure
system over A, FgA

C denoting the dual closure operator 〈of filter generation〉. �

A Σ-matrix A is said to be o-paraconsistent/“[inferentially] (Y, o)-paracomplete”,
whenever its logic is so. Next, A is said to be (strongly)/weakly {classically} �-
conjunctive, provided ({a, b} ⊆ DA) ⇔ / ⇐ ((a �A b) ∈ DA), for all a, b ∈ A,
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that is, the logic of A is strongly/weakly �-conjunctive. Then, A is said to be
(strongly)/weakly {classically} �-disjunctive, whenever ∂(A) is strongly/weakly
�-conjunctive, “in which case”/“that is,” the logic of A is strongly/weakly �-
disjunctive, and so is the logic of any class of strongly/weakly �-disjunctive Σ-
matrices. Likewise, A is said to be (weakly/strongly){classically} A-implicative,
whenever ((a ∈ DA) ⇒ (b ∈ DA)) ⇔ ((a AA b) ∈ DA), for all a, b ∈ A, in which
case it is ]A-disjunctive, while the logic of A is A-implicative, for both (2.7) and
(2.9) are true in any A-implicative (and so ]A-disjunctive) Σ-matrix, while DT
is immediate, and so is the logic of any class of A-implicative Σ-matrices. Fur-
thermore, given any Σ′ ⊆ Σ, A is said to be a ( Σ-)expansion of its Σ′-reduct
(A�Σ′) , 〈A�Σ′, DA〉, clearly defining the Σ′-fragment of the logic of A. Finally,
A is said to be weakly/(strongly) {classically} o-negative, provided, for all a ∈ A,
(a ∈ DA) ⇐ / ⇔ (oAa 6∈ DA), in which case it is truth-non-empty/“, and so
consistent”.

Remark 2.10. For any Σ-matrices A and B, the following hold:

(i) A is:
(a) [weakly] �-disjunctive/-conjunctive iff it is [weakly] �o-conjunctive/-dis-

junctive, respectively, whenever it is o-negative, where (x0 �ox1) , o(ox0 �
ox1) is the o-dual |De-Morgan counterpart of �;

(b) Ao
�-implicative, if it is both o-negative and �-disjunctive, where (x0 Ao

�
x1) , (ox0 �x1) is the material implication of/“defined |given by” {nega-
tion} o and {disjunction} �.

(c) not o-paraconsistent, whenever it is o-negative;
(d) not (�, o)-paracomplete, whenever it is both weakly o-negative and weakly

�-disjunctive;
(ii) for any strict [surjective] (injective) h ∈ hom(A,B), the following hold:

(a) A is {weakly} o-negative|�-conjunctive/-disjunctive/-implicative if[f] B
is so;

(b) B is consistent/truth-non-empty if[f] A is so;
(c) A is false-/truth-singular (if [and]) [only if] B is so. �

Remark 2.11. Let A be a consistent A-implicative [non-o-paraconsistent] Σ-matrix
A and φ an inconsistent formula of A of rank 1 (in particular, [either φ = oψ,
where ψ is a tautology of A of rank 1 {in particular, ψ = (x0 A x0); cf. (2.5)},
or] any non-distinguished value of A is term-wise definable by φ in A), in which
case, for each a ∈ A, φA(a) 6∈ DA, because, otherwise, φ ` x1 would not be true
in A under [x0/a, x1/b], where b ∈ (A \DA) 6= ∅, and so A is ¬φ

A-negative, where
¬φ

Ax0 , (x0 A φ), ¬oA standing for ¬o(x0Ax0)
A , (in particular, it, being ]A-disjunctive,

is ]¬
φ
A

A -conjunctive; cf. Remark 2.10(i)(a)). �

Remark 2.12. Given a Σ-logic C, by its structurality, for any T ∈ (imgC), 〈Fmω
Σ, T 〉

∈ Mod(C). Then, given any basis B of imgC, any Σ-rule Γ ` ϕ not satisfied in C,
in which case there is some T ∈ B such that Γ ⊆ T 63 ϕ, is not true in 〈Fmω

Σ, T 〉
under the diagonal Σ-substitution, and so C is defined by ({Fmω

Σ}×B) ⊆ Mod(C)
(in particular, by Mod[∗](C) [in view of (2.14) and Remark 2.8(iv)]). �

Given a set I and an I-tuple A of Σ-matrices, [any submatrix B of] the Σ-
matrix (

∏
i∈I Ai) , 〈

∏
i∈I Ai,

∏
i∈I D

Ai〉 is called the [a] [sub]direct product of A
[whenever, for each i ∈ I, πi[B] = Ai]. As usual, if (imgA) ⊆ {A}, where A is a
Σ-matrix, we set AI , (

∏
i∈I Ai).
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Given a class M of Σ-matrices, the class of all “strictly surjectively homomorphic
[counter-]images”/ “isomorphic copies”/“(consistent) {truth-non-empty} submatri-
ces” of elements of M is denoted by (H[−1]/I/S{∗}(∗) )(M), respectively. Likewise, the
class of all [sub]direct products of tuples (of cardinality ∈ K ⊆ ∞) constituted by
elements of M is denoted by P[SD]

(K) (M).
2.3.2.1. Classical matrices and logics. Σ-matrices with diagonal characteristic func-
tion (and so relation) are said to be classically-canonical, isomorphisms between
them being diagonal, in which case isomorphic ones being equal. Then, the char-
acteristic function of any Σ-matrix A with diagonal characteristic relation — viz.,
injective characteristic function — (and so no-more-than-two-valued) is an isomor-
phism from it onto the classically-canonical Σ-matrix {(A) , 〈χA[A], {1}〉, called
the [classical] canonization of A.

A (classically-canonical) two-valued Σ-matrix A [with functionally complete un-
derlying algebra] is said to be [genuinely] (canonical{ly}) o-classical, whenever it is
o-negative, in which case it is both false- and truth-singular (and so its characteristic
relation is diagonal) but is not o-paraconsistent, by Remark 2.10(i)(c).

A Σ-logic is said to be (genuinely) o-[sub]classical, whenever it is [a sublogic
of] the logic of a (genuinely) o-classical Σ-matrix, in which case it is inferentially
consistent. Then, a Σ-matrix is said to be o-classically-defining, whenever its logic
is o-classical. Likewise, a unary ∼ ∈ Σ is called a subclassical negation for a Σ-logic
C, whenever the ∼-fragment of C is ∼-subclassical, in which case:

(2.16) ∼mx0 6∈ C(∼nx0),

for all m,n ∈ ω such that the integer m − n is odd, where the secondary unary
connective ol of Σ is defined by induction on l ∈ ω via setting o0[+l+1]x0 , [o ol]x0.

Remark 2.13. ICΣ
+0 is an inferentially inconsistent (and so not [sub]classical) purely-

inferential (and so both consistent and axiomatically-equivalent) extension of any
purely-inferential Σ-logic C, in which case C is structurally complete iff it is inferen-
tially inconsistent. In particular, any purely-inferential classical (and so inferentially
consistent) Σ-logic is not structurally complete. �

3. Preliminary key advanced generic issues

3.1. Equality determinants versus matrix hereditary simplicity. Following
the paradigm of the works [20] and [21], an equality determinant for a class of
Σ-matrices M is any infinitary quantifier-free equality-free formula Φ of the first-
order signature L , (Σ ∪ {D}) (that is, any equality-free formula of the infinitary
language L∞,0) with variables in Var2 such that the infinitary universal sentence
∀x0∀x1(Φ ↔ (x0 ≈ x1)) with equality is true in M, in which case Φ is an equality
determinant for I(S(M)) (cf. Lemma 3.3 of [25] for the “unitary” case discussed
in Subsubsection 3.1.1). Then, a canonical equality determinant for M is any Σ-
calculus ε of rank 2 such that

∧
ε is an equality determinant for M. The main

distinctive feature of Σ-matrices with equality determinant is as follows:

Lemma 3.1 (cf. Lemma 3.2 of [25] for the “unitary” case). Any Σ-matrix A with
equality determinant Φ is simple, and so hereditarily so.

Proof. Then, for any ā ∈ θ ∈ Con(A), and all ϕ ∈ Fm2
Σ, we have ϕA(a0, a0) θ

ϕA(a0, a1), in which case we get (ϕA(a0, a0) ∈ DA) ⇔ (ϕA(a0, a1) ∈ DA), and so
A |= Φ[xi/ai]i∈2, for A |= Φ[xi/a0]i∈2, as a0 = a0 (in particular, a0 = a1, in which
case θ = ∆A, and so A is simple). �

Conversely, we have:
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Theorem 3.2. Every element of a class M of Σ-matrices 〈satisfying both (2.5)
and (2.7) din particular, being A-implicativee〉 is [finitely] hereditarily simple iff
M has a ( {finitary/unary〈/axiomatic〉} canonical) equality determinant, in which
case this is so for IS({〈/PS〉})M, and so all elements of this class are hereditarily
simple.

Proof. The “if” part is by Lemma 3.1. Conversely, assume every element of M is
finitely hereditarily simple. Consider any A ∈ M. Let ε , {φi ` φ1−i | i ∈ 2, φ̄ ∈
(Fm2

Σ)2, (φ0[x1/x0]) = (φ1[x1/x0])}, in which case

(3.1) ηA[xi/a]i∈2 = ζA[xi/a]i∈2,

for all a ∈ A and all (η ` ζ) ∈ ε, and so A |= (
∧
ε)[xi/a]i∈2, for ∆A ⊆ θA.

Conversely, consider any ā ∈ (A2 \ ∆A). Let B be the submatrix of A gen-
erated by the finite set img ā. Then, it, being finitely-generated is simple, in
which case θ , CgB(ā) 3 ā 6∈ ∆B is a non-diagonal congruence of B, and so
θ * θB. On the other hand, according to Mal’cev Principal Congruence Lemma
[9] (cf. [4]), θ = Tr(∇A(ā) ∪ ∇A(ā)−1), where ∇A(ā) , {〈ϕA[xi/ci;xn/aj ]i∈n〉j∈2 |
n ∈ ω, ϕ ∈ Fmn+1

Σ , c̄ ∈ An}, in which case θB, being transitive and symmet-
ric, does not include ∇B(ā), and so there are some n ∈ ω, some ϕ ∈ Fmn+1

Σ

and some c̄ ∈ Bn such that 〈ϕB[xn/aj ;xi/ci]i∈n〉j∈2 6∈ θB. Therefore, there is
some k ∈ 2 such that ϕB[xn/ak;xi/ci]i∈n ∈ DB 63 ϕB[xn/a1−k;xi/ci]i∈n, while,
as B is generated by img ā, for each i ∈ n, there is some ψi ∈ Fm2

Σ such that
ci = ψB

i [xl/al]l∈2. Then, φB
k [xl/al]l∈2 ∈ DB 63 φB

1−k[xl/al]l∈2, where, for all
m ∈ 2, φm , (ϕ[xn/xm;xi/ψi]i∈n) ∈ Fm2

Σ. And what is more, (φ0[x1/x0]) =
(ϕ[xi/(ψi[x1/x0])]i∈n) = (φ1[x1/x0]), in which case (φk ` φ1−k) ∈ ε, and so
B 6|= (

∧
ε)[xl/al]l∈2. Hence, A 6|= (

∧
ε)[xl/al]l∈2, for

∧
ε is quantifier-free, and so ε

is a unary (in particular, finitary) canonical equality determinant for M. 〈Then, by
(2.5), (2.7) and (3.1), ε , {η A ζ | (η ` ζ) ∈ ε} is an axiomatic canonical equality
determinant for M.〉 On the other hand, any Ξ ⊆ Fm2

Σ is an axiomatic canonical
equality determinant for a class of Σ-matrices K iff the universal infinitary strict
Horn sentences with equality ∀x0∀x1((

∧
Ξ) → (x0 ≈ x1)) and ∀x0(ξ[x1/x0]), where

ξ ∈ Ξ, of the first-order signature Σ∪{D} are true in K. In this way, the well-known
fact that model classes of universal infinitary 〈strict Horn〉 theories with equality
are closed under I and S 〈as well as P〉 bcf., e.g., [10]c completes the argument. �

3.1.1. Unitary equality determinants versus matrix non-diagonal partial automor-
phisms. A [partial] (strict) endomorphism of a Σ-matrix A is any (strict) homo-
morphism from [a submatrix of] A to A ([injective ones being referred to as partial
automorphisms of A]).

A unitary equality determinant for a class M of Σ-matrices is any Υ ⊆ Fm1
Σ

such that εΥ , {(υ[x0/xi]) ` (υ[x0/x1−i]) | i ∈ 2, υ ∈ Υ} is a (unary) canonical
equality determinant for M. It is unitary equality determinants that are equality
determinants in the sense of [20].

Theorem 3.3. A Σ-matrix A has a unitary equality determinant iff it is (finitely)
hereditarily simple and has no non-diagonal [injective] partial strict endomorphism.

Proof. First, let Υ be a unitary equality determinant for A, B a submatrix of A
and h ∈ hom(B,A) strict. Then, for every b ∈ B and each υ ∈ Υ, we have
(υA(b) = υB(b) ∈ DA) ⇔ (υB(b) ∈ DB) ⇔ (υA(h(b)) = h(υB(b)) ∈ DA), in which
case we get h(b) = b, and so h is diagonal. Thus, the “only if” part is by Lemma
3.1. Conversely, assume A has no non-diagonal partial automorphism and is finitely
hereditarily simple, in which case, by Theorem 3.2, it has a unary canonical equality
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determinant ε. Consider any ā ∈ A2 such that

(3.2) (ϕA(a0) ∈ DA) ⇔ (ϕA(a1) ∈ DA),

for all ϕ ∈ Fm1
Σ. Let f be the carrier of the subalgebra of A2 generated by {ā}, and,

for each i ∈ 2, Bi the submatrix of A generated by {ai}, in which case Bi = πi[f ],
for πi(ā) = ai, while πi ∈ hom(A2,A). Consider any i ∈ 2 and any b̄, c̄ ∈ f such
that bi 6= ci, in which case there are some φ, ψ ∈ Fm1

Σ such that b̄ = φA2
(ā) and

c̄ = ψA2
(ā) as well as some (ξ ` η) ∈ ε such that ξA(bi, ci) ∈ DA 63 ηA(bi, ci).

Let ($|ζ) , ((ξ|η)[x0/φ, x1/ψ]) ∈ Fm1
Σ, in which case (ξ|η)A2

(b̄, c̄) = ($|ζ)A2
(ā),

and so $A(ai) ∈ DA 63 ζA(ai). Hence, by (3.2), ξA(b1−i, c1−i) = $A(a1−i) ∈
DA 63 ζA(a1−i) = ηA(b1−i, c1−i), in which case b1−i 6= c1−i, and so f : B0 → B1 is
injective. Therefore, f , being a subalgebra of A2, is an embedding of B0 into A, in
which case, by (3.2), f is an embedding of B0 into A, and so a partial automorphism
of A. Thus, f is diagonal, in which case a1 = f(a0) = a0, so Fm1

Σ is a unitary
equality determinant for A. �

Clearly, any consistent truth-non-empty two-valued (in particular, classical) Σ-
matrix A is both false- and truth-singular, in which case its characteristic relation
is diagonal, and so {x0} is an equality determinant for A.

3.2. Disjunctivity.

3.2.1. Disjunctivity versus multiplicativity. A Σ-logic C is said to be Y-(singularly-
)multiplicative, provided, for all X ⊆ Fmω

Σ and all φ, ψ ∈ Fmω
Σ, it holds that

(Y[C(X ∪ {φ})× {ψ}]) ⊆ C(X ∪ {φ Y ψ}).

Lemma 3.4. Any Σ-logic C is Y-disjunctive iff it is both weakly Y-disjunctive and
Y-multiplicative as well as satisfies both (2.3) and (2.4).

Proof. The “only if” part is immediate. Conversely, assume C is both weakly Y-
disjunctive and Y-multiplicative as well as satisfies both (2.3) and (2.4). Consider
any X ⊆ Fmω

Σ, any φ, ψ ∈ Fmω
Σ and any ϕ ∈ (C(X ∪{φ})∩C(X ∪{ψ})). Then, by

the Y-multiplicativity of C and (2.3), we have (ψYϕ) ∈ C(ϕYψ) ⊆ C(X∪{φYψ}).
Likewise, by the Y-multiplicativity of C and (2.4), we have ϕ ∈ C(ϕ Y ϕ) ⊆ C(X ∪
{ψ Y ϕ}). In this way, we eventually get ϕ ∈ C(X ∪ {φ Y ψ}). �

3.2.1.1. Implicativity versus intrinsic disjunctivity.

Theorem 3.5. Let C be a weakly A-implicative Σ-logic and Y , ]A. Then, the
following hold:

(i) C is both weakly Y-disjunctive and Y-multiplicative;
(ii) C is A-implicative iff it is Y-disjunctive iff it satisfies (2.3).

Proof. (i) First, (2.2) with i = 0 is by DT and (2.7). Likewise, (2.2) with i = 1
is by (2.6) and (2.7). Now, consider any X ⊆ Fmω

Σ and any φ, ψ, ϕ ∈ Fmω
Σ.

Then, by DT and (2.7), we have ((ψ ∈ C(X∪{φ}) ⇒ ((φ A ϕ) ∈ C(X∪{ψ A
ϕ}), applying which twice, the second time being with (ψ A ϕ)|(φ A ϕ)
instead of φ|ψ, respectively, we conclude that C is Y-multiplicative.

(ii) Assume C is A-implicative. Then, ((x0Yx0) A x0) = ((2.9)[x1/x0]) is satisfied
in C, for this is structural, and so is (2.4), in view of (2.7). Furthermore, by
(2.7), we have x0 ∈ C({x0 Y x1, x0 A x1, x1 A x0}), in which case, by DT,
we get ((x0 A x1) A x0) ∈ C({x0 Y x1, x1 A x0}), and so, by (2.7) and (2.9),
we eventually get x0 ∈ C({x0 Y x1, x1 A x0}) (in particular, by DT, (2.3) is
satisfied in C). Then, Lemma 3.4, (i) and (2.8) complete the argument. �

Corollary 3.6. Let M be a class of [ Y-disjunctive] Σ-matrices and C the logic of
M. Then, C is A-implicative if[f ] all elements of M are so.
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Proof. The “if” part is immediate. [Conversely, assume C is A-implicative, in which
case, by Theorem 3.5(ii), it is ]A-disjunctive as well as is Y-disjunctive, and so
C(x0 ]A x1) = (C(x0) ∩ C(x1)) = C(x0 Y x1). Then, by (2.9) = ((x0 A x1) ]A x0)
and the structurality of C, we have C(∅) = C((x0 A x1) ]A x0) = C((x0 A
x1) Y x0) 3 ((x0 A x1) Y x0), in which case the Σ-axiom (x0 A x1) Y x0, being
satisfied in C, is true in every A ∈ M ⊆ Mod(C) as well as both (2.6) and (2.7) are
so, for they are satisfied in C, and so A, being Y-disjunctive, is A-implicative.] �

3.2.2. Disjunctive consistent finitely-generated models of finitely-valued weakly dis-
junctive logics.

Lemma 3.7. H(H−1(M)) ⊆ H−1(H(M)), for any class of Σ-matrices M.

Proof. Let A and B be Σ-matrices, C ∈ M and (h|g) ∈ homS
S(B, C|A). Then, by

Remark 2.8(i), (ker(h|g)) ∈ Con(B), in which case (ker(h|g)) ⊆ θ , a(B) ∈ Con(B),
and so, by the Homomorphism Theorem, (νθ ◦ (h|g)−1) ∈ homS

S(C|A,B/θ). �

Lemma 3.8 (cf. the proof of Lemma 2.7 of [25]). Let M be a (finite) class of
(finite) Σ-matrices and A a 〈truth-non-empty〉 [non-]simple denumerably-generated
(more specifically, finite{ly-generated}) model of the logic of M. (Suppose A is
{generated by a subset} of cardinality n ∈ ω.) Then, there are some (finite) set I
(of cardinality 6

∑
B∈M n

|B|), some C ∈ S〈∗〉∗ (M)I and some its subdirect product
in H−1(A[/a(A)]).

Lemma 3.9. Let M be a class of weakly Y-disjunctive Σ-matrices, I a finite set,
C ∈ MI , and D a consistent Y-disjunctive subdirect product of it. Then, there is
some i ∈ I such that (πi�D) ∈ homS

S(D, Ci).

Proof. By contradiction. For suppose that, for every i ∈ I, (πi�D) 6∈ homS
S(D, Ci),

in which case DD ( (πi�D)−1[DCi ] = (D ∩ π−1
i [DCi ]), for (πi�D) ∈ hom(D, Ci)

is surjective, and so there is some ai ∈ (D \ DD) such that πi(ai) ∈ DCi . By
induction on the cardinality of any J ⊆ I, let us prove that there is some b ∈
(D \DD) such that πj(b) ∈ DCj , for all j ∈ J , as follows. In case J = ∅, take any
b ∈ (D \DD) 6= ∅, for D is consistent. Otherwise, take any j ∈ J , in which case
K , (J \ {j}) ⊆ I, while |K| < |J |, so, by the induction hypothesis, there is some
c ∈ (D \DD) such that πk(c) ∈ DCk , for all k ∈ K. Then, by the Y-disjunctivity of
D, b , (c YD aj) ∈ (D \DD), while πi(b) ∈ DCi , for all i ∈ J = (K ∪ {j}), because
(πi�D) ∈ hom(D,Ci), while Ci is weakly Y-disjunctive. In particular, when J = I,
there is some b ∈ (D \DD) such that πi(b) ∈ DCi , for all i ∈ I. This contradicts to
the fact that DD = (D ∩

⋂
i∈I π

−1
i [DCi ]), as required. �

By Lemmas 3.7, 3.8, 3.9 and Remark 2.10(ii), we immediately have:

Theorem 3.10. Let M be a finite class of finite weakly Y-disjunctive Σ-matrices,
C the logic of M and A a finite[ly-generated] consistent Y-disjunctive model of C.
Then, A ∈ H−1(H(S∗(M))).

3.2.2.1. Theorems of weakly disjunctive finitely-valued logics versus truth-empty
submatrices of defining matrices.

Corollary 3.11. Let C be a Σ-logic. (Suppose it is defined by a finite class M of
finite [weakly Y-disjunctive] Σ-matrices.) Then, (i)⇔(ii)⇔(iii)(⇔(iv)), where:

(i) C is purely-inferential;
(ii) C has a truth-empty model;
(iii) C has a one-valued truth-empty model;
(iv) PSD

ω[∩0](S∗(M))[∪S∗(M)] has a truth-empty element.
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Proof. First, (ii)⇒(i) is immediate. The converse is by the fact that, by Remark
2.12, 〈Fmω

Σ, C(∅)〉 is a model of C.
Next, (ii) is a particular case of (iii). Conversely, let A ∈ Mod(C) be truth-

empty. Then, χA is singular, in which case θA = A2 ∈ Con(A), and so, by (2.14)
and Remark 2.10(ii)(b), (A/θA) ∈ Mod(C) is both one-valued and truth-empty.

(Finally, (iv)⇒(ii) is by (2.14). Conversely, (iii)⇒(iv) is by Remark 2.10(ii)(b)
and Lemma 3.8 [resp., Theorem 3.10 as well as the consistency and Y-disjunctivity
of truth-empty Σ-matrices].) �

3.2.2.1.1. Inconsistent formulas of weakly conjunctive finitely-valued logics versus
inconsistent submatrices of defining consistent matrices. Applying the matrix truth-
duality to the ([])-optional version of Corollary 3.11(i)⇔(iv), we also get:

Corollary 3.12. Let M be a finite class of consistent finite weakly Z-conjunctive
Σ-matrices and C the logic of M. Then, C has an inconsistent formula iff S{∗}(M)
has no inconsistent element.

3.2.3. Non-paraconsistency versus Resolution. Given any Σ-logic C, by CR we de-
note the extension of C relatively axiomatized by the Resolution rule (cf. [29]):

(3.3) {x0 Y x1, ox0 Y x1} ` x1.

Applying Lemma 3.4 and (2.4) to (2.10) twice, we have:

Lemma 3.13. (3.3) is satisfied in any Y-disjunctive non-o-paraconsistent Σ-logic.

Theorem 3.14. Let M be a finite class of finite Y-disjunctive Σ-matrices and
C the logic of M. Then, CR is defined by the class S of all non-o-paraconsistent
elements of S∗(M), and so is Y-disjunctive but is not o-paraconsistent.

Proof. Then, C is Y-disjunctive, while the logic of S is a both finitary, Y-disjunctive
(in view of Remark 2.10(ii)(a)) and non-o-paraconsistent extension of C, and so an
extension of CR, in view of Lemma 3.13. Conversely, consider any n ∈ (ω \ 1),
any Γ ⊆ Fmn

Σ and any ϕ ∈ (Fmn
Σ \CR(Γ)), in which case, by (2.13) with α = n,

ϕ 6∈ C(Γ) = Cnω
M(Γ) ⊇ Cnn

M(Γ), and so T , {T ∈ Bn
M | Γ ⊆ T 63 ϕ} 6= ∅.

Then, since n as well as both M and all elements of it are finite, the class {〈A, h〉 |
A ∈ M, h ∈ hom(Fmn

Σ,A)} is a finite set, in which case the set Bn
M is finite, and

so is T ⊆ Bn
M. Let m , |T| ∈ (ω \ 1) and T : m → T bijective, in which case,

for each i ∈ m, there is some Ai ∈ M and some hi ∈ hom(Fmn
Σ,Ai) such that

Γ ⊆ Ti = h−1
i [DAi ] 63 ϕ, and so Bi , (img hi) forms a subalgebra of Ai, while

Bi , (Ai�Bi) ∈ S(M), whereas h−1
i [DBi ] = Ti (in particular, Bi is consistent, for

hi(ϕ) ∈ (Bi \ DBi)), as well as hi ∈ hom(Fmn
Σ,Bi) (In particular, Ti ∈ Bn

S∗(M)).
We prove, by contradiction, that, for some i ∈ m, Bi is not o-paraconsistent. For
suppose each Bi, where i ∈ m, is o-paraconsistent. By induction on any j ∈ (m+1),
we set Ξj , ({ϕ}|{okψ Y φ | k ∈ 2, ψ ∈ Tj−1 3 oψ, φ ∈ Ξj−1}) ⊆ Fmn

Σ, whenever
j = | 6= 0, respectively, and prove that

ϕ ∈ CR(Ξj),(3.4)
Ξj ⊆ (C(Ti) ∩ C(Ξi)),(3.5)

for all i ∈ j. The case, when j = 0 = ∅, is evident. Otherwise, (j − 1) ∈ (m ∩ j),
in which case Bj−1 is ∼-paraconsistent, and so there is some ψ ∈ Tj−1 such that
oψ ∈ Tj−1. In particular, for each φ ∈ Ξj−1 and every k ∈ 2, (okψ Y φ) ∈ Ξj ,
in which case, by (3.3)[x0/ψ, x1/φ] and the structurality of CR, φ ∈ CR(Ξj), and
so, by the induction hypothesis, ϕ ∈ CR(Ξj−1) ⊆ CR(Ξj). Thus, (3.4) holds.
Likewise, by the Y-disjunctivity of C, for each φ ∈ Ξj−1, every k ∈ 2 and all
ψ ∈ Tj−1 such that oψ ∈ Tj−1, we have (okψ Y φ) ∈ (C(Ξj−1) ∩ C(Tj−1)) (in
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particular, (3.5) with i = (j − 1) holds), and so, by the induction hypothesis as
well as (3.5) with i = (j − 1), we get (3.5), for all i ∈ (j − 1). Thus, (3.5) holds,
for all i ∈ ({j − 1} ∪ (j − 1)) = j. In this way, by (3.4) with j = m, we have
Ξm * CR(Γ) ⊇ C(Γ) = Cnω

M(Γ), in which case, by (2.13) with α = n, we get
Ξm * Cnn

M(Γ), and so there is some T ∈ Bn
M such that Γ ⊆ T + Ξm. In that case,

if T contained ϕ, that is, included Ξ0, then, by (3.5) with j = m and i = 0 ∈ m,
for m 6= 0, we would have Ξm ⊆ C(T ), and so, by (2.13) with α = n, would get
Ξm ⊆ Cnn

M(T ) = T . Therefore, ϕ 6∈ T , in which case T ∈ T, and so T = Tl, for
some l ∈ m. Hence, by (3.5) with j = m and i = l, we have Ξm ⊆ C(T ), in which
case, by (2.13) with α = n, we get Ξm ⊆ Cnn

M(T ) = T , and so this contradiction
shows that there is some i ∈ m, such that Bi is not o-paraconsistent. In this way,
Bi ∈ S, in which case ϕ 6∈ Cnn

Bi
(Γ) ⊇ Cnn

S (Γ), and so, by (2.13) with α = n,
ϕ 6∈ Cnω

S (Γ), as required, for ℘ω(Fmω
Σ) ⊆

⋃
n∈(ω\1) ℘(Fmn

Σ). �

3.3. Implicative matrix semantics of implicative finitary logics.

Lemma 3.15. Let C be an A-implicative Σ-logic. Then, any member of ({Fmω
Σ}×

MI(imgC)) is A-implicative.

Proof. Consider any T ∈ MI(imgC), any φ, ψ ∈ Fmω
Σ and any ϕ ∈ (C(T ∪ {φ}) ∩

C(T ∪ {φ A ψ})), in which case, by DT and (2.7), (φ A ψ) ∈ C(T ∪ {ϕ A ψ}), so
ϕ ∈ C(T ∪ {ϕ A ψ}). Then, by DT, ((ϕ A ψ) A ϕ) ∈ C(T ) = T , in which case, by
(2.7) and (2.9), ϕ ∈ T , so T = (C(T ∪ {φ}) ∩ C(T ∪ {φ A ψ})). Hence, T , being
meet-irreducible in imgC, is equal to either C(T ∪ {φ}) 3 φ, in which case φ ∈ T ,
or C(T ∪ {φ A ψ}) 3 (φ A ψ), in which case (φ A ψ) ∈ T , so, by (2.6) and (2.7),
〈Fmω

Σ, T 〉 is A-implicative. �

This, by Remarks 2.1 and 2.12 (as well as 2.8(iv), 2.10(ii)(a) and (2.14)), imme-
diately yields:

Theorem 3.16. Any [finitary] Σ-logic C is A-implicative if[f ] it is defined by a
class of (simple) {consistent} A-implicative Σ-matrices.

3.4. Some peculiarities of false-singular matrices.

3.4.1. Subdirect products of consistent submatrices of weakly conjunctive matrices.

Lemma 3.17. Let A be a false-singular weakly �-conjunctive Σ-matrix, f ∈ (A \
DA), I a finite set, B ∈ S∗(A)I and D a subdirect product of it. Then, (I ×{f}) ∈
D.

Proof. By induction on the cardinality of any J ⊆ I, let us prove that there is some
a ∈ D including (J × {f}). First, when J = ∅, take any a ∈ D 6= ∅, in which
case (J × {f}) = ∅ ⊆ a. Now, assume J 6= ∅. Take any j ∈ J ⊆ I, in which case
K , (J \ {j}) ⊆ I, while |K| < |J |, and so, as Bj is a consistent submatrix of the
false-singular Σ-matrix A, we have f ∈ Bj = πj [D]. Hence, there is some b ∈ D
such that πj(b) = f , while, by induction hypothesis, there is some c ∈ D including
(K × {f}). Therefore, since J = (K ∪ {j}), while A is both weakly �-conjunctive
and false-singular, we have D 3 a , (c �D b) ⊇ (J × {f}). Thus, when J = I, we
eventually get D 3 (I × {f}), as required. �

3.4.2. Models of weakly implicative logics.

Lemma 3.18. Let A be a false-singular Σ-matrix. Suppose (2.5), (2.6) and (2.7)
are true in A. Then, A is A-implicative. In particular, any false-singular Σ-matrix
is A-implicative iff its logic is [weakly] so.

Proof. Then, for all a, b ∈ (A \DA), we have a = b, in which case, by (2.5), we get
(a AA b) = (a AA a) ∈ DA, and so (2.6) and (2.7) complete the argument. �
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3.5. Logic versus model congruences.

Lemma 3.19. Let C be a Σ-logic, θ ∈ Con(C), A ∈ Mod(C) and h ∈ hom(Fmω
Σ,

A). Then, h[θ] ⊆ a(A).

Proof. Then, ϑ , (
⋃
{g[θ] | g ∈ hom(Fmω

Σ,A)}) is symmetric, for θ is so. And
what is more, since θ ⊆ ≡ω

C , while A ∈ Mod(C), ϑ ⊆ θA. Next, consider
any a ∈ A. Let g , [xk/a]k∈ω ∈ hom(Fmω

Σ,A). Then, since 〈x0, x0〉 ∈ θ,
〈a, a〉 = g(〈x0, x0〉) ∈ g[θ] ⊆ ϑ, and so ∆A ⊆ ϑ. Now, consider any ς ∈ Σ of
arity n ∈ ω, any i ∈ n, any 〈a, b〉 ∈ ϑ and any c̄ ∈ An−1. Then, there are some
〈φ, ψ〉 ∈ θ and some f ∈ hom(Fmω

Σ,A) such that a = f(φ) and b = f(ψ). Let
V , (Var(φ) ∪Var(ψ) ∪ {xi}) ∈ ℘ω(Varω), in which case |Varω \V | = ω > (n− 1),
for |Varω | = ω is infinite, and so there is some injective v̄ ∈ (Varω \V )n−1. Let
ϕ , (ς(x̄n)[xj/vj ;xk/vk−1]j∈i;k∈(n\(i+1))) ∈ Fmω

Σ and g ∈ hom(Fmω
Σ,A) extend

(f�(Varω \(img v̄)))∪(c̄◦ v̄−1), in which case 〈ϕ[xi/φ], ϕ[xi/ψ]〉 ∈ θ, so 〈ϕA[xi/a; vl/
cl]l∈(n−1), ϕ

A[xi/b; vl/cl]l∈(n−1)〉 = g(〈ϕ[xi/φ], ϕ[xi/ψ]〉) ∈ g[θ] ⊆ ϑ. Thus, unary
algebraic operations of A are ϑ-monotonic. Therefore, η , Tr(ϑ) is a congruence
of A. And what is more, θA ⊇ ϑ, being transitive, includes η, in which case
η ∈ Con(A), and so h[θ] ⊆ ϑ ⊆ η ⊆ a(A). �

3.5.1. Simple models versus intrinsic varieties. As a particular case of Lemma 3.19,
we first have (from now on, we follow Definition 2.3 tacitly):

Corollary 3.20. Let C be a Σ-logic. Then, π0[Mod∗(C)] ⊆ IV(C).

Corollary 3.21. Let C be a Σ-logic. Then, a(C) is fully-invariant. In particular,
a(C) = θω

IV(C).

Proof. Consider any σ ∈ hom(Fmω
Σ,Fmω

Σ) and any T ∈ (imgC), in which case, by
Remark 2.12, AT , 〈Fmω

Σ, T 〉 ∈ Mod(C), so, by Lemma 3.19, σ[a(C)] ⊆ a(AT ).
Then, σ[a(C)] ⊆ θ , (Eqω

Σ ∩
⋂
{a(AT ) | T ∈ (imgC)}) ⊆ (Eqω

Σ ∩
⋂
{θAT | T ∈

(imgC)} = ≡ω
C . Moreover, for each T ∈ (imgC), a(AT ) ∈ Con(Fmω

Σ), in which
case θ ∈ Con(Fmω

Σ), and so σ[a(C)] ⊆ θ ⊆ a(C). �

Lemma 3.22. Let M be a class of Σ-matrices, K , π0[M] and C the logic of M.
Then, θω

K ⊆ ≡ω
C , in which case θω

K ⊆ a(C), and so IV(C) ⊆ V(K).

Proof. Then, for any 〈φ, ψ〉 ∈ θω
K , A ∈ M and h ∈ hom(Fmω

Σ,A), A ∈ K, in which
case 〈h(φ), h(ψ)〉 ∈ ∆A ⊆ θA, and so φ ≡ω

C ψ. �

By Corollary 3.20 and Lemma 3.22, we then have:

Corollary 3.23. Let M be a class of Σ-matrices, K , π0[M] and C the logic of
M. Then, π0[Mod∗(C)] ⊆ V(K).

Theorem 3.24. Let M be a class of simple Σ-matrices, K , π0[M] and C the logic
of M. Then, IV(C) = V(K).

4. Self-extensional logics versus simple matrices

Theorem 4.1. Let C be a Σ-logic and V , IV(C) (as well as M a class of
{simple} Σ-matrices, K , π0[M] and α , ([1∪](ω ∩

⋃
{|A| | A ∈ M})) [un-

less Σ contains a nullary connective]). (Suppose C is defined by M.) Then,
(i)⇔(ii)⇔(iii)({⇒(iv)⇒}(v)⇒)(vi)⇒(i), where:

(i) C is self-extensional;
(ii) ≡ω

C ⊆ θω
V ;

(iii) ≡ω
C = θω

V ;
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(iv) for all distinct a, b ∈ Fα
V , there are some A ∈ M and some h ∈ hom(Fα

V,A)
such that χA(h(a)) 6= χA(h(b));

(v) there is some class C of Σ-algebras such that K ⊆ V(C) and, for each A ∈ C
and all distinct a, b ∈ A, there are some B ∈ M and some h ∈ hom(A,B)
such that χB(h(a)) 6= χB(h(b));

(vi) there is some S ⊆ Mod(C) such that V ⊆ V(π0[S]) and, for each A ∈ S, it
holds that (A2 ∩

⋂
{θB | B ∈ S,B = A}) ⊆ ∆A.

Proof. In that case, by Corollary 3.21 (as well as by {both Corollary 3.20 and}
Lemma 3.22), a(C) = θω

V (as well as V ⊆ V(K){⊆ V} {and so θω
K = θω

V}). Then,
(i)⇔(iii) is immediate, while (ii) is a particular case of (iii), whereas the converse
is by the inclusion a(C) ⊆ ≡ω

C .
({Next, assume (iii) holds. Then, θα′ , ≡α′

C = θα′

K = θα′

V ∈ Con(Fmα′

Σ ), for
all Σ-ranks α′ 〈in particular, for α′ = α〉. Furthermore, consider any distinct
a, b ∈ Fα

V . Then, there are some φ, ψ ∈ Fmα
Σ such that νθα(φ) = a 6= b = νθα(φ),

in which case, by (2.13), Cnα
M(φ) 6= Cnα

M(ψ), and so there are some A ∈ M and
some g ∈ hom(Fmα

Σ,A) such that χA(g(φ)) 6= χA(g(φ)). In that case, θα ⊆ (ker g),
and so, by the Homomorphism Theorem, h , (g ◦ ν−1

θα ) ∈ hom(Fα
V,A). Then,

h(a/b) = g(φ/ψ), in which case χA(h(a)) 6= χA(h(b)), and so (iv) holds.
Now, assume (iv) holds. Consider any A ∈ K and the following cases:

• |A| 6 α. Let h ∈ hom(Fmα
Σ,A) extend any surjection from Varα onto A, in which

case it is surjective, while θ , θα
V = θα

K ⊆ (kerh), and so, by the Homomorphism
Theorem, g , (h ◦ ν−1

θ ) ∈ hom(Fα
V,A) is surjective. Thus, A ∈ V(Fα

V).
• |A| 
 α. Then, α = ω. Consider any Σ-identity φ ≈ ψ true in Fω

V and any
h ∈ hom(Fmω

Σ,A), in which case, we have θ , θω
V = θω

K ⊆ (kerh), and so, since
νθ ∈ hom(Fmω

Σ,F
ω
V), we get 〈φ, ψ〉 ∈ (ker νθ) ⊆ (kerh). Thus, A ∈ V(Fα

V).
In this way, (v) with C , {Fα

V} holds}.
Further, assume (v) holds. Let C′ , {A ∈ C | |A| > 1} and S , {〈A, h−1[DB]〉 |

A ∈ C′,B ∈ M, h ∈ hom(A,B)}. Then, for all A ∈ C′, each B ∈ M and every h ∈
hom(A,B), h is a strict homomorphism from C , 〈A, h−1[DB]〉 to B, in which case,
by (2.14), C ∈ Mod(C), and so S ⊆ Mod(C), while χC = (h ◦ χB), whereas, since
any Σ-identity is true in any one-element Σ-algebra, by (v), π0[S] = C′ generates
the variety V(C) ⊇ V(K) ⊇ V. In this way, (vi) holds.)

Finally, assume (vi) holds. Consider any φ, ψ ∈ Fmω
Σ such that φ ≡ω

C ψ, any
A ∈ S and any h ∈ hom(Fmω

Σ,A). Then, for each B ∈ S with B = A, h(φ) θB h(ψ),
in which case h(φ) = h(ψ), so A |= (φ ≈ ψ). Thus, V ⊆ V(π0[S]) |= (φ ≈ ψ), so (ii)
holds, as required. �

When both M and all elements of it are finite, α is finite, in which case Fα
V is

finite and can be found effectively, and so, taking (2.14) and Remark 2.8(iv) into
account, the item (iv) of Theorem 4.1 yields an effective procedure of checking the
self-extensionality of any logic defined by a finite class of finite matrices. However,
its computational complexity may be too large to count it practically applicable.
For instance, in the unitary n-valued case, where n ∈ (ω \1), the upper limit nnn

of
|Fα

V | as well as the predetermined computational complexity nnnn

of the procedure
involved become too large even in the three-/four-valued case. And, though, in
the two-valued case, this limit — 16 — as well as the respective complexity —
216 = 65536 — are reasonably acceptable, this is no longer matter in view of:

Example 4.2. LetA be a Σ-matrix. Suppose it is both false- and truth-singular (in
particular, two-valued as well as both consistent and truth-non-empty [in particu-
lar, classical]), in which case θA = ∆A, for χA is injective, and so A is simple. Then,
by Theorems 3.24 and 4.1(vi)⇒(i) with S = {A}, the logic of A is self-extensional,
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its intrinsic variety being generated by A. Thus, by the self-extensionality of infer-
entially inconsistent logics, any two-valued logic is self-extensional. �

Nevertheless, the procedure involved is simplified much under hereditary simplic-
ity as well as either implicativity or both conjunctivity and disjunctivity of finitely
many finite defining matrices upon the basis of the item (v) of Theorem 4.1.

4.1. Self-extensionality of conjunctive disjunctive logics versus distribu-
tive lattices.

Remark 4.3. Let C be a Z-conjunctive or/and Y-disjunctive Σ-logic and φ ≈ ψ a
semi-lattice/“distributive lattice” identity for Z or/and Y. Then, φ ≡ω

C ψ. �

Theorem 4.4. Let C be a �-conjunctive/-disjunctive Σ-logic (defined by a class
M of simple Σ-matrices) and i = (0/1) (as well as K , π0[M]). Then, C is self-
extensional iff the following hold:

(i) each element of IV(C)(= V(K)) is a �-semi-lattice;
(ii) for all ϕ̄ ∈ (Fmω

Σ)2, (ϕ1 ∈ C(ϕ0))⇔|⇒(IV(C) |= (ϕi ≈ (ϕ0 � ϕ1)).

Proof. The ”if” part is by Theorem 4.1(ii)⇒(i) and semi-lattice identities (more
specifically, the commutativity one) for �. Conversely, if C is self-extensional,
then, by Theorem 4.1(i)⇒(iii), we have ≡ω

C = θω
IV(C), in which case, since C is

�-conjunctive/-disjunctive, (i) is by Remark 4.3 (and Theorem 3.24), while, for all
ϕ̄ ∈ (Fmω

Σ)2, (ϕ1 ∈ C(ϕ0)) ⇔ (ϕi ≡ω
C (ϕ0 � ϕ1)), so (ii) holds. �

Lemma 4.5. A [truth-non-empty Z-conjunctive] Σ-matrix A is a (2 \ 1)-model of
a [finitary Z-conjunctive] Σ-logic C if[f ] A ∈ Mod(C) (cf. Definition 2.9).

Proof. The “if” part is trivial. [Conversely, assume A ∈ Mod2\1(C). Consider any
ϕ ∈ C(∅) and any h ∈ hom(Fmω

Σ,A), in which case V , Var(ϕ) ∈ ℘ω(Varω),
and so (Varω \V ) 6= ∅, for, otherwise, we would have V = Varω, and so would
get ω = |Varω | = |V | ∈ ω. Take any v ∈ (Varω \V ) and any a ∈ DA 6= ∅. Let
g ∈ hom(Fmω

Σ,A) extend (h�(V \ {v})) ∪ [v/a]. Then, ϕ ∈ C(v), {v} ∈ ℘2\1(Fmω
Σ)

and g(v) = a ∈ DA, in which case h(ϕ) = g(ϕ) ∈ DA, for A ∈ Mod2\1(C), and so
A ∈ Mod2(C). By induction on any n ∈ ω, let us prove that A ∈ Modn(C). For
consider any X ∈ ℘n(Fmω

Σ), in which case n 6= 0. In case |X| ∈ 2, X ∈ ℘2(Fmω
Σ),

and so C(X) ⊆ Cnω
A(X), for A ∈ Mod2(C). Otherwise, |X| > 2, in which case there

are some distinct φ, ψ ∈ X, and so Y , ((X\{φ, ψ})∪{φZψ}) ∈ ℘n−1(Fmω
Σ). Then,

by the induction hypothesis and the Z-conjunctivity of both C and A, C(X) =
C(Y ) ⊆ Cnω

A(Y ) = Cnω
A(X). So, A ∈ Mod(C), as ω = (

⋃
ω), and C is finitary.] �

Theorem 4.6. Let C be a Z-conjunctive [ Y-disjunctive] Σ-logic and V , IV(C)
(as well as M a class of simple Σ-matrices defining C, and K , π0[M]). {Suppose
C is finitary (in particular, both M and all elements of it are finite).} Then,
(i)⇔(ii){⇒}(iii)(⇒(iv))⇒(i), where:

(i) C is self-extensional;
(ii) for all φ, ψ ∈ Fmω

Σ, it holds that (ψ ∈ C(φ)) ⇔ | ⇒ (V |= (φ ≈ (φ Z ψ))),
while every element of V is a Z-semi-lattice [resp., distributive (Z,Y)-lattice];

(iii) every truth-non-empty Z-conjunctive [consistent Y- disjunctive] Σ-matrix
with underlying algebra in V is a model of C, while every element of V is a
Z-semi-lattice [resp., distributive (Z,Y)-lattice];

(iv) any truth-non-empty Z-conjunctive [consistent Y- disjunctive] Σ-matrix with
underlying algebra in K is a model of C, while every element of K is a Z-
semi-lattice [resp., distributive (Z,Y)-lattice].

{(In particular, (i–iv) are equivalent.)}
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Proof. First, (i)⇔(ii) is by Remark 4.3 and Theorem 4.4 with i = 0 and � = Z.
{Next, (ii)⇒(iii) is by Lemma 4.5.} (Further, (iv) is a particular case of (iii), in
view of Theorem 3.24.) Finally, assume (iii) (resp., (iv)) holds. Let S be the class
of all truth-non-empty Z-conjunctive [consistent Y- disjunctive] Σ-matrices with
underlying algebra in V (resp., in K). Consider any A ∈ S and any ā ∈ (A2\∆A), in
which case, by the semi-lattice identities 〈more specifically, the commutativity one〉
for Z, ai 6= (ai ZA a1−i), for some i ∈ 2, and so B , 〈A, {b ∈ A | ai = (ai ZA b)}〉 ∈ S
[resp., by the Prime Ideal Theorem, there is some B ∈ S] such that B = A and
ai ∈ DB 63 a1−i. In this way, (i) is by Theorem(s) 4.1(vi)⇒(i) (and 3.24). �

Theorem 4.7. Let M be a (finite) class of (finite simple) Σ-matrices (with [not]
merely simple submatrices), K , π0[M] and C the logic of M. (Suppose C is both
Z-conjunctive and Y-disjunctive {in particular, every member of M is so}.) Then,
C is self-extensional if(f), for each A ∈ K and all distinct a, b ∈ A, there are some
B ∈ [HS∗]M and some [surjective] h ∈ hom(A,B) such that χB(h(a)) 6= χB(h(b)).

Proof. The “if” part is by [(2.14) and] Theorem 4.1(v)⇒(i) with C = K [and HS∗M
instead of M]. (Conversely, assume C is self-extensional. Consider any A ∈ K and
any ā ∈ (A2 \ ∆A). Then, by Theorem 4.6(i)⇒(iv), A is a distributive (Z,Y)-
lattice, in which case, by the commutativity identity for Z, ai 6= (ai ZA a1−i), for
some i ∈ 2, and so, by the Prime Ideal Theorem, there is some Z-conjunctive Y-
disjunctive Σ-matrix D with D = A such that ai ∈ DD 63 a1−i, in which case
D is both consistent and truth-non-empty, and so is a model of C. Hence, by
Theorem 3.10 and Remark 2.8(ii), there are some B ∈ [HS∗]M and some strict
[surjective] h ∈ hom(D,B) ⊆ hom(A,B), in which case h(ai) ∈ DB 63 h(a1−i), and
so χB(h(ai)) = 1 6= 0 = χB(h(a1−i)), as required.) �

In view of (2.14) and Remark 2.8(ii), this yields an effective algebraic criterion
of self-extensionality of conjunctive disjunctive finitely-valued logics.

4.2. Self-extensionality of implicative logics versus implicative intrinsic
semi-lattices. A Σ-algebra A is called an A-implicative intrinsic semi-lattice [with
bound (a)], provided it is a ]A-semi-lattice [with bound (a)] and satisfies:

(x0 A x0) ≈ (x1 A x1),(4.1)
((x0 A x0) A x1) ≈ x1,(4.2)

in which case it is that with bound a AA a, for any a ∈ A.

Remark 4.8. Let C be a [self-extensional] Σ-logic and φ, ψ ∈ C(∅), in which case
φ ≡ω

C ψ [and so IV(C) |= (φ ≈ ψ)]. �

Theorem 4.9. Let M be an A-implicative Σ-logic C (defined by a class M of simple
Σ-matrices and K , π0[M]). Then, C is self-extensional iff, for all φ, ψ ∈ Fmω

Σ,
it holds that (ψ ∈ C(φ))⇔|⇒(IV(C) |= (ψ ≈ (φ ]A ψ))), while each element of
IV(C)(= V(K)) is an A-implicative intrinsic semi-lattice.

Proof. First, by (2.5), Remark 4.8 and the strucuruality of C, (4.1) ∈ ≡ω
C . Likewise,

by (2.5), (2.6) and (2.7), (4.2) ∈ ≡ω
C . Then, Theorems 3.5(ii) and 4.4 with i = 1

and � = ]A complete the argument. �

Lemma 4.10. Let C ′ be a finitary Σ-logic and C ′′ a 1-extension of C ′ (cf. Def-
inition 2.4). Suppose C ′ has DT with respect to A, while (2.7) is satisfied in C ′′.
Then, C ′′ is an extension of C ′.

Proof. By induction on any n ∈ ω, we prove that C ′′ is an n-extension of C ′. For
consider any X ∈ ℘n(Fmω

Σ), in which case n 6= 0, and any ψ ∈ C ′(X). Then, in case
X = ∅, we have X ∈ ℘1(Fmω

Σ), and so ψ ∈ C ′(X) ⊆ C ′′(X), for C ′′ is a 1-extension
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of C ′. Otherwise, take any φ ∈ X, in which case Y , (X \ {φ}) ∈ ℘n−1(Fmω
Σ),

and so, by DT with respect to A, that C ′ has, and the induction hypothesis, we
have (φ A ψ) ∈ C ′(Y ) ⊆ C ′′(Y ). Therefore, by (2.7)[x0/φ, x1/ψ] satisfied in C ′′, in
view of its structurality, we eventually get ψ ∈ C ′′(Y ∪ {φ}) = C ′′(X). Hence, as
ω = (

⋃
ω), we conclude that C ′′ is an extension of C ′, for this is finitary. �

Theorem 4.11. Let M be a (finite) class of (finite simple) Σ-matrices (with [not]
merely simple submatrices), K , π0[M] and C the logic of M. (Suppose C is A-
implicative {in particular, every member of M is so}.] Then, C is self-extensional
if(f), for each A ∈ K and all distinct a, b ∈ A, there are some B ∈ [HS∗]M and
some [surjective] h ∈ hom(A,B) such that χB(h(a)) 6= χB(h(b)).

Proof. The “if” part is by [(2.14) and] Theorem 4.1(v)⇒(i) with C = K [and HS∗M
instead of M]. (Conversely, assume C is self-extensional. Consider any A ∈ K
and any ā ∈ (A2 \ ∆A). Then, by Theorem 4.9, A ∈ IV(C) is an A-implicative
intrinsic semi-lattice, in which case, by the commutativity identity for ]A, a1−i 6=
(ai ]A

A a1−i), for some i ∈ 2. Let n , |A| ∈ (ω \ 1). Take any bijective c̄ :
n → A. Let g ∈ hom(Fmω

Σ,A) extend [xj/cj ;xk/c0]j∈n;k∈(ω\n), in which case
A = (img c̄) ⊆ (img g) ⊆ A, and so there is some ϕ̄ ∈ (Fmω

Σ)2 such that g(ϕ̄) = ā.
Then, by (2.14), S , g−1[FgA

C(∅)] ∈ FiC(Fmω
Σ). Let us prove, by contradiction,

that ϕ1−i 6∈ T , C(S ∪ {ϕi}). For suppose ϕ1−i ∈ T , in which case, by DT,
(ϕi A ϕ1−i) ∈ C(S), and so (ϕi A ϕ1−i) = σ(ϕi A ϕ1−i) ∈ S, for σ[S] = S ⊆ S,
where σ is the diagonal Σ-substitution. Then, (ai AA a1−i) ∈ FgA

C(∅). Clearly,
by (2.5), F , {ai AA ai} ⊆ FgA

C(∅). Conversely, consider any φ ∈ C(∅) and any
e ∈ hom(Fmω

Σ,A), in which case, by the structurality of C, σ′(φ) ∈ C(∅), where
σ′ is the Σ-substitution extending [xl/xl+1]l∈ω, and so, by (2.5) and Remark 4.8,
e(φ) = e′(σ′(φ)) = e′(x0 A x0) = (ai AA ai) ∈ F , where e′ ∈ hom(Fmω

Σ,A) extends
[x0/ai;xm+1/e(xm)]m∈ω (in particular, D , 〈A, F 〉 ∈ Mod1(C); cf. Definition
2.9). And what is more, by (4.2), (2.7) is true in D, in which case, by Lemma
4.10, F ∈ FiC(A), and so FgA

C(∅) ⊆ F (in particular, FgA
C(∅) = F ). In this

way, (ai AA a1−i) = (ai AA ai), in which case, by (4.2), (ai ]A
A a1−i) = ((ai AA

ai) AA a1−i) = a1−i, and so this contradiction shows that ϕ1−i 6∈ T . Hence, by
Remark 2.1, there is some U ∈ MI(imgC) such that (S ∪ {ϕi}) ⊆ U 63 ϕ1−i,
in which case, by Remark 2.12 and Lemma 3.15, E , 〈FmΣ, U〉 ∈ Mod(C) is A-
implicative, and so ]A-disjunctive. Clearly, U ⊆ g−1[g[U ]]. Conversely, consider
any ψ ∈ g−1[g[U ]], in which case g(ψ) ∈ g[U ], and so case there is some ξ ∈ U such
that g(ξ) = g(ψ). Therefore, by (2.5), g(ξ A ψ) = g(ξ A ξ) ∈ FgC(∅), in which
case (ξ A ψ) ∈ S ⊆ U 3 ξ, and so, by (2.7), ψ ∈ U . Then, U = g−1[g[U ]], in which
case ai = g(ϕi) ∈ g[U ] 63 g(ϕ1−i) = a1−i, for ϕi ∈ U 63 ϕ1−i, while g is a surjective
strict homomorphism from E onto G , 〈A, g[U ]〉, and so, by (2.14) and Remark
2.10(ii)(a,b), G is a consistent ]A-disjunctive model of C, for E is so. Therefore, by
Theorems 3.5(i), 3.10 and Remark 2.8(ii), there are some B ∈ [HS∗]M and some
[surjective] h ∈ homS(G,B) ⊆ hom(A,B), in which case h(ai) ∈ DB 63 h(a1−i), and
so χB(h(ai)) = 1 6= 0 = χB(h(a1−i)), as required.) �

In view of (2.14) and Remark 2.8(ii), this yields an effective algebraic criterion
of self-extensionality of implicative finitely-valued logics.

4.3. Self-extensionality of uniform finitely-valued logics versus truth dis-
criminators. A truth discriminator for/of a Σ-matrix A is any h̄ : img[θA\∆A] →
hom(A,A) such that, for every {a, b} ∈ (dom h̄), 〈a, b〉 6∈ ker(h{a,b} ◦ χA). Then,
since ∆A ∈ hom(A,A), by Theorems 4.7 and 4.11, we have:
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Corollary 4.12. Let A be a [finite hereditarily] simple [either implicative or both
conjunctive and disjunctive] Σ-matrix and C the logic of A. Then, C is self-
extensional if[f ] A has a truth discriminator.

The effective procedure of verifying the self-extensionality of the logic of an n-
valued, where n ∈ (ω \1), hereditarily simple either implicative or both conjunctive
and disjunctive Σ-matrix resulted from Corollary 4.12 has the computational com-
plexity nn+2 that is quite acceptable for (3|4)-valued logics. And what is more,
it provides a quite useful heuristic tool of doing it, manual applications of which
(suppressing the factor nn+2 at all) are presented below. First, we have:

Corollary 4.13. The logic of any no-less-than-three-valued hereditarily simple
either implicative or both conjunctive and disjunctive Σ-matrix A without non-
diagonal non-singular endomorphism of A (cf. pp. 3,4) is not self-extensional.

Proof. By contradiction. For suppose the logic of A is self-extensional, in which
case, as |A| > 3 
 2, χA is not injective, and so there are some distinct a, b ∈ A such
that χA(a) = χA(b). Then, by Corollary 4.12, there is some h ∈ hom(A,A) such
that χA(h(a)) 6= χA(h(b)), in which case h(a) 6= h(b), and so h is not singular (in
particular, diagonal). Hence, χA(a) = χA(h(a)) 6= χA(h(b)) = χA(b) = χA(a). �

4.3.1. Self-extensionality versus equational implications and unitary equality deter-
minants. According to [21], given any m,n ∈ ω, a [finitary] ( Σ-)equational `m

n -
{sequent }definition for/of a Σ-matrix A is any f ∈ ℘[ω](Eqm+n

Σ ) such that, for all
ā ∈ Am and all b̄ ∈ An, it holds that (((img a) ⊆ DA) ⇒ (((img b) ∩DA) 6= ∅)) ⇔
(A |= (

∧
f)[xi/ai;xm+j/bj ]i∈m;j∈n). Equational `0/1

1 -definitions are also referred
to as equational “truth [predicate] definitions”/implications /(cf. [23]). Some kinds
of equational sequent definitions are equivalent for implicative matrices, in view of:

Remark 4.14. Given a(n A-implicative) Σ-matrix A, (i) holds (as well as (ii–iv) do
so), where:

(i) given a [finitary] equational `2
2-definition f for A, f[x(2·i)+j/xi]i,j∈2 is a

[finitary] equational implication for A (cf. Theorems 10 and 12(ii)⇒(iii) of
[21]);

(ii) given any [finitary] equational implication f for A, f[x0/(x0 A x0), x1/x0] is
a [finitary] equational truth definition for A;

(iii) given any [finitary] equational truth definition f for A, f[x0/(x0 A (x1 A
(x2 ]A x3)))] is a [finitary] equational `2

2-definition for A;
(iv) in case A is truth-singular, {x0 ≈ (x0 A x0)} is a finitary equational truth

definition for it. �

In this way, taking Theorems 10, 12(i)⇔(ii) and 13 of [21] as well as Remark
4.14 into account, an either implicative or both conjunctive and disjunctive no-less-
than-two-valued finite Σ-matrix M with unitary equality determinant has a finitary
equational implication iff the multi-conclusion two-side sequent calculus S̃(k,l)

M,T (cf.
[20] as well as the paragraph -2 on p. 294 of [21] for more detail) is algebraizable
(in the sense of [18, 17]). Then, by Lemma 9 and Theorem 10 of [21] as well as
Corollary 4.13, we immediately get:

Corollary 4.15. The logic of any no-less-than-tree-valued either implicative or
both conjunctive and disjunctive Σ-matrix with unitary equality determinant and
equational implication is not self-extensional.

As a first generic application of the “implicative” parts of Remark 4.14 and
Corollary 4.15, we have:
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Corollary 4.16. The logic of any no-less-than-tree-valued implicative truth-singu-
lar Σ-matrix with unitary equality determinant is not self-extensional.

Example 4.17 ( Lukasiewicz’ finitely-valued logics; cf. [8]). Let n ∈ (ω \ 2), Σ ,
(Σ+ ∪ {∼,⊃}) with binary ⊃ (implication) and unary ∼ (negation) and A the Σ-
matrix with (A�Σ+) , Dn (cf. Subparagraph 2.2.1.2.1), DA , {1}, ∼A , (1 − a)
and (a ⊃A b) , min(1, 1−a+b), for all a, b ∈ A, in which case A is both consistent,
truth-non-empty, ∧-conjunctive, ∨-disjunctive and non-∼-paraconsistent as well as
has both an equational implication, by Example 7 of [21], and a unitary equality
determinant, by Example 3 of [20] (cf. Proposition 6.10 of [22] for a constructive
proof of it), while 2 forms a subalgebra of A, whereas A�2 is canonically ∼-classical.
and so, by (2.14), the logic of A is ∼-subclassical but, unless n = 2, by Corollary
4.15, is not self-extensional (in particular, by Example 4.2, is not ∼-classical). On
the other hand, by induction on any m ∈ (ω \ 1), define the secondary unary
connective m ⊗ x0 of Σ setting ((1[+m]) ⊗ x0) , ([∼x0 ⊃ (m⊗]x0), in which case
(m ⊗A a) = min(1,m · a), for all a ∈ A, and so A is ((n − 1) ⊗ ∼x0)-negative (in
particular, is implicative, for it is disjunctive; cf. Remark 2.10(i)(b)). In this way,
the above negative result equally ensues from Example 3 of [20] and Corollary 4.16.
And what is more, (∆2∪(((n÷(n−1))\2)×{ 1

2}) ∈ homS
S(Ln�Σ∼,+,01,L3�Σ∼,+,01),

in which case, by (2.14), the Σ∼,+,01-fragment of  Ln is equal to that of  L3. �

This provides one of most representative applications of Corollary 4.16, another
being discussed in Subparagraph 6.2.2.4.3 below (cf. Corollary 6.71 therein). On
the other hand, in view of Theorem 10 and Lemma 8 of [21], Example(s) 4.2 [with
Σ = Σ+,01 and A = D2,01; cf. Subparagraph 2.2.1.2.1] (and 4.17 with n = 2)
as well as the self-extensionality of inferentially inconsistent {in particular, one-
valued} logics, the stipulation “no-less-than-tree-valued” cannot be omitted in the
formulation of Corollary 4.15 [4.13] (4.16).

Example 4.18. By Example 2 of [20], Remark 1 as well as Theorem 10 and
Lemma 9 of [21] and Corollaries 4.13 and 4.15, arbitrary three-valued expansions of
both the logic of paradox LP [13] and Kleene’s three-valued logic KL3 [6] are not
self-extensional, for the matrix defining the former has the equational implication
(x0 ∧ (x1 ∨ ∼x1)) ≈ (x0 ∧ x1), discovered in [16], while the matrix defining the
latter has the same underlying algebra as that defining the former. Likewise, by
“both Lemma 4.1 of [15] and Remark 4.14(i,iii)”/“Proposition 5.7 of [23]” as well
as Corollary 4.15, arbitrary three-valued expansions of P 1/HZ [30]/[5] are not self-
extensional, for their being defined by implicative/ matrices with equational “truth
definition”/implication. �

Other generic applications of our universal elaboration presented in this section
are discussed in Section 6.

5. Structural completions versus free models

Let M be a [finite] class of [finite] Σ-matrices, C the logic of M, K , π0[M] and α
a [finite] Σ-rank. Then, for any A ∈ M and any h ∈ hom(Fmα

Σ,A), h ∈ homS(B,A),
where B , 〈Fmα

Σ, h
−1[DA]〉, in which case, by Remark 2.8, we have θα

K ⊆ (kerh) =
h−1[∆A] ⊆ h−1[θA] = θB, and so θα

K ⊆ θD, where D , 〈Fmα
Σ,Cnα

M(∅)〉 ∈ Mod(C),
in view of (2.13,2.14) and Remark 2.12. Thus, θα

K ∈ Con(D), in which case, by
(2.14), Fα

M , (D/θα
K) ∈ Mod(C), while Fα

M = Fα
K [in particular, Fα

M is finite],
whereas I[= Iα

M] , ((Bα
M[∩∅])[∪{〈A, f〉 | A ∈ M, f : Varα → A}]) is a [finite] set

[more precisely, |Iα
M| 6 (

∑
A∈M α

|A|)], and so choosing [resp., setting], for each i ∈ I,
such Ai[, π0(i)] ∈ M and hi[, π1(i)] ∈ hom(Fmα

Σ,Ai) that h−1
i [DAi ] = i[∈ Bα

M],
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respectively, and then setting Ei , (Ai�(img hi)), being the submatrix of Ai gen-
erated by hi[Varα][= (img hi) to be found effectively], we eventually conclude that
θ , θα

K = (Eqα
Σ ∩

⋂
i∈I(kerhi)), g : Fmα

Σ → (
∏

i∈I Ei), ϕ 7→ 〈hi(ϕ)〉i∈I is a strict sur-
jective homomorphism from D onto the subdirect product Gα

M , ((
∏

i∈I Ei)�(img g))
of 〈Ei〉i∈I , being the submatrix of

∏
i∈I Ei generated by g[Varα] [to be found effec-

tively], (ker g) = θ, and thus, by the Homomorphism Theorem, e , (ν−1
θ ◦ g) is an

isomorphism from Fα
M onto Gα

M.

Theorem 5.1. Let Σ be a signature [with(out) nullary symbols], M a [finite] class
of {denumerably-generated [more specifically, finite]} 〈weakly Y-disjunctive〉 Σ-
matrices, C the logic of M, [f ∈

∏
A∈M ℘ω(\1)(A),] α , (ω[∩((1∪)

⋃
A∈M |f(A)|])

and B a submatrix of Gα
M. Suppose every A ∈ M is a surjectively homomorphic

image of B, unless B = Gα
M, [and is generated by f(A)]. Then, the structural

completion of C is defined by B. In particular, C is structurally complete iff,
for each denumerably-generated {non-proper} dnon-esimple consistent submatrix
E of any 〈Y-disjunctive〉 element of M, there are some [finite] 〈one-element〉 set
I[∈ (α|B|+1)], some C ∈ S∗(A)I and some its subdirect product in H−1(Ed/a(E)e).

Proof. First, by (2.14), the logic C ′ of Gω[/α]
M is defined by Dω[/α] , 〈Fm

ω[/α]
Σ ,

Cnω[/α]
M (∅)〉 ∈ Mod(C), in view of the structurality of C [/and (2.13)], in which

case it is an extension of C, and so C(∅) ⊆ C ′(∅). For proving the converse
inclusion, consider the following complementary cases:

• α = ω.
Then, applying the diagonal Σ-substitution, we get C ′(∅) ⊆ DDω = C(∅).

• α 6= ω.
Consider any A ∈ M, in which case it is generated by f(A) of cardinality
6 α, and so there is some surjective h ∈ hom(Fmα

Σ,A). Then, DDα =
Cnα

M(∅) ⊆ h−1[DA], in which case h ∈ homS(Dα,A), and so, by (2.15),
C ′(∅) ⊆ C(∅).

Next, Dω is a model of any axiomatically-equivalent extension C ′′ of C ′, in view of
Remark 2.12 [and so is its submatrix Dα, in view of (2.13) and (2.14)], in which
case C ′ is the structural completion of C. Further, by (2.14), B is a model of C ′.
Conversely, if B = {6=}Gα

M, then {each A ∈ M is a surjectively homomorphic image
of B, in which case, by (2.15)} Cnω

B(∅) = C ′(∅), and so C ′, being structurally
complete, is defined by B. Finally, as |Varω | = ω, any Σ-matrix is a model of a Σ-
logic iff each denumerably-generated submatrix of it is so. Then, (2.14) and Lemma
3.8 dresp., Remarks 2.8(ii,iii), 2.10(ii)(a,b) and Theorem 3.10e end the proof. �

Taking Remark 2.12 into account, Theorem 5.1 provides [effective] algebraic
criteria of admissibility of [finitary] rules in and structural completeness of [finitely-
valued] logics [so implying the decidability of these problems]. [On the other hand,
the computational complexity of resulting effective procedures may be to large to
count them practically applicable, except for the trivial one-valued case, when one-
valued matrices are either inconsistent or truth-empty, in which case their logics are
inferentially inconsistent, and so are a priori structurally complete. For instance,
when M consists of a single (without loss of generality, simple; cf. (2.14) and
Remark 2.8(iv)) consistent truth-non-empty (cf. Remarks 2.13 and 2.7) n-valued
Σ-matrix, where n ∈ (ω \ 2), n is the upper limit of α, in which case nn is the
upper limit of |Iα

M|, and so the upper limit of |B| is n(nn). In particular, the
procedure of verifying admissibility of finitary Σ-rules of rank m ∈ ω in C has the
computational complexity (n(nn))m, being relatively acceptable, only if either n = 2
and m 6 26 or n = 3 and m 6 2. Likewise, in case the unique element of M is
disjunctive, the computational complexity of the procedure of verifying structural
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completeness of C is (n(nn))n, being relatively acceptable, only if n = 2. Otherwise,
the situation is even much worse (more, precisely, the computational complexity

of the procedure of verifying structural completeness of C is n((n(nn))(n(n(nn)))),
being absolutely unacceptable, even if n = 2, especially taking refusal of Windows
calculator to compute even its degree d even in advanced mode, because even the
degree of d, being highly exponential, is not admissible, into account). These general
evaluations make the quite effective algebraic criteria of structural completeness to
be obtained in the next section and suppressing such hyper-combinatorial factors
at all more than acute.]

These general evaluations make the universal structural incompleteness result to
be obtained in the next subsection as well as the quite effective algebraic criteria
of structural completeness to be obtained in the next section and suppressing such
hyper-combinatorial factors at all more than acute.]

5.1. Structural incompleteness of both subclassical and either implicative
non-classical or paraconsistent logics. A o-relative semi-implication for/of a
class M of Σ-matrices is any ρ ∈ Fm2

Σ such that, for each A ∈ M, every a ∈ DA and
all b ∈ (DA|(A \ (DA ∪ (oA)−1[DA]))), it holds that ρA(b, oAa) 6∈ | ∈ DA. (Clearly,
x0 A x1 is a o-relative semi-implication for any consistent non-o-paraconsistent A-
implicative Σ-matrix.)

Lemma 5.2 (Key Structural Incompleteness Lemma). Let M be a class of Σ-
matrices, C the logic of M, B a model of C and C ′ the logic of B. [Suppose either
of the following holds:

(i) C(′) is (not) o-paraconsistent (in particular, o-classical);
(ii) the following hold:

(a) there is some ϕ ∈ (C ′(∅)\C(∅)) such that either of the following holds:
(1) oϕ ` ϕ is satisfied in C;
(2) C ′ is not o-paraconsistent (in particular, o-classical);

(b) M has a o-relative semi-implication but no truth-empty element.]
Then, the logic C ′′ of M′ , {A×B | A ∈ M} is a [proper] axiomatically-equivalent
extension of C [in which case C is not structurally complete]. [More precisely,
there is a finitary Σ-rule satisfied in C ′′ but not satisfied in C.]

Proof. Clearly, for each A ∈ M, (π0�(A × B)) ∈ hom(A × B,A) is surjective,
so, by (2.15), C ′′ is an axiomatically-equivalent extension of C. [Consider the
corresponding cases (we use Remark 2.10(i)(c) tacitly):

(i) holds, in which case, by the following claim, the finitary Σ-rule (2.10) is
satisfied in C ′′ but is not satisfied in C:

Claim 5.3. Let I be a set, F an I-tuple of Σ-matrices, G a submatrix of∏
i∈I Fi, i ∈ I, Γ ⊆ Fmω

Σ and v ∈ (Varω \(
⋃

Var[Γ])). Suppose Fi is consis-
tent and satisfies Γ ` v. Then, G satisfies Γ ` v.

Proof. By contradiction. For suppose Γ ` v is not true in G, in which case
there is some h ∈ hom(Fmω

Σ,G) such that h[Γ] ⊆ DG , and so πi[h[Γ]] ⊆ DFi .
Take any a ∈ (Fi \ DFi) 6= ∅, for Fi is consistent. Let g ∈ hom(Fmω

Σ,Fi)
extend ((h�(Varω \{v})) ◦ πi) ∪ [v/a], in which case g[Γ] = πi[h[Γ]] ⊆ DFi 63
a = g(v), so Γ ` v is not true in Fi. This contradiction ends the proof. �

(ii) holds, in which case ϕ is true in B, while there are some A ∈ M and some
h ∈ hom(Fmω

Σ,A) such that a , h(ϕ) 6∈ DA, whereas V , Var(ϕ) ⊆ Varω is
finite, and so |2| = 2 ⊆ ω = |Varω | = |Varω \V |, for ω is infinite. Take any
injective v̄ : 2 → (Varω \V ). Consider the following complementary subcases:



26 A. P. PYNKO

• oAa ∈ DA, in which case h(oϕ) ∈ DA 63 a = h(ϕ), and so neither the
finitary Σ-rule R , (oϕ ` v0) is true in A under (h�(Varω \{v0}))∪ [v0/a]
nor oϕ ` ϕ is true in A under h (in particular, it is not satisfied in C).
Therefore, C ′ is not o-paraconsistent, in which case, by its structurality
and transitivity as well as (2.10)[x0/ϕ, x1/v0], R is true in B, for ϕ is so,
and so in M′, in view of Claim 5.3.

• oAa 6∈ DA. Take any b ∈ DA 6= ∅ and any o-relative semi-implication
ρ for M 3 A, in which case ρA(a, oAb) ∈ DA, and so the finitary Σ-rule
R′ , ({v0, ρ(ϕ, ov0)} ` v1) is not true in A under (h�(Varω \{v0, v1})) ∪
[v0/b, v1/a]. On the other hand, {x0, x1, ρ(x0, ox1)} ` x2 is true in M {in
particular, in B ∈ Mod(C)}, applying [x0/ϕ;xi+1/vi]i∈2 to which, by
the structurality and the transitivity of C ′, we conclude that R′ is true
in B, for ϕ is so, and so in M′, in view of Claim 5.3.] �

Theorem 5.4. Any “A-implicative [non-o-paraconsistent”] {(non-o-classical)”/ o-
paraconsistent} Σ-logic C {with a consistent non-o-paraconsistent proper (more
specifically, o-classical) extension} is {not} structurally complete [iff it is maxi-
mally 〈inferentially〉 consistent].

Proof. {Then, by Remark 2.12, there is some consistent non-o-paraconsistent B ∈
Mod(C), the logic C ′ of which is a proper extension of C, and so C is not structurally
complete, whenever it is axiomatically-equivalent to C ′. Likewise, by Remark 2.12
and the optional version of Lemma 5.2(i), C is not structurally complete, whenever
it is o-paraconsistent. Now, assume C is neither o-paraconsistent, in which case it
is A-implicative, nor axiomatically-equivalent to C ′, in which case the finitariza-
tion C` of C, being a finitely-equivalent sublogic of C, is an A-implicative non-o-
paraconsistent sublogic of C ′, axiomatically-equivalent to C din particular, C` is
not axiomatically-equivalent to C ′ 6≡1 Ce, and so, by Theorem 3.16, C`, being
finitary, is defined by a class M of consistent A-implicative din particular, truth-
non-emptye non-o-paraconsistent Σ-matrices din particular, x0 A x1 is a o-relative
semi-implication for Me. Then, by the optional version of Lemma 5.2(ii)(a)(2)
with C` instead of C, there is some Σ-logic C ′′ axiomatically-equivalent to C` din
particular, to C ≡1 C`e and satisfying a finitary Σ-rule R not satisfied in C` din
particular, in C ≡ω C`e. Thus, ((imgC ′′) ∩ (imgC)) 3 C(∅) is a closure sys-
tem over Fmω

Σ closed under inverse Σ-substitutions, in which case the dual closure
operator C ′′′ over Fmω

Σ is an extension of both C ′′ din particular, C ′′′ 6= C, for
R, being satisfied in C ′′, and so in its extension C ′′′, is not satisfied in Ce and
C, axiomatically-equivalent to C, and so C is not structurally complete.} Then,
Remarks 2.5 and 2.10(i)(c) as well as (2.5) complete the argument. �

Perhaps, a most representative application of this theorem is given by Example
4.17, others being discussed in the next section. In this connection, it is remarkable
that, though the structural incompleteness of  Lukasiewicz’ finitely-valued logics is
well-known within Algebraic Logic, the advanced algebraic technique used for prov-
ing it is based upon the rather esoteric algebraic conception of ternary discriminator
(cf., e.g., [23]), while Theorem 5.4 provides a new, purely-logical and much more
transparent insight into this issue, thus justifying the thesis of the first paragraph
of Section 1.

6. Applications to no-more-than-four-valued logics

All along throughout this section, ([o =]∼)/ ⊃ is supposed to be a primary
unary/binary connective of Σ viewed as negation/implication [unless otherwise
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specified]/. Let Σ〈⊃〉{ς̄}
∼(+)[01] , ({∼}(∪Σ+)[∪Σ01]〈∪{⊃}〉{∪(img ς̄)}) [(cf. Subpara-

graph 2.2.1.2.1)] {where ς̄ is a finite sequence of primary connectives not belonging
to Σ〈⊃〉

∼(+)[01]}.

6.1. Uniform four-valued expansions of Belnap’s four-valued logic. A [bo-
unded] De Morgan lattice [18] is any Σ∼,+[01]-algebra, with [bounded] distributive
lattice Σ+[01]-reduct satisfying:

∼∼x0 ≈ x0,(6.1)
∼(x0 ∨ x1) ≈ (∼x0 ∧ ∼x1),(6.2)

By DM4[01] we denote the non-Boolean diamond [bounded] De Morgan lattice
with (DM4[01]�Σ+[01]) , D2

2[01] and ∼DM4[01]〈i, j〉 , 〈1 − j, 1 − i〉, for all i, j ∈ 2.
In this connection, we use standard abbreviations going back to [2]:

t , 〈1, 1〉, f , 〈0, 0〉, b , 〈1, 0〉, n , 〈0, 1〉,

Here, it is supposed that Σ ⊇ Σ∼,+[01] and (Z|Y) = (∧|∨). Fix a Σ-matrix A
with (A�Σ∼,+[01]) , DM4[01] and DA , (22 ∩ π−1

0 [{1}]). Then, A as well as its
submatrices are both ∧-conjunctive and ∨-disjunctive as well as both consistent and
truth-non-empty (cf. Remark 2.10(ii)(a,b)), while {x0,∼x0} is a unitary equality
determinant for them (cf. Example 2 of [20]), so they are hereditarily simple (cf.
Lemma 3.1). Let C be the logic of A. Then, since DM4[01] , (A�Σ∼,+[01]) defines
[the bounded version/expansion of] Belnap’s four-valued logic B4[01] [2] (cf. [18,
25, 24, 27]), C is a uniform four-valued expansion of B4[01]. Conversely, according
to Corollary 4.9 of [25], any uniform four-valued expansion of B4[01] is defined by
a unique expansion of DM4[01], in which case A is uniquely determined by C, and
so is said to be characteristic for/of C. Moreover, by (2.14), Remark 2.8(ii) and
Theorem 3.10, C is ∼-subclassical iff ∆2 forms a subalgebra of A, in which case
A�2 is isomorphic to any ∼-classical model of C, and so defines a unique ∼-classical
extension of C (cf. Theorem 4.20 of [25]), in its turn, denoted by CPC and relatively
axiomatized according to Corollary 6.3 below. Also, by Corollary 3.6 with Y = ∨,
we have:

Corollary 6.1. C is A-implicative iff A is so.

Given any i ∈ 2, put DM3,−,i , (22 \ {〈i, 1− i〉}). Then, we have the submatrix
A3,i generated by DM3,−,i with carrier (not) distinct from the generating set (in
particular, when, e.g., Σ = Σ∼,+[,01]), taking (2.14) into account, the logic C3,i

of which is a both ∨-disjunctive and ∧-conjunctive {for its defining matrix is so}
as well as inferentially consistent {for its defining matrix is both consistent and
truth-non-empty} uniform no-more-than-four-valued extension of C (and a three-
valued expansion of [the bounded version/expansion LP01|KL3,01 of] “the logic
of paradox”|“Kleene’s three-valued logic” LP |KL3 [13]|[6], whenever i = (0|1),
for DM3,i[01] , (A3,i�Σ∼,+[01]) defines LP[01]|KL3[01]), in which case it is ∼-
paraconsistent|(∨,∼)-paracomplete, and so is not ∼-classical, in view of Remark
2.10(i)(c|d).

6.1.1. Miscellaneous kinds of expansions.
6.1.1.1. Classically-negative expansions. Next, C is referred to as a (purely) classi-
cal〈ly-negative〉 {uniform four-valued} expansion of B4[,01], provided (Σ ⊆)Σ¬

∼,+[,01]

⊆ Σ, where ¬ — classical negation — is unary, and ¬A〈i, j〉 , 〈1− i, 1− j〉, for
all i, j ∈ 2, in which case (we set DMB4[,01] , A, while) A is ¬-negative, and so,
being ∨-disjunctive, is A¬

∨-implicative (in particular, C is so), in view of Remark
2.10(i)(b).
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6.1.1.2. Bilattice expansions. Likewise, C is referred to as a (purely) bilattice {uni-
form four-valued} expansion of B4[,01], provided (Σ ⊆)Σu,t

∼,+[,01] ⊆ Σ, where u
and t — knowledge/information conjunction and disjunction — are binary, and
(〈i, j〉(u|t)A〈k, l〉) , 〈(min |max)(i, k), (max |min)(j, l)〉, for all i, j, k, l ∈ 2.
6.1.1.3. Implicative expansions. Finally, C is referred to as a (purely) 〈canonically〉
implicative {uniform four-valued} expansion of B4[,01], provided (Σ ⊆)Σ⊃

∼,+[,01] ⊆
Σ and (〈i, j〉 ⊃A 〈k, l〉) , 〈max(1− i, k),max(1− i, l)〉, for all i, j, k, l ∈ 2, in which
case A is ⊃-implicative, and so is C.

6.1.2. Structural completeness versus maximal paracompleteness, paraconsistency
and consistency as well as inconsistency of resolutional extensions and inconsistent
formulas.

Lemma 6.2. The following are equivalent:
(i) D3,−,1 does not form a subalgebra of A2;
(ii) A3,1 = A;
(iii) A3,1 is ∼-paraconsistent;
(iv) CR 6= C3,1;
(v) providing C does [not] have theorems, CR is not [inferentially] (∨,∼)-para-

complete;
(vi) providing C does [not] have theorems, CR = CPC

[+0], if C is ∼-subclassical
(i.e., {f, t} forms a subalgebra of A2), and CR is [inferentially] inconsistent,
otherwise;

(vii) CR is not an expansion of KL3;
(viii) C3,1 = C.

Proof. First, (i)⇔(ii)⇐(iii) are immediate, while (viii) is a particular case of (ii),
whereas (viii)⇒(iii) is by the ∼-paraconsistency of A. Next, by Theorem 3.14, CR

is not ∼-paraconsistent, so (iii)⇒(iv) holds. Likewise, as A3,1|KL3 is (inferentially)
(∨,∼)-paracomplete, (iv|vii) is a particular case of (v). Furthermore, (iv/vii)⇒(i)
is by (2.14) and Theorem 3.14. Further, (vi)⇒(v) is by Remarks 2.7, 2.10(i)(d)
and the structurality of CR. Finally, (i)⇒(vi) is by Theorem 3.14 and Corollary
3.11(i)⇔(iv) [as well as Remark 2.7]. �

Then, by Corollary 2.9 of [25], Remarks 2.7, 2.10(i)(d), Lemma 6.2(iv)⇒(i)⇒(vi)
and the (∨,∼)-paracompleteness of A3,1, we immediately have:

Corollary 6.3. If C is ∼-classical (i.e., {f, t} forms a subalgebra of A2), then
CPC is relatively axiomatized by {x0 ∨ ∼x0, (3.3)}.

A {quaternary} (truth) inverter of/forA is any ι ∈ Fm1
Σ such that ιA

2
(〈f, f〉, 〈t, t〉

, 〈b, b〉, 〈n, b〉) ∈ (DA × (A \DA)). (Clearly, x3 A x0 is an inverter for A, whenever
this is A-implicative. Likewise, ox3 is an inverter for it, whenever it is o-negative.)

Theorem 6.4. [Providing C has no theorem (i.e., {n} forms a subalgebra of A)]
(i[i]–iv) are equivalent to one another, where:

(i) C is structurally complete;
(ii) C is maximally [inferentially] (∨,∼)-paracomplete;

(iii/iv) the following hold:
(a) CR is [inferentially] inconsistent (viz., A has no non-∼-paraconsistent

[truth-non-empty] consistent submatrix), that is, the following [but (A)]
hold:

(A) C has a theorem (i.e., {n} does not form a subalgebra of A);
(B) C is not ∼-subclassical (i.e., {f, t} does not form a subalgebra of

A);
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(C) CR is not [inferentially] (∨,∼)-paracomplete (i.e., DM3,−,1 does
not form a subalgebra of A);

(b) either of the following holds:
(1) A has no inverter (i.e., the carrier of the subalgebra of A2 gen-

erated by ∆DM3,−,0 ∪ {〈n, b〉} is disjoint with DA × (A \DA)), in
which case A is non-implicative, and so is C;

(2) A has no non-(∨,∼)-paracomplete/proper [truth-non-empty] con-
sistent submatrix (viz., “in view of (a)(B), DM3,−,0 does not form
a subalgebra of A”/“none of ℘(A)\{A,∅, {b}[, {n}]} forms a sub-
algebra of A” {i.e., C is maximally ∼-paraconsistent/“[inferenti-
ally] consistent”});

(3) A has an inconsistent submatrix (viz., {b} forms a subalgebra of
A {i.e., C has no inconsistent formula}).

In particular, providing C is implicative (viz., A is so), it is “structurally com-
plete”|“maximally dinferentiallye (∨,∼)-paracomplete” iff both CR is inconsistent
{i.e., neither CR is (∨,∼)-paracomplete nor C is ∼-subclassical} and C either has
no inconsistent formula or is maximally 〈∼-para〉consistent.

Proof. First, (i) is a particular case of the non-optional version of (ii), in view
of Remark 2.5, while (iii) is a particular case of (iv), in view of the (∨,∼)-pa-
racompleteness of A. Furthermore, the carriers of submatrices of A are those of
subalgebras of A (in particular, those of subalgebras of (A�Σ∼,+) = DM4), in
which case they belong to the set {22,∆2} ∪

⋃
{{22 \ {a}, {a}} | a ∈ (22 \ ∆2)},

and so, by Corollary 3.11|3.12, C has a|an theorem|“inconsistent formula” iff A has
no truth-empty|inconsistent submatrix, that is, {n|b} does not form a subalgebra
of A (cf. Lemma 4.11|4.12 of [25]), whereas any consistent| submatrix of A is ∼-
paraconsistent|(∨,∼)-paracomplete iff its carrier contains n|b, respectively. Let E
be the submatrix of A generated by {f, t}, in which case it is both consistent and
truth-non-empty, for E 3 f 6∈ DA 3 t ∈ E. Now, assume the optional version
of (iii) holds. Consider any inferentially (∨,∼)-paracomplete extension C ′ of C,
in which case (x0 ∨ ∼x0) 6∈ T , C ′(x1) 3 x1, while, by Remark 2.12, 〈Fmω

Σ, T 〉
is a model of C ′ (in particular, of its sublogic C), and so is its finitely-generated
(∨,∼)-paracomplete truth-non-empty submatrix B , 〈Fm2

Σ, T ∩ Fm2
Σ〉, in view of

(2.14). Then, by Lemma 3.8, there are some finite set I, some C ∈ S∗∗(A)I and
some subdirect product D ∈ H−1(B/a(B)) of it, in which case, by (2.14), D is a
(∨,∼)-paracomplete model of C ′, for B is so, and so there is some a ∈ D such that
{t, b, n}I 3 b , (a ∨D ∼Da) 6∈ DA (in particular, J , {i ∈ I | πi(a) = n} 6= ∅,
because, for any c ∈ {t, b, f}, (c ∨A ∼Ac) ∈ DA). Furthermore, by Claim 4.17 of
[25], f , (I × {f}) ∈ D 3 t , (I × {t}). On the other hand, by (iii)(a), E , being a
both consistent and truth-non-empty submatrix of A, is ∼-paraconsistent, that is,
b ∈ E, in which case there is some φ ∈ Fm2

Σ such that φA(f, t) = b, and so D 3 d ,
φD(f, t) = (I×{b}). Let e : A2 → AI , 〈c, g〉 7→ ((J×{c})∪((I \J)×{g})), in which
case D 3 (f |t|d) = e(〈(f|t|b), (f|t|b)〉), and so D 3 h , ((d∨D∼Db)∧Db) = e(〈n, b〉).
Consider, the following complementary cases:

• J = I, in which case D 3 h = (I×{n}), and so, as I = J 6= ∅, {〈c, I × {c}〉 |
c ∈ A} is an embedding of A into D ∈ Mod(C ′) (in particular, by (2.14),
C ′ = C).

• J 6= I, in which case, as J 6= ∅, e is injective. Let F be the submatrix of
A2 generated by G , (∆DM3,−,0 ∪ {〈n, b〉}), in which case e[G] ⊆ D, and
so e�F is an embedding of F into D ∈ Mod(C ′) (in particular, by (2.14),
F ∈ Mod(C ′)). Consider the following complementary subcases:
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– {b} forms a subalgebra of A, in which case, since A is generated by
{b, n}, e′ : A → AI , c 7→ e(〈c, b〉) is an embedding of A into D ∈
Mod(C ′), for e′[{b, n}] = {d, h} ⊆ D, and so, by (2.14), C ′ = C.

– {b} does not form a subalgebra of A. Consider the subsubcases:
∗ A has an inverter, in which case it has no non-(∨,∼)-paracomp-

lete truth-non-empty consistent submatrix, in view of (iii)(b),
and so E , being a both consistent and truth-non-empty sub-
matrix of A, is (∨,∼)-paracomplete, that is, n ∈ E. Then,
there is some ψ ∈ Fm2

Σ such that ψA(f, t) = n, in which case
D 3 ψD(f, t) = (I×{n}), and so, since I ⊇ J 6= ∅, {〈c, I × {c}〉 |
c ∈ A} is an embedding of A into D ∈ Mod(C ′) (in particular,
by (2.14), C ′ = C).

∗ A has no inverter, in which case F is disjoint with DA×(A\DA),
and so (π0�F ) ∈ homS

S(F ,A), for π0[G] = A (in particular, by
(2.14), C ′ = C).

Thus, the optional version of (ii) holds. Conversely, assume the optional version of
(iv) does not hold. Consider the following complementary cases:

• (a) holds, in which case E is ∼-paraconsistent, and so b ∈ E, that is, there
is some ξ ∈ Fm2

Σ such that ξA(f, t) = b, as well as (b) does not hold, that
is, neither of (1–3) holds, that is, A has both an inverter ι and a proper
consistent truth-non-empty submatrix H, and so, by Claim 4.18 of [25],
{f, t} ⊆ H, that is, H ⊇ E 3 b, while {b} does not form a subalgebra of A,
that is, there is some η ∈ Fm1

Σ such that ηA(b) 6= b. Then, ϕ , (x0∨∼x0),
not being true in A under [x0/n], is true in H, for n 6∈ H (in particular,
H = {f, t, b}), because, otherwise, H ⊇ {f, t, b} would include A, that
is, H would be equal to A. Hence, ηA(b) 6= n, for, otherwise, H 3 b,
forming a subalgebra of A, would contain n. Let (γ|δ) , ∼1|0ϕ(η) ∈ Fm1

Σ 3
ζ , ξ(x0,∼x0) and $ , ((x0 ∨ γ) ∨ ∼ϕ(ζ)) ∈ Fm1

Σ 3 λ , (∼x0 ∨ (x0 ∧
ϕ($(∼x0))), in which case ζA(f) = b, while γA(f) ∈ {f, b}, for H = {f, t, b}
forms a subalgebra of A as well as ϕA[A] ⊆ {t, b, n}, whereas (γ|δ)A(b) =
(f|t), for ηA(b) ∈ {f, t} ⊇ (ϕA[{f, t}] ∪∼A[{f, t}]), and so both $A(f|b) = b
and λA(t|b|n) = (b|b|n). Therefore, ι(γ($(x1)), δ($(x1)), $(x1), λ) is a
∼-relative semi-implication for A. And what is more, ∼ϕ ` ϕ is clearly
true in A, in view of its ∧-conjunctivity and ∨-disjunctivity as well the
truth of both (6.1) and (6.2) in A. Thus, by the optional version of Lemma
5.2(ii)(a)(1) with H instead of B, the logic of A×H, being truth-non-empty,
for both A and H are so, is a proper axiomatically-equivalent (in particular,
inferentially (∨,∼)-paracomplete, for A is so) extension of C.

• (a) does not hold, in which case A has a non-∼-paraconsistent consistent
truth-non-empty submatrix B′, and so, by the optional version of Lemma
5.2(i) with B′ instead of B, the logic of A×B′, being truth-non-empty, for
both A′ and B′ are so, is a proper axiomatically-equivalent (in particular,
inferentially (∨,∼)-paracomplete, for A is so) extension of C.

In this way, in any case, neither (i) nor the optional version of (ii) holds. Finally,
any Σ-logic with theorems is consistent|(∨,∼)-paracomplete iff it is inferentially so.
In this way, Theorems 4.16, 4.20 and 4.31(i)⇔(iv) of [25] as well as Remark 2.13,
Lemmas 6.1, 6.2(i)⇔(v)⇔(vi) and (2.5) complete the argument. �

This provides an effective algebraic criterion of “maximal [inferential] (∨,∼)-
paracompleteness”/“structural completeness” of uniform four-valued expansions
of B4 positively covering both arbitrary bilattice uniform four-valued expansions
of B4,01 [as well those of B4]/ (cf. Corollary 5.2 of [25]) and non-∼-subclassical
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classically-negative uniform four-valued expansions of B4〈,01〉 (cf. Corollary 5.1(i)
therein) but negatively covering /both ∼-subclassical {in particular, purely} clas-
sically-negative uniform four-valued expansions of B4〈,01〉 /“and purely-inferential
{in particular, purely} bilattice uniform four-valued expansions of B4” as well as
dpurely canonically implicative uniform four-valued expansions ofe B4〈,01〉, because
they are ∼-subclassical (cf. Corollary 5.3 therein).

6.1.3. No-more-than-four-valued extensions and their self-extensionality.

Lemma 6.5 (Key 4-valued Lemma). Let B ∈ Mod(C). Then, the following hold:
(i) B is ∨-disjunctive, whenever it is either inconsistent or truth-empty or ∼-

negative or [non-∼-classically-defining or] no-more-than-(4[−1])-valued;
(ii) providing B is ∨-disjunctive [and (not) truth-empty |“either ∼-negative or ∼-

classically-defining”‖ ∼-paraconsistent/ (∨,∼)-paracomplete], it is a strictly
surjectively homomorphic counter-image of a submatrix of A with carrier in
S4[+(−)∅|C‖P/PC] , (({{01},∆2, 22} ∪ {D3,−,l | l ∈ 2})[∩(\)({{01}|∆2}‖{22,
DM3,−,0/1})]).

Proof. (i) By contradiction. For suppose B is not ∨-disjunctive. Then, tak-
ing Remarks 2.8(iv), 2.10(ii)(a,b) and (2.14) into account, without loss of
generality, one can assume that B is simple, in which case, by Corollary
3.20 and Theorem 3.24, B belongs to the variety generated by A, and so
B�Σ∼,+ is a De Morgan lattice (in particular, B�Σ+ is a distributive lat-
tice), for (A�Σ∼,+) = DM4 is so. And what is more, B ∈ Mod(C) is both
∧-conjunctive and weakly ∨-disjunctive, for C is so. Hence, since B is not ∨-
disjunctive, there are some a, b ∈ (D \DB), in which case c , (a∧B b) 6∈ DB,
such that d , (a ∨B b) ∈ DB (in particular, B is both consistent and truth-
non-empty), in which case d 6∈ {a, b, c}, and so |{a, b, c, d}| = 4. There-
fore, if B was ∼-negative, then, by its ∧-conjunctivity and (6.2), we would
have DB 63 ∼Bd = (∼Ba ∧B ∼Bb) ∈ DB. Thus, |B| 6 4, in which case
B = {a, b, c, d} (in particular, |B| = 4 
 3), and so B is not ∼-classically-
defining. In this way, B is a distributive (∧,∨)-lattice with zero c and unit
d, in which case, by (6.1) and (6.2), ∼B(c|d) = (d|c), and so, by (6.1),
∼B[{a, b}] ⊆ {a, b}, for ({a, b} ∩ {c, d}) = ∅. Consider the following cases:
• ∼Ba = a, in which case, by (6.1), ∼Bb = b, and so e , {〈a, 10〉, 〈b, 01〉, 〈c,

00〉, 〈d, 11〉} is an isomorphism from B�Σ∼,+ onto DM4. Furthermore,
by Lemma 3.8, there are some finite set I, some C ∈ S∗(A)I , some
subdirect product D of it and some h ∈ homS

S(D,B), in which case,
({h ◦ e} ∪ {πi�D | i ∈ I} ∈ ℘ω(hom(D�Σ∼,+,DM4)), while, by Remark
2.10(ii)(b), D is consistent (in particular, I 6= ∅), for B is so, whereas
(
⋂

i∈I ker(πi�D)) = ∆D ⊆ ker(h◦e) 6= D2, for img(h◦e) = DM4 = 22 is
not a singleton, and so, by Theorem 3.8 of [25], there is some i ∈ I such
that ker(πi�D) = ker(h ◦ e) = (kerh), for e is injective. Therefore, by
the Homomorphism Theorem, as (img h) = B, h−1 ◦πi is an embedding
of B into A, in which case, by Remark 2.10(ii)(a), B is ∨-disjunctive.

• ∼Ba 6= a, in which case ∼Ba = b, and so, by (6.1), ∼Bb = a. Then,
for each e′ ∈ B, (e′(∧|∨)B∼Be′) = (c|d) 6∈ | ∈ DB, in which case B,
being ∧-conjunctive, satisfies both x0 ∨ ∼x0 and (3.3). And what is
more, {c, d} forms a subalgebra of B, in which case, by (2.14), B�{c, d}
is a ∼-classical model of C, and so this is ∼-subclassical. Then, by
Corollary 6.3, B ∈ Mod(CPC). Conversely, the logic of the consistent
truth-non-empty model B of C is an inferentially consistent extension of
C, in which case, by Theorem 4.21 of [25], B is ∼-classically-defining.
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(ii) Since S4[+(−)∅|C‖P/PC] is the set of the carriers of all [those] elements of S∗(A)
[which are (not) truth-empty|“either ∼-negative or ∼-classically-defining”‖∼-
paraconsistent/(∨,∼)-paracomplete], (2.14), Remarks 2.8 (ii), 2.10(ii)(a,b)
and Theorem 3.10 complete the argument. �

By Theorem 4.10 of [25], (2.14), Examples 4.2, 4.18, Lemma 6.5 and the self-ex-
tensionality of inferentially inconsistent logics, we first have:

Theorem 6.6. Let C ′ be a uniform no-more-than-four-valued proper (in particular,
no-more-than-three-valued) extension of C. Then, the following are equivalent:

(i) C ′ is self-extensional;
(ii) C ′ is either inferentially inconsistent or ∼-classical;
(iii) for each i ∈ 2, if DM3,−,i forms a subalgebra of A, then C ′ 6= C3,i.

Since DM4�{01} is the only truth-empty submatrix of DM4, while {01} ⊆ [*
]DM3,−,1[−1] ⊇ ∆2, by Theorem 4.10 of [25], (2.14) and Lemma 6.5, we also get:

Theorem 6.7. Let M be a class of no-more-than-four-valued models of C, C ′

the logic of M, M
(∗)[∼/ 6∼]
{0|1} the class of all (truth-non-empty) [∼-classicaly-/non-

∼-classically-defining] {∼-paraconsistent |(∨,∼)-paracomplete} consistent elements
of M and M2 = (M0 ∩ M1). Then, C ′ is defined by {A | M2 6= ∅} ∪ {A�{01} |
(M\M∗) 6= ∅ = M∗, 6∼

1 = M2}∪{A�∆2 | (
⋃

i∈2 M∗, 6∼
i ) = M2 = ∅ 6= M∼}∪

⋃
i∈2{A3,i |

M∗, 6∼
i 6= ∅ = M2}. In particular, C is defined by any both ∼-paraconsistent

and (∨,∼)-paracomplete no-more-than-four-valued model, so it has no both ∼-
paraconsistent and (∨,∼)-paracomplete no-more-than-three-valued model.

Taking (2.12), Theorems 6.6, 6.7, Remark 2.7 and Example 4.2 into account, it
only remains to study the following no-more-than-four-valued extensions of C.
6.1.3.1. Double three-valued non-iniform and non-proper extensions. By (2.14),
(providing, for each i ∈ 2, DM3,i forms a subalgebra of A) the logic C3 of {A3,i | i ∈
2} is a both ∨-disjunctive and ∧-disjunctive {for its defining matrices are so} as well
as inferentially-consistent {for its defining matrices are both consistent and truth-
non-empty} (proper) extension of C (for this is minimally four-valued; cf. Theorem
4.10 of [25]). Let µ : 22 → 22, 〈i, j〉 7→ 〈j, i〉 be the mirror/specular function.

Theorem 6.8 (cf. [24, 27]). It does hold that (v)⇐(i)⇔(ii)⇔(iii)⇒(iv)[⇒(iii)],
where:

(i) C[3] is self-extensional;
(ii) [for each/some i ∈ 2] (µ[�A3,i]) ∈ hom(A[3,i],A);
(iii) A has a(n injective) non-singular non-diagonal [partial] endomorphism — cf.

pp. 3,4;
(iv) A has no equational implication — cf. Subsubsection 4.3.1;
(v) C〈3〉 is ∼-subclassical.

In particular, C3 is self-extensional, whenever C is so.

Proof. First, the fact that (iv) is equivalent to the ()-non-optional []-optional version
of (iii) is due to Theorems 10, 13 and 15 of [21], while the []-optional version of (iii)
is a particular case of the []-non-optional one, whereas the ()-non-optional version of
(iii) is a particular case of the ()-optional one, being, in its turn, a particular case of
(ii), for µ is injective. Next, the fact that (i) implies the ()-non-optional version of
(iii) is by Theorem 4.7, for DA[∩DM3,−,0] has two distinct elements. [Furthermore,
by the injectivity of µ and the fact that, for any i ∈ 2, µ[DM3,−,i] = DM3,−,1−i,
while 2 = {i, 1 − i}, the alternatives in (ii) are equivalent.] Further, assume (ii)
holds. Consider [any i ∈ 2 and] any distinct a, b ∈ A[3,i], in which case there is some
j ∈ 2 such that πj(a) 6= πj(b), and so χA[3,kj ](hj(a)) 6= χA[3,kj ](hj(b)), where [k0|1 ,
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(i|(1 − i)) and] h0|1 , (∆A[3,i] |(µ[�A3,i])) ∈ hom(A[3,i],A). In this way, Theorem
4.7 yields (i). Now, assume the ()-non-optional version of (iii) holds. Then, there is
some non-diagonal homomorphism h from [a subalgebra of] A to A withB , (img h)
not being a singleton, in which case B forms a non-one-element subalgebra of A, and
so does D , (domh). Hence, ∆2 ⊆ (B∩D). Then, both of (B|D) , (A�(B|D)) are
(∧,∨)-lattices with zero/unit 〈0/1, 0/1〉, for A is so, in which case, as h ∈ hom(D,B)
is surjective, by Lemma 2.2, h�∆2 is diagonal, and so, since h is not so, there is
some i ∈ 2 such that DM3,−,i ⊆ D {in particular, A[3,i] ⊆ D}, while h(〈1− i, i〉) 6=
〈1− i, i〉. On the other hand, for all a ∈ A, it holds that (∼Aa = a) ⇔ (a 6∈ ∆2), in
which case ∼Ah(〈1− i, i〉) = h(∼A〈1− i, i〉) = h(〈1− i, i〉), and so h(〈1− i, i〉) =
〈i, 1− i〉. And what is more, [if A3,i = A, then] 〈i, 1− i〉 ∈ D, in which case we have
(〈i, 1− i〉(∧|∨)D〈1− i, i〉) = 〈0|1, 0|1〉, and so, by the diagonality of h�∆2, we get
(h(〈i, 1− i〉)(∧|∨)A〈i, 1− i〉) = (h(〈i, 1− i〉)(∧|∨)Ah(〈1− i, i〉)) = h(〈0|1, 0|1〉) =
〈0|1, 0|1〉 (in particular, h(〈i, 1− i〉) = 〈1− i, i〉). In this way, hom(D,A) 3 h =
(µ�D), in which case, as A[3,i] ⊆ D, (µ[�A3,i]) ∈ hom(A[3,i],A), and so (ii) holds.
Finally, if ∆2〈= (

⋂
i∈2DM3,−,i) ⊆ (

⋂
i∈2A3,i)〉 does not form a subalgebra of A,

then there are some ς ∈ Σ of arity n ∈ ω and some ā ∈ ∆n
2 such that b , ςA(ā) ∈

(A[3,i] \ ∆2) [where i , π1(b) ∈ 2], in which case µ(b) 6= b = ςA(µ ◦ ā), and so
(µ[�A3,i]) 6∈ hom(A[3,i],A). Thus, (ii)⇒(v) is by (2.14), so, as the []-optional version
of (ii) is a particular case of the non-[]-optional one, (i)⇔(ii) ends the proof. �

The non-optional version of Theorem 6.8(i)⇔(ii) has been plagiarized by A.
Prenosil under the editorial complicity of J. Rafftery (ALUN), who provided back-
dating publication of Prenosil’s paper, as well as both C. Franks, M. Fitting, A.
Pillay and R. Goldblatt (NDJFL), who rejected its submission to NDJFL, referred
by A. Prenosil, thus providing him with a nice opportunity to plagiarize the rest of
this work as well, that he, having a rich experience of doing it, would apparently
not miss, so appearance of this material under his authorship would definitely con-
firm it (this equally concerns another referee of it — A. Avron, who has a more
than rich experience of both plagiarizing my submissions, while referring them [in
particular, under the editorial complicity of both M. Fitting, J. Malinowski and R.
Wojcicki {SL}] and declining to acknowledge my publications).

As µ is not diagonal, according to Example 11 of [21], the optional and non-
optional versions of the item (ii) of Theorem 6.8 are non-equivalent to one another,
and so are those of (i/iii) (in particular, the converse of the final assertion of Theo-
rem 6.8 does not hold). Theorem 6.8(ii)⇒(i) positively covers both B4{01}[3] and the
purely classically-negative expansion of B4{01}, the underlying algebra DMB4{01}
of the characteristic matrix of which though has no three-element subalgebra. In
view of Theorem 6.8(i)⇒(iv), the self-extensionality of these three instances of
uniform four-valued expansions of B4 provides a new insight and a new proof (con-
vergent with those given by [21]) to the non-algebraizability of the sequent calculi
associated (according to [20]) with their characteristic matrices, proved originally in
[18] by a quite different (though equally generic) method based upon universal tools
elaborated in [17]. This well justifies the thesis of the first paragraph of Section
1. Conversely, using Theorem 6.8(i)⇒(iv) /“and Remark 4.14”, we immediately
conclude that arbitrary bilattice/implicative uniform four-valued expansions of B4

/“as well as their double three-valued extensions in the purely implicative case” are
not self-extensional, for their /⊃-implicative characteristic matrices have equational
“implication {(((x0 t∼x0)t (x1 t∼x1))∧ x0) / (((x0 t∼x0)t (x1 t∼x1))∨ x1)},
in view of the proof of Theorem 4.30 of [18]”/“truth definition {x0 ≈ (x0 ⊃ x0)}”.
According to Corollary 5.2/5.3 of [25], this does equally/not ensue from Theorem
6.8(i)⇒(v)/“, so refuting the inverse”.
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Finally, since inferentially inconsistent logics are self-extensional, by (2.12), The-
orems 6.6, 6.7, 6.8(i)⇔(iii)⇒(iv)[⇒(iii)], Remark 2.7 and Example 4.2, we get:

Theorem 6.9. Let M be a class of no-more-than-four-valued models of C and
C ′ the logic of M. Then, C ′ is self-extensional iff either M contains no non-∼-
classically-defining truth-non-empty consistent element or there are a non-diagonal
non-singular homomorphism from [a subalgebra of] A to A [i.e., A has no equa-
tional implication] as well as both ∼-paraconsistent and [truth-non-empty] (∨,∼)-
paracomplete [distinct] element[s] of M. In particular, any inferentially consistent
non-∼-classical no-more-than-four-valued extension of C is self-extensional only if
it is both ∼-paraconsistent and (∨,∼)-paracomplete.

6.1.3.1.1. Theorems versus bounds.

Corollary 6.10. Suppose C is self-extensional (i.e., µ is an endomorphism of A;
cf. Theorem 6.8(i)⇔(ii)). Then, the following are equivalent:

(i) C has a theorem (in particular, is implicative; cf. (2.5));
(ii) >DM4,01 is term-wise definable in A;
(iii) ⊥DM4,01 is term-wise definable in A.

Proof. First, assume (i) holds. Then, by Remark 2.6, there is some φ ∈ (C(∅) ∩
Fm1

Σ), in which case, by the structurality of C, for each i ∈ 2, ψi , φ(xi) ∈ C(∅),
and so, by Remark 4.8 and Theorem 6.8(i)⇒(v), for all a ∈ A, we have ψA

0 (a) =
ψA

0 [x0/a, x1/1] = ψA
1 [x0/a, x1/1] = ψA

1 [x1/1] ∈ (∆2 ∩DA) = {t}. Thus, (ii) holds.
Next, (ii)⇔(iii) is by the fact that ∼A(kk) = ((1− k)(1− k)), for all k ∈ 2. Finally,
(ii)⇒(i) is by the fact that t ∈ DA. �

6.1.3.1.2. Implicativity versus maximal paraconsistency.

Theorem 6.11. Suppose C is self-extensional (i.e., µ is an endomorphism of A;
cf. Theorem 6.8(i)⇔(ii)). Then, the following are equivalent:

(i) A is implicative (viz., C is so; cf. Lemma 6.1);
(ii) A is negative;
(iii) ¬DMB4 is term-wise definable in A;
(iv) DM3,0 does not form a subalgebra of A, and C has a theorem;
(v) DM3,1 does not form a subalgebra of A, and C has a theorem;
(vi) C is maximally ∼-paraconsistent and has a theorem;

In particular, C is maximally ∼-paraconsistent, whenever it is both implicative and
self-extensional.

Proof. First, (ii)⇒(i) is by Remark 2.10(i)(b) and the ∨-disjunctivity of A. Con-
versely, if A is A-implicative, then, by Corollary 6.10(i)⇒(iii), there is some ϕ ∈
Fm1

Σ such that ϕA(a) = (00), for all a ∈ A, in which case A is o-negative, where
(ox0) , (x0 A ϕ), and so (ii) holds.

Next, (ii) is a particular case of (iii). Conversely, assume A is o-negative. Then,
by Theorem 6.8(i)⇒(v), oA(ii) = ((1 − i)(1 − i)), for each i ∈ 2. And what is
more, if, for any j ∈ 2, oA(j(1 − j)) was not equal to ((1 − j)j), then it would
be equal to ((1 − j)(1 − j)), in which case we would have ((1 − j)(1 − j)) =
µ((1− j)(1− j)) = µ(oA(j(1− j))) = oAµ(j(1− j)) = oA((1− j)j), and so would get
(1− j) = π0(oA((1− j)j) = (1− (1− j)) = j. In this way, (iii) holds.

Further, (iii)⇒(v) is by (iii)⇒(i), (2.5) and the fact that ¬DMB4n = b 6∈
DM3,1 3 n. Conversely, assume (v) holds. Then, there is some φ ∈ Fm3

Σ such
that φA(n, t, f) = b. Moreover, by Corollary 6.10(i)⇒(ii), there is some ψ ∈ Fm1

Σ

such that ψA(a) = t, for all a ∈ A. Let ξ , (φ[xi+1/∼iψ]i∈2) ∈ Fm1
Σ, in which case

ξA(n) = b, and so n = µ(b) = ξA(µ(n)) = ξA(b). And what is more, by Theorem
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6.8(i)⇒(v), ξA[∆2] ⊆ ∆2. Let k , π0(ψA(f)) ∈ 2 and ϕ , ((∼kξ∨∼x0)∧∼1−kξ) ∈
Fm1

Σ, in which case ϕA = ¬DMB4 , and so (iii) holds.
Furthermore, (iv)⇔(v) is by the fact that µ[DM3,l] = DM3,1−l, for all l ∈ 2.

Finally, (iv)⇔(vi) is due to Theorem 4.31(vi)⇔(i) of [25]. �

6.2. Uniform three-valued logics with subclassical negation.

6.2.1. U3VLSN versus super-classical matrices. A [3-valued] Σ-matrix A with ∼-
reduct having a (canonical) ∼-classical submatrix B ([{and carrier 3÷ 2}]) is said
to be ([ {3-}]canonical〈ly〉) ∼-super-classical, in which case, by (2.14), ∼ is a sub-
classical negation for its logic, and so this is inferentially consistent, while, by
Remark 2.10(ii)(b), A is both consistent and truth-non-empty, for B is so, whereas,
by Remark 2.10(ii)(a), e , (χB ∪ ((∆A\B [{\∆A\B}])[{∪((A \ B) × { 1

2})}])), be-
ing injective, is an isomorphism from A onto the [{3-}]canonical ∼-super-classical
Σ-matrix {[{3}] , 〈e[A], e[DA]〉, called the [ {3-}]canonization of A. (Then, A is
said to be [genuinely |“{weakly} �-conjunctively/-disjunctively/-implicatively”] clas-
sically hereditary, provided 2 forms a subalgebra of A [while A�2 is “genuinely
∼-classical”|“{weakly} �-conjunctive/-disjunctive/-implicative”], in which case, by
(2.14), A�2 is a canonically ∼-classical model of the logic of A, and so this is ∼-
subclassical. Likewise, a ternary [(canonical) anti-]equalizer of/for A is any τ ∈
Fm3

Σ such that, for all a ∈ (A\2), τA2
(〈0, 1[−1]〉, 〈1, 0[+1]〉, 〈1, a〉) ∈ ([22\]∆A) [(and

τA(0, 1, 1) = 0), in which case ∼iτ , where i , τA(0, 1, 1) ∈ 2, is a canonical anti-
equalizer for A (while τ(x1,∼x1, x0) is a ∼-relative semi-implication for A, when-
ever this is truth-singular)]. {Clearly, ox2 is a ternary /canonical equalizer/anti-
equalizer for A, whenever this is both false-/truth-singular and o-negative /“as
well as classically hereditary, unless o = ∼”. Likewise, if A is both truth-singular,
classically hereditary and A-implicative, then x2 A x0 is a ternary canonical anti-
equalizer for it.})

Theorem 6.12. Let A be a (no-more-than-(2[+1])-valued) Σ-matrix. Then, ∼ is a
subclassical negation for the logic of A if(f) A is ∼-[super-]classical. In particular,
any uniform three-valued Σ-logic with subclassical negation ∼ is minimally so iff it
is not ∼-classical.

Proof. The “if” part is by (2.14). (Conversely, assume ∼ is a subclassical negation
for the logic of A. First, by (2.16) with m = 1 and n = 0, there is some a ∈ DA

such that ∼Aa 6∈ DA. Likewise, by (2.16) with m = 0 and n = 1, there is some
b ∈ (A \DA) such that ∼Ab ∈ DA, in which case a 6= b, and so |A| 6= 1. Then, if
|A| = 2, we have A = {a, b}, in which case A is ∼-classical, and so ∼-super-classical.
[Now, assume |A| = 3.

Claim 6.13. Let A be a three-valued Σ-matrix, ā ∈ A2 and i ∈ 2. Suppose ∼ is a
subclassical negation for the logic of A, and, for each j ∈ 2, (aj ∈ DA) ⇔ (∼Aaj 6∈
DA) ⇔ (a1−j 6∈ DA). Then, either ∼Aai = a1−i or ∼A∼Aai = ai.

Proof. By contradiction. For suppose both ∼Aai 6= a1−i and ∼A∼Aai 6= ai. Then,
in case ai ∈ / 6∈ DA, as |A| = 3, we have both (DA/(A \ DA)) = {ai}, in which
case ∼Aa1−i = ai, and ((A \DA)/DA) = {a1−i,∼Aai}, respectively. Consider the
following exhaustive cases:

• ∼A∼Aai = a1−i. Then, ∼A∼A∼Aai = ai. This contradicts to (2.16) with
(n/m) = 0 and (m/n) = 3, respectively.

• ∼A∼Aai = ∼Aai. Then, for each c ∈ ((A\DA)/DA), ∼A∼A∼Ac = ∼Aai 6∈
/ ∈ DA. This contradicts to (2.16) with (n/m) = 3 and (m/n) = 0.

Thus, in any case, we come to a contradiction, as required. �
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Set d0 , a and d1 , b. Consider the following complementary cases:
• for each k ∈ 2, ∼Adk = d1−k. Then, {a, b} forms a subalgebra of A�{∼},

(A�{∼})�{a, b} being a ∼-classical submatrix of A�{∼}, as required.
• for some k ∈ 2, ∼Adk 6= d1−k, in which case, by Claim 6.13, ∼A∼Adk = dk,

so {dk,∼Adk} forms a subalgebra of A�{∼}, (A�{∼})�{dk,∼Adk} being a
∼-classical submatrix of A�{∼}, as required.]) �

The “only if” part of Theorem 6.12 does not, generally speaking, hold for no-
less-than-four-valued logics, in view of:

Example 6.14. Let n ∈ ω and A any Σ-matrix with A , (n ∪ (2 × 2)), DA ,
{〈1, 0〉, 〈1, 1〉}, ∼A〈i, j〉 , 〈1− i, (1− i+ j) mod 2〉, for all i, j ∈ 2, and ∼Ak ,
〈1, 0〉, for all k ∈ n. Then, for any subalgebra B of A�{∼}, we have (2× 2) ⊆ B, in
which case 4 6 |B|, and so A is not ∼-super-classical, for 4 
 2. On the other hand,
2×2 forms a subalgebra of A�{∼}, while B , (A�{∼})�(2×2) is∼-negative, in which
case θB ∈ Con(B), and so h , χB is a surjective strict homomorphism from B onto
the classically-canonical (in particular, two-valued) {∼}-matrix C , 〈h[B], {1}〉, (in
particular, by Remark 2.10(ii)(a), C is ∼-classical, so, by (2.14), ∼ is a subclassical
negation for the logic of A). �

Likewise, U3VLSN need not be minimally so, in view of Example 6.22 below.
Throughout the rest of this subsection, unless otherwise specified, C is supposed

to be the logic of an arbitrary but fixed 3-canonical ∼-super-classical Σ-matrix A
(that exhausts all uniform three-valued Σ-logics with subclassical negation ∼, in
view of Theorem 6.12 and (2.14)), in which case this is false-singular iff it is not
truth-singular iff kA , χA( 1

2 ) = 1, and so:

Remark 6.15. Any [(non-∼-paraconsistent) 3-]canonically ∼-[super-]classical Σ-ma-
trix B is [either] truth-singular, in which case DB = {1}, and so ∼B[DB] =
∼B[{1}] = {0} [or false-singular, in which case (B \ DB) = {0}, and so B is
weakly ∼-negative, as ∼B0 = 1 6= 0 (while, for each a ∈ DB, ∼Ba 6∈ DB, be-
cause, otherwise, (2.10) would not be true in B under [x0/a, x1/0], and so B is
∼-negative, whereas {0} = ∼B[{1}] ⊆ ∼B[DB] ⊆ (B \DB) = {0})] (in particular,
〈∼B[〉∼B[DB]〈]〉 = 〈∼B[〉{0}〈] = {1}〉). �

Remark 6.16. If A is ∼-paraconsistent, then { 1
2 ,∼

A 1
2} ⊆ DA, for ∼A1 = 0 6∈ DA,

in which case DA = {1, 1
2}, and so A is false-singular (in particular, weakly ∼-

negative), that is, not truth-singular. �

Remark 6.17. Suppose A (viz., C) is both weakly Y-disjunctive and (Y,∼)-para-
complete, in which case, for each j ∈ 2, as {j, 1−j} = 2 3 1 ∈ DA, (jYA∼Aj) ∈ DA,
and so ( 1

2 YA ∼A 1
2 ) 6∈ DA. Hence, { 1

2 ,∼
A 1

2} is disjoint with DA 63 0, in which case
DA = {1}, that is, A is truth-singular, and so is not ∼-paraconsistent, in view of
Remark 6.16. �

And what is more, any proper submatrix B of A is either ∼-classical or one-
valued, in which case B is simple, and so A is simple iff it is hereditarily so. Finally,
A is [weakly]| �-conjunctive/-disjunctive|-implicative iff C is so, in view of:

Lemma 6.18. Let B be a Σ-matrix and C ′ the logic of B. Suppose B is [either]
false-singular [or both no-more-than-three-valued and ∼-super-classical]. Then, the
following are equivalent:

(i) C ′ is Y-disjunctive;
(ii) B is Y-disjunctive;
(iii) (2.2) with i = 0, (2.3) and (2.4) [as well as (3.3)] are satisfied in C ′ (viz., in

B).
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Proof. First, (ii)⇒(i) is immediate. Next, assume (i) holds. Then, (2.2) with i = 0,
(2.3) and (2.4) are immediate. [And what is more, once B is not false-singular,
it is both no-more-than-three-valued (and so truth-singular) and ∼-super-classical,
in which case it is not ∼-paraconsistent, and so is C ′. Then, by (i) and Lemma
3.13, (3.3) is satisfied in C ′.] Thus, (iii) holds. Finally, assume (iii) holds. Consider
any a, b ∈ B. Then, by (2.2) with i = 0 and (2.3), C ′ is weakly Y-disjunctive,
and so is B, in which case (a YB b) ∈ DB, whenever either a or b is in DB. Now,
assume ({a, b} ∩DB) = ∅. Then, in case a = b (in particular, B is false-singular),
by (2.4), we get DB 63 (a YB a) = (a YB b). [Otherwise, B is not false-singular,
in which case it is no-more-than-three-valued (in particular, truth-singular) and
∼-super-classical, while (3.3) is true in B, and so, for some c ∈ (B \DB) = {a, b},
it holds that ∼Bc ∈ DB, while ∼B∼Bc = c. Let d be the unique element of
{a, b} \ {c}, in which case {a, b} = {c, d}. Then, since ∼Bc ∈ DB, we conclude that
(c YD d) = (∼B∼Bc YB d) 6∈ DB, for, otherwise, by (2.2) with i = 0 and (3.3), we
would get d ∈ DB. Hence, by (2.3), we eventually get (a YB b) 6∈ DB.] �

Corollary 6.19. Let C ′ be a Y-disjunctive non-∼-paraconsistent Σ-logic, B a finite
false-singular ∼-negative (in particular, ∼-classical) model of C ′ and C ′′ the logic
of B. Suppose C ′ is axiomatically-equivalent to C ′′. Then, C ′ = C ′′.

Proof. In that case, by Lemma 3.13, C ′ satisfies (3.3), and so, being weakly Y-
disjunctive, (2.7) with A , A∼

Y . And what is more, by Lemma 6.18, B ∈ Mod(C ′),
being false-singular, is Y-disjunctive, in which case it, being ∼-negative, is A-
implicative, in view of Remark 2.10(i)(b), and so C ′′, being defined by the two-
valued A-implicative Σ-matrix B, both is finitary and has DT with respect to A.
In this way, Lemma 4.10 completes the argument. �

Then, by Theorem 3.5(ii) as well as both Corollary 3.6 and Lemma 6.18 with
Y = ]A, we get:

Corollary 6.20. A is A-implicative iff C is so.

Remark 6.21. A is not ∼-negative iff it has unitary equality determinant {x0,∼x0}.

Next, A is said to be (∼-)involutive, provided ∼A 1
2 = 1

2 , that is, the Σ-identity
∼∼x0 ≈ x0 is true in A, in which case A is not ∼-negative. Further, A is said to be
extra-classically-hereditary, provided A \ 2 forms a subalgebra of A, in which case
A is involutive. Likewise, A is said to be quadro-classically hereditary, whenever
L4 , (A2 \ (22 ∪ ∆A)) forms a subalgebra of A2, in which case A is involutive,
and so A2�L4 is ∼-negative, Finally, A is said to be classically-valued, provided, for
all ς ∈ Σ, (img ςA) ⊆ 2, in which case A is [not extra-]classically-hereditary [more
specifically, not involutive].
6.2.1.1. Miscellaneous examples.
6.2.1.1.1. Kleene-style logics. Let Σ , Σ∼,+[01] and A both involutive and truth-
/false-singular with (A�Σ+[01]) , D3[01]. Then, A is both ∧-conjunctive, ∨-dis-
junctive and non-∼-negative, in which case it is (∨,∼)-paracomplete/∼-paracon-
sistent, and so, by Remark 2.10(i)(c)/(d), C is not ∼-classical, as well as both
classically-hereditary and [not] extra-classically-hereditary, while A is a distributive
(∧,∨)-lattice with zero 0 and unit 1, whereas C is [the bounded version|expansion
KL3,01/ LP01 of ] “Kleene’s three-valued logic”/“the logic of paradox” KL3/LP
[6]/[13].
6.2.1.1.2. Gödel-style logics. Let Σ , Σ/⊃

∼,+,01 and A [not] truth-singular as well
as neither ∼-negative nor involutive with (A�Σ+,01) , D3,01 (in which case ∼A is
the [dual] pseudo-complement operation)/“ as well as ⊃A being the [dual] relative
pseudo-complement operation”. Then, A is both ∧-conjunctive, ∨-disjunctive and
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[not] (∨,∼)-paracomplete as well as [not] non-∼-paraconsistent, and so, by Remark
2.10(i)(c,(d)), C is not ∼-classical, while A is classically-hereditary but not extra-
classically-hereditary, whereas C is [the (∼-)paraconsistent counterpart PG∗/

3 of ]
“the implication-less fragment G∗

3 of”/ Gödel’s three-valued logic G3 [3]. And what
is more, by (2.14), B , 〈A, { 1

2 , 1}[\{
1
2}]〉 ∈ Mod(C), as χB ∈ hom(B,A) is strict,

in which case any Σ-rule Γ ` ϕ is satisfied in C iff, for each h ∈ hom(Fmω
Σ,A),

min(h[Γ]) 6 h(ϕ), and so G3 is weakly ⊃-implicative, since ⊃A is the pseudo-
complement operation.
6.2.1.1.3. Ha lkowska-Zajac’ logic. Let Σ , Σ∼,+ and A both false-singular and
involutive with A being the distributive (∧,∨)-lattice with zero 1

2 and unit 1. Then,
A is ∼-paraconsistent (in particular, C is not ∼-classical; cf. Remark 2.10(i)(c))
as well as both classically- and extra-classically-hereditary but weakly neither ∧-
conjunctive nor ∨-disjunctive, C being the logic HZ [5]. On the other hand, since
the identity ∼∼x0 ≈ x0 is true in A, A is a distributive (∨∼,∧∼)-lattice (cf. Remark
2.10(i)(a) for definition of these secondary binary connectives) with zero ∼A1 = 0
and unit ∼A 1

2 = 1
2 . Then, A is both ∨∼-conjunctive and ∧∼-disjunctive.

6.2.1.1.4. Sette-style logics. Let Σ , Σ⊃
∼ and A classically-valued, non-∼-negative,

⊃-implicative (in particular, ]⊃-disjunctive) and [not] false-singular. Then, A is
[not] ∼-paraconsistent as well as [not] non-(]⊃,∼)-paracomplete, and so, by Re-
mark 2.10(i)(c,d), C, being [the intuitionistic/( (]⊃,∼)-)paracomplete counterpart
IP 1 of ] P 1 [30], is not ∼-classical.

6.2.2. Minimal U3VLSN. Let ∆+
2 , ∆2 ∈ 22 and ∆−

2 , (A2 \∆2) ∈ 22.
Generally speaking, C, though being three-valued, need not be minimally uni-

formly three-valued (viz., non-∼-classical), in view of:

Example 6.22. Let Σ , Σ∼[,+,01] and (B/D)|E the [∧-conjunctive ∨-disjunctive] 3-
canonical|canonical “∼-negative false-/truth-singular ∼-super-classical”|∼-classical
Σ-matrix [with (((B/D)|E)�Σ+) , D3|2 (cf. Subparagraph 2.2.1.2.1), ⊥((B/D)|E ,
((0/ 1

2 )|0) and >((B/D)|E , (( 1
2/1)|1), respectively, in which case (B/D)|E has tau-

tology > and, in view of Remark 2.10(i)(b), is A∼
∨ -implicative]. On the other hand,

in the non-optional case, ∆−
2 forms a subalgebra of (B/D)2, in which case, by

(2.14), (B/D)2�∆−
2 is a truth-empty model of the logic of B/D, and so, by Corol-

lary 3.11(ii)⇒(i), this has no tautology. Then, χB/D ∈ homS
S(B/D, E). Therefore,

by (2.14), B/D define the same ∼-classical Σ-logic of E , in which case, by Remark
2.10(i)(c), this is non-∼-paraconsistent, and so is any extension of it. And what is
more, by Remark 2.10(ii)(c), B and D are non-isomorphic [as well as B and D are
so, because the Σ-identity (x0∧∼x0) ≈ ∼∼⊥, being true in B, is not so in D under
[x0/

1
2 ]], while h : (B/D) → (B/D) : a 7→ (max /min)(0/1, χB/D(a) − / + 1

2 ) is a
non-diagonal (for h(1/0) = 1

2 6= (1/0)) strict homomorphism from B/D to itself, so
this does not have a unitary equality determinant, in view of Theorem 3.3, whereas
[(>/⊥)B/D = 1

2 6∈ 2, in which case] B/D, being ∼-negative (and so non-involutive),
is not quadro-classically hereditary [as well as not classically so]. �

On the other hand, ∼-classical Σ-logics are self-extensional, in view of Example
4.2. This makes the purely algebraic criterion of the minimality of U3VLSN to be
obtained here especially acute.

Lemma 6.23 (Key 3-valued Lemma). Let B be a 3-canonical ∼-super-classical
Σ-matrix, D a submatrix of A and h ∈ hom(D,B). Then, providing A is invo-
lutive, whenever both B is so and 1

2 ∈ (img h) (in particular, either A = B or
hom(B�(img h),A) 6= ∅), the following hold {cf. p. 3}:

(i) providing h is not singular, 2 ⊆ D, while h[2] = 2, in which case h�2 is
injective, and so belongs to {∆+

2 ,∆
−
2 };
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(ii) providing h + ∆−
2 [in particular, h ∈ hom(D,B)] is injective, it is diagonal.

In particular, the following hold:
(a) any partial automorphism {cf. Subsubsection 3.1.1} of A is diagonal;
(b) any isomorphism from A onto B is diagonal, in which case A = B, and so A

and B are equal, whenever they are isomorphic.

Proof. First, note that the carrier of any subalgebra of (A|B)�{∼} (in particular,
D|(img h)) belongs to {A|B, 2, { 1

2}}. And what is more, for each a ∈ (A|B), we
have (∼A|Ba = a) ⇒ (a = 1

2 ). In particular, for any g ∈ hom(D|(B�(img h)),B|A)
with 1

2 ∈ (dom g), providing ∼A|B 1
2 = 1

2 , we have ∼B|Ag( 1
2 ) = g( 1

2 ), in which case
we get g( 1

2 ) = 1
2 , and so ∼B|A 1

2 = 1
2 . While proving (i,ii), assume (∼B 1

2 = 1
2 ) ⇒

(∼A 1
2 = 1

2 ), whenever 1
2 ∈ (img h).

(i) Assume h is not singular, in which case 1 < | img h| 6 |D|, and so D ⊇
2 ⊆ (img h). Then, as 2 forms a subalgebra of A�{∼}, h[2] forms a no-more-
than-two-element subalgebra of B�{∼}, in which case h[2] ∈ {2, { 1

2}}, and
so h[2] = 2, for, otherwise, we would have both (img h) = h[D] ⊇ h[2] =
{ 1

2} 3
1
2 and ∼B 1

2 = 1
2 , in which case we would get ∼A 1

2 = 1
2 as well as, since

| img h| 6= 1, both 1
2 ∈ D = (domh) and h( 1

2 ) ∈ 2, and so would eventually
get 2 3 h( 1

2 ) = 1
2 .

(ii) Assume h is injective, while {h ∈ hom(D,B), in which case ∆−
2 3 〈1, 0〉 6∈ h,

for (1|0) ∈ | 6∈ DA|B, and so} ∆−
2 * h. Then, h : D → (img h) is bijective.

Therefore, in case h is singular, we have (img h) = { 1
2} = D, and so h =

{〈 1
2 ,

1
2 〉} is diagonal. Otherwise, by (i), 2 ⊆ D, while (h�2) ⊆ h is diagonal.

In particular, h = (h�2) is diagonal, whenever D = 2. Otherwise, D = A,
while 1

2 6∈ 2, in which case, by the injectivity of h, we have h( 1
2 ) 6∈ h[2] = 2,

and so we get h( 1
2 ) = 1

2 (in particular, h is diagonal).
Then, (a/b) is by (ii) with (B/D) = A and and /bijective h ∈ hom(D,B) /“as well
as h−1 ∈ hom(B,A)”. �

Corollary 6.24. The following are equivalent:
(i) A has no [unitary] equality determinant;
(ii) A is a strictly (surjectively) homomorphic counter-image of a ∼-classical Σ-

matrix;
(iii) A is not {hereditarily} simple;
(iv) θA ∈ Con(A) 〈in which case χA is a strict surjective homomorphism from A

onto CA , 〈χA[A], {1}〉, being, in its turn, canonically ∼-classical〉.

Proof. First, (i)⇔(iii) is by Lemmas 3.1, 6.23(a) and Theorem 3.3.
Next, (ii)⇒(iii) is by Remark 2.8(i,ii), for |A| = 3 
 2.
Further, (iii)⇒“θA ∈ Con(A)” is by the fact img[θA \ ∆A] = {{ 1

2 ,k
A}} is a

singleton.
Finally, assume θA ∈ Con(A), in which case h , χA is a strict surjective ho-

momorphism from A onto the classically-canonical (in particular, two-valued) Σ-
matrix CA, and so h�2, being diagonal, is a strict surjective homomorphism from
the ∼-negative Σ-matrix (A�{∼})�2 onto CA�{∼}. Then, by Remark 2.10(ii)(a),
CA�{∼} is ∼-negative, and so is CA, in which case this is canonically ∼-classical.
Thus, the optional part of (iv) holds, and so does (ii). �

Next, a (2([+1]))-ary semi-conjunction for/of a (3-)canonical ∼-(super-)classical
Σ-matrix B is any ϕ ∈ Fm2([+1])

Σ such that ϕB(0|1, 1|0([, 1
2 ])) = | 6= (0|1). (Clearly,

any binary semi-conjunction for A is both a ternary one and a ternary equalizer
for it. Likewise, providing A is classically hereditary, binary semi-conjunctions for
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A�2 are exactly those for A.) Finally, a quasi-negation for/of A is any κ ∈ Fm1
Σ

such that κA[{ 1
2 , 1}] ⊆ {0, 1

2}. (Clearly, ∼x0 is a quasi-negation for A, whenever
this is either involutive or both false-singular and ∼-negative.)

Lemma 6.25. Let B be a [ 3-] canonically ∼-[super-]classical Σ-matrix, I a finite
set, C ∈ S∗(B)I and D a subdirect product of it. Then, the following hold:

(i) providing [in case B is ∼-paraconsistent but not weakly conjunctive, both B
is classically hereditary but not extra-classically hereditary, and either D is
∼-negative or either B has a binary semi-conjunction or both D is truth-non-
empty and B has either a quasi-negation or ternary equalizer, as well as] D is
truth-non-empty [unless B is ∼-paraconsistent], (I×{j}) ∈ D, for some/each
j ∈ 2;

(ii) providing I 6= ∅ (in particular, D is consistent) as well as, for some j ∈
2, (I × {j}) ∈ D, for each Σ′ ⊆ Σ, {〈a, I × {a}〉 | a = ϕB(0, 1), ϕ ∈
(Var2[∪Fm2

Σ′ ])} is an embedding of [the submatrix of ] B�Σ′ [generated by
2] into D�Σ′.

Proof. Clearly, if (I × {j}) ∈ D, for some j ∈ 2, then, D 3 ∼D(I × {j}) =
(I ×{1− j}), in which case, as 2 = {j, 1− j}, (I ×{k}) ∈ D, for each k ∈ 2, and so
(ii) as well as, since 2 6= ∅, the equivalence of alternatives in (i) hold. For proving
the former alternative in (i), consider the following complementary cases with using
Remark 2.10(i)(c) tacitly:

• B is ∼-paraconsistent, in which case it is false-singular, and so DA = { 1
2 , 1}.

Consider the following complementary subcases:
– B is weakly conjunctive, in which case, by Lemma 3.17, (I×{0}) ∈ D.
– B is not weakly conjunctive, in which case it is classically hereditary

but not extra-classically hereditary, and so there is some ψ ∈ Fm1
Σ

such that ψB : B → 2, while either D is ∼-negative or B has a binary
semi-conjunction or both D is truth-non-empty and B has either a
quasi-negation or a ternary equalizer. Take any b ∈ D 6= ∅, in which
case c , ψD(b) ∈ (D ∩ 2I). Let J , {i ∈ I | πi(c) = 1} and (l|m|n) ,
ψB(0|1| 12 ) ∈ 2. Consider the following complementary subsubcases:

∗ B has a binary semi-conjunction φ, in which caseD 3 φD(c,∼Dc)
= (I × {0}).

∗ B has no binary semi-conjunction, in which case l 6= m, for, oth-
erwise, ∼lψ would be a binary semi-conjunction for B, and so
{l,m} = 2 3 n. Consider the following complementary subsub-
subcases:

· either of J/(I \ J) is empty, in which case D 3 c = (I ×
{0/1}).

· J 6= ∅ 6= (I \ J), in which case, as 0 6∈ DB, D 3 c 6∈
DD 63 ∼Dc ∈ D, and so D is not ∼-negative. Then, D is
truth-non-empty, while B has either a quasi-negation or a
ternary equalizer. Take any d ∈ DD = (D ∩ { 1

2 , 1}
I) 6= ∅.

Consider the following complementary (for n ∈ 2 = {l,m})
subsubsubsubcases:
? n = m, in which case D 3 ψD(d) = (I × {n}).
? n = l. Consider the following complementary subsub-

subsubsubcases:
◦ B has a quasi-negation κ. Then, D 3 ψD(κD(d)) =

(I × {n}).
◦ B has no quasi-negation, in which case it has a ternary

equalizer τ , and so D 3 e , τD(c,∼Dc, d) = (I ×{[}),
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for some [ ∈ B. Let ` , ψB([) ∈ 2. Then, D 3
ψD(e) = (I × {`}).

• B is not ∼-paraconsistent, in which case D is truth-non-empty. Take any
f ∈ DD = (D ∩ (DB)I) 6= ∅, in which case, by Remark 6.15, for each
i ∈ I, πi(∼Df) = ∼Bπi(f) ∈ ∼B[πi[(DB)I ]] = ∼B[DB] = {0}, and so
D 3 ∼Df = (I × {0}). �

Let h+/2 : 22 → A, 〈i, j〉 7→ i+j
2 be the arithmetical mean mapping.

Theorem 6.26. C is ∼-classical (viz., non-minimally uniformly three-valued; cf.
Theorem 6.12) iff either of the following holds:

(i) θA ∈ Con(A) (i.e., A ”has no {unitary} equality determinant”|“is not 〈he-
reditarily〉 simple”|“is a strictly dsurjectivelye homomorphic counter-image
of a ∼-classical Σ-matrix) [in which case CA , 〈χA[A], {1}〉 is a canonical
∼-classical Σ-matrix, being a strictly surjectively homomorphic image of A,
and so defines C];

(ii) A is both truth-singular and classically hereditary, while h+/2 ∈ hom((A�2)2,
A) [in which case h+/2 ∈ homS

S((A�2)2,A), and so A�2 is a canonical ∼-
classical Σ-matrix defining C, whereas A is neither conjunctive nor disjunc-
tive].

Proof. Assume both C is ∼-classical, in which case, by (2.14), C is defined by a
canonical ∼-classical (and so both simple and having no proper submatrix) Σ-
matrix B, and θA 6∈ Con(A), in which case, by Corollary 6.24(iii)⇒(iv), A is
hereditarily simple, and so, by Lemma 3.8 with M = {B|A}, there is some fi-
nite set I|J , some C|D ∈ S∗(B|A)I|J some subirect product E|F of it and some
(h|g) ∈ homS

S(E|F ,A|B) (in particular, A|B belongs to the variety generated by
B|A). Then, A is truth-singular (in particular, non-∼-paraconsistent), for B is so,
while truth-singularity is clearly preserved under P as well as under both S and
H, in view of Remark 2.10(ii)(c). And what is more, by Remark 2.10(ii)(b), E|F is
both truth-non-empty and consistent, for A|B is so. Then, by Lemma 6.25(i) with
j = (0[+1]), (E|F ) 3 (a|b)[′] , ((I|J)×{j}). Let G be the submatrix of A generated
by 2, in which case it is simple, for A is hereditarily so, and so, by Remark 2.8(ii)
and Lemma 6.25(ii), e◦ g, where e is an embedding of G into F , is an embedding of
G into B (in particular, is an isomorphism from G onto B, for this has no proper sub-
matrix). Thus, |G| = |B| = |2| = 2, in which case G ⊇ 2 is equal to 2, and so 2 = G
forms a subalgebra of A, while (A�2) = G is canonically ∼-classical and isomorphic
(and so equal) to B. And what is more, by the truth-singularity of A, h(a′) = 1,
for (a′|1) ∈ DE|A, in which case h(a) = h(∼Ea′) = ∼A1 = 0, and so there is some
c ∈ (E \ {a, a′}) such that h(c) = 1

2 . Then, I 6= K , {i ∈ I | πi(c) = 1} 6= ∅,
in which case f , {〈〈k, l〉, (K × {k}) ∪ ((I \K)× {l})〉 | k, l ∈ 2} is an embedding
of B2 into E , and so (f ◦ h) ∈ hom(B2,A). Clearly, f(〈1, 1〉) = a′, f(〈0, 0〉) = a,
f(〈1, 0〉) = c, and so f(〈0, 1〉) = f(∼B2〈1, 0〉) = ∼Ec. Furthermore, the Σ-identity
∼∼x0 ≈ x0, being true in B, is so in A, for this belongs to the variety generated by
B, in which case ∼A∼A 1

2 = 1
2 6∈ 2, and so ∼A 1

2 = 1
2 . Thus, (f ◦h) = h+/2. Finally,

if A was �-conjunctive/-disjunctive, then, by Remark 2.10(ii)(a), (i)(a) and Lemma
6.18, it would be Y-disjunctive, where Y , �∼/, for B would be so, in which case,
by Theorem 3.10, A would be a strictly homomorphic counter-image of B, and so,
by Corollary 6.24(ii)⇒(iv), θA would be a congruence of A. In this way, (2.14) and
Corollary 6.24 complete the argument. �

In view of Example 1 of [20], this implies that U3VLSN are covered by the
universal sequent approach elaborated therein and recently advanced in [26, 28]
towards Hilbert-style axiomatizations. On the other hand, the item (ii) cannot be
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omitted in the formulation of Theorem 6.26, even if C is both weakly conjunctive
and weakly disjunctive, in view of Remark 6.21 and:

Example 6.27. Let Σ , Σ∼,01 and A both truth-singular and involutive (in
particular, non-∼-negative) with (⊥/>)A , (0/1). Then, A is both weakly ⊥-
conjunctive and weakly >-disjunctive. Though, 2 forms a subalgebra of A, while
h+/2 ∈ hom((A�2)2,A), in which case, by Theorem 6.26, C is ∼-classical. �

Perhaps, a most remarkable peculiarity of non-classical U3VLSN is as follows.
6.2.2.1. Characteristic matrices.

Theorem 6.28. Let B be a [ 3-canonical] ∼-super-classical Σ-matrix. Suppose
C is non-∼-classical and defined by B. Then, B is isomorphic [and so equal] to
A. In particular, any uniform three-valued expansion of C is defined by a unique
expansion of A, unless C is ∼-classical.

Proof. Then, the 3-canonization D of B is isomorphic to B, in which case, by (2.14),
C is defined by D, and so, by Theorem 6.26, both A and D are simple. Hence,
by Remark 2.8(ii) and Lemma 3.8, (A|D) ∈ H(PSD(S(D|A))) (in particular, A is
truth-singular iff D is so, for truth-singularity is preserved under P as well as both
S and H; cf. Remark 2.10(ii)(c)). Therefore, there are some finite set I, some
C ∈ S(A)I , some subdirect product E of it and some h ∈ homS

S(E ,D), in which
case, by (2.14) and Remark 2.10(ii)(b), E is a both consistent and truth-non-empty
model of C, for D is so, and so I 6= ∅. Consider the following complementary cases:

• (I×{j}) ∈ E, for some j ∈ 2, in which case E 3 ∼E(I×{j}) = (I×{1−j}),
and so, as 2 = {j, 1− j}, E contains both of (a|b) , (I × {1|0}). Consider
the following complementary subcases:

– (I × { 1
2}) ∈ E, in which case, as I 6= ∅, g , {〈a′, I × {a′}〉 | a′ ∈ A}

is an embedding of A into E , and so, by Remark 2.8(ii), g ◦ h is an
embedding of A into D (in particular, is an isomorphism from A onto
D, because |A| = 3 6 l, for no l ∈ 3 = |D|).

– (I×{ 1
2}) 6∈ E, in which case E is non-∼-paraconsistent, and so is B, in

view of (2.14) (in particular, A is so). Then, 2 forms a subalgebra of A,
for, otherwise, there would be some φ ∈ Fm2

Σ such that φA(1, 0) = 1
2 ,

in which case E would contain φE(a, b) = (I×{ 1
2}), and so, by (2.14),

F , (A�2) is a canonical∼-classical model of C (in particular, the logic
C ′ of F is a ∼-classical extension of C). Moreover, as a ∈ DE 63 b,
for I 6= ∅, h(a) ∈ DD 63 h(b), in which case h(b/a) = (0/1), whenever
D is false-/truth-singular, respectively, and so (1/0) = ∼D(0/1) =
h(∼E(b/a)) = h(a/b) (in particular, h[{a, b}] = 2). And what is more,
as h[E] = D, there is some c ∈ E such that h(c) = 1

2 . Let G be
the submatrix of E generated by {a, b, c}, in which case h′ , (h�G) ∈
homS

S(G,D), for h[{a, b, c}] = A, and so, by (2.14), C, being defined by
D, is defined by G. Hence, J , {i ∈ I | πi(c) = 1

2} 6= ∅, for, otherwise,
2I ⊇ {a, b} would contain c, in which case it, forming a subalgebra of
AI , would include G, and so G, being a submatrix of AI , would be
a submatrix of FI ∈ Mod(C ′) (in particular, by (2.14), C, being a
sublogic of C ′, would be equal to C ′, and so would be ∼-classical, for
C ′ is so). Take any  ∈ J 6= ∅, in which case π(a|b|c) = (1|0| 12 ), and
so g′ , (π�G) ∈ hom(G,A) is surjective, for {a, b, c} ⊆ G. We prove,
by contradiction, that g′ ∈ homS

S(G,A). For suppose g′ 6∈ homS
S(G,A),

in which case there is some d ∈ (G\DG) such that π(d) ∈ DA, and so
π(∼Gd) = ∼Aπ(d) 6∈ DA, for, otherwise, (2.10) would not be true in
A under [x0/π(d), x1/0]. Then, ∼Dd 6∈ DG , in which case ∼Dh′(d) =
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h′(∼Gd) 6∈ DD 63 h′(d), and so DD 63 h′(d) = 1
2 (in particular, D

is truth-singular, that is, A is so). Let H be the submatrix of G
generated by {a, b, d}, in which case h′′ , (h′�H) ∈ homS

S(H,D), for
h′[{a, b, d}] = A, since h′(a|b|d) = (1|0| 12 ), respectively, and so, by
(2.14), C, being defined by D, is defined by H. Then, as A is truth-
singular, π(d) = 1, in which case, for each i ∈ J , we get πi(d) =
π(d) = 1, because πi(a|b|c) = (1|0| 12 ) = π(a|b|c), respectively, and so
d ∈ 2I ⊇ {a, b}. Therefore, 2I , forming a subalgebra of AI , includes H,
in which caseH, being a submatrix ofAI , is that of FI ∈ Mod(C ′), and
so, by (2.14), C, being a sublogic of C ′, is equal to C ′ (in particular,
C is ∼-classical, for C ′ is so). This contradiction shows that g′ ∈
homS

S(G,A). In this way, since both A and D are simple, while h′ ∈
homS

S(G,D), by Remark 2.8(ii) and Lemma 3.7 with M = {A}, we
eventually conclude that A is isomorphic to D.

• (I × {j}) 6∈ E, for each j ∈ 2, in which case, by Lemma 6.25(i), A is ∼-
paraconsistent (in particular, false-singular, i.e., non-truth-singular), that
is, B is so, and so E is ∼-paraconsistent, in view of (2.14), as well as is
not truth-singular, in view Remark 2.10(ii)(c). Then, first, there is some
e ∈ DE such that ∼Ee ∈ DE , in which case E 3 e , (I × { 1

2}), and so A is
extra-classically hereditary, for, otherwise, there would be some ψ ∈ Fm1

Σ

such that j , ψA( 1
2 ) ∈ 2, in which case E would contain ψE(e) = (I×{j}).

Second, there is some f ∈ DE ⊆ { 1
2 , 1}

I distinct from e, in which case K ,
{i ∈ I | πi(f) = 1} 6= ∅, and so, since A is extra-classically hereditary and
generated by A \ {0}, g′′ , {〈b′, (K × {b′}) ∪ ((I \K)× { 1

2})〉 | b
′ ∈ A} is

an embedding of A into E . Hence, by Remark 2.8(ii), g′′◦h is an embedding
of A into D, and so is an isomorphism from A onto D, for |A| = 3 = |D|.

Thus, anyway, A is isomorphic to D, and so to B [in which case, by Lemma 6.23(b),
A = B]. Then, as ∼ is a subclassical negation for any expansion of C, (2.14) and
Theorem 6.12 end the proof. �

In view of Theorem 6.28, A, being uniquely determined by C, unless this is
∼-classical, is said to be characteristic for/of C. In view of Example 6.22, the
stipulation of C’s being non-∼-classical cannot be omitted in the formulation of
Theorem 6.28, even if C is both conjunctive and implicative (in particular, disjunc-
tive).

Finally, Theorems 5.4, 6.8(i)⇒(v) and 6.11 make the next paragraph equally
acute.
6.2.2.2. Paraconsistent extensions. Since A has no proper ∼-paraconsistent subma-
trix, by Corollary 2.9 of [25], we, first, have the following universal result subsuming
the particular observation of [30]:

Proposition 6.29. C has no proper ∼-paraconsistent extension. In particular, it
is axiomatically maximally ∼-paraconsistent, whenever it is ∼-paraconsistent.

As for non-axiomatic maximal paraconsistency, the situation is far more compli-
cated. We start from proving the following key auxiliary result:

Lemma 6.30. Let B be a ∼-paraconsistent model of C. Suppose either A has a
ternary semi-conjunction or it is not extra-classically hereditary or

(6.3) x0 ` ∼x0

is not true in B. Then, A is embeddable into a strictly surjectively homomorphic
image of a submatrix of B.
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Proof. In that case, [unless B is a model of (6.3)] there are some a[, b] ∈ DB and
some c ∈ (D \DB) such that ∼B(a[|b]) ∈ [| 6∈]DB, so, by (2.14), the submatrix D of
B generated by {a, c[, b]} is a finitely-generated model of C, in which (2.10)[|(6.3)]
is not true under [x0/(a[|b]), x1/c]. Then, by Lemma 3.8, there are some set I, some
C ∈ AI , some subdirect product E of it and some h ∈ homS

S(E ,D/a(D)), in which,
by (2.14), (2.10)[|(6.3)] is not true, and so there are some d[, e] ∈ DE and some
f ∈ (D \ DE) such that ∼E(d[|e]) ∈ [| 6∈]DE . Let (J [|K]) , {i ∈ I | πi(f [|e]) =
(0[|1])} 6= ∅ as well as, for any L ⊆ I, gL : A→ E, j 7→ (((I \L)×{ 1

2})∪(L×{j})),
in which case E 3 d = (I × { 1

2}) = gL( 1
2 ). Consider the following complementary

cases:

• A is extra-classically hereditary.
Consider the following complementary subcases:

– B is a model of (6.3),
in which case A has a ternary semi-conjunction φ, and so, for some
J ⊆ M ⊆ I and all k ∈ 2, E 3 (∼k)EφE(f,∼Ef, d) = gM (k). Then,
gM is an embedding of A into E .

– B is not a model of (6.3),
in which case, for all l ∈ 2, E 3 (∼1−l)Ee = gK(l), an so gK is an
embedding of A into E .

• A is not extra-classically hereditary,
in which case there is some ψ ∈ Fm1

Σ such that m , ψA( 1
2 ) ∈ 2, and so,

for all n ∈ 2, E 3 (∼(1−)nm)EψE(d) = gI(n). Then, gI is an embedding of
A into E .

Thus, anyway, there is an embedding g of A into E , in which case (g ◦ h) ∈
homS(A,D/a(D)), and so this is injective, for its kernel, being a congruence of
A, is diagonal, as A is simple, in view of (2.14), Remark 2.10(i)(c) and Corollary
6.24(iii)⇒(ii). �

Theorem 6.31. The following are equivalent [provided C is ∼-subclassical]:

(i) C has no proper ([non-]non-∼-subclassical) ∼-paraconsistent extension;
(ii) A either has a ternary dmore specifucally, binarye semi-conjunction or is

not extra-classically hereditary bmore specifically, is not involutivec or is not
∼-paraconsistent 〈more specifically, is truth-singular〉;

(iii) providing A is false-singular {more specifically, ∼-paraconsistent}, L3 ,
(∆−

2 ∪ {〈 1
2 ,

1
2 〉}) does not form a subalgebra of A2;

(iv) A 1
2

, 〈A, { 1
2}〉 is not a ∼-paraconsistent model of C;

(v) C has no truth-singular ∼-paraconsistent model.

In particular, any three-valued expansion of C is maximally ∼-paraconsistent,
whenever C is so.

Proof. We use Remark 6.16 tacitly. First, (ii)⇒(i) is by (2.14), Remark 2.12 and
Lemma 6.30.

Next, assume (iii) holds, while A is both ∼-paraconsistent and extra-classically
hereditary, in which case it is both false-singular and involutive. Then, there is some
φ ∈ Fm3

Σ such that ā , φA2
(〈0, 1〉, 〈1, 0〉, 〈 1

2 ,
1
2 〉) 6∈ L3, in which case { 1

2} 6= S ,
(img ā) 6= 2, and so ∅ 6= N , (S∩2) ( 2 ⊇M , {i ∈ 2 | ai ∈ 2} 6= ∅ (in particular,
N is a singleton). Let n be the unique element of N ⊆ 2, m , min(M) ∈ M ⊆ 2
and f : 22 → 2, 〈j, k〉 7→ |j − k|, in which case ∼n(φ[xl/xf(m,l)]l∈2) is a ternary
semi-conjunction for A, and so (iii)⇒(ii) holds.

Conversely, assume (iii) does not hold, in which case, by (2.14), E , (A2�L3)
is a model of C, and so is A 1

2
, for (π0�L3) ∈ homS

S(E ,A 1
2
), as A is false-singular.
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Then, A, being extra-classically hereditary, for L3 3 〈 1
2 ,

1
2 〉 is disjoint with ∆2, is

involutive, in which case A 1
2

is ∼-paraconsistent, and so (iv) does not hold.
Furthermore, (iv) is a particular case of (v).
Further, assume (v) does not hold, that is, C has a truth-singular ∼-paracon-

sistent model F . [Take any ∼-classical G ∈ Mod(C).] Then, x0 ` ∼x0, not being
true in any ∼-〈super-〉classical Σ-matrix 〈in particular, in A〉, in view of (2.16)
with (m|n) = (1|0) 〈and (2.14)〉, is true in F , and so is its logical consequence
{x1,∼x1, x0} ` ∼x0 that, being a logical consequence of (2.10)[xk/∼kx1−k]k∈2,
is true in any non-∼-paraconsistent Σ-matrix [in particular, in G; cf. Remark
2.10(i)(c)], in which case the logic of {F [,G]} is a [non]-non-∼-subclassical ∼-pa-
raconsistent proper extension of C, and so the ()-optional version of (i) does not
hold.

Finally, Remark 2.10(i)(c), Theorem 6.28 and the fact that expansions of A
retain ternary semi-conjunctions complete the argument. �

6.2.2.2.1. Pre-maximal paraconsistency. Let C 1
2

be the logic of A 1
2
.

Lemma 6.32. Let ϕ ∈ C(∅). Suppose C is a ∼-paraconsistent sublogic of C 1
2
.

Then, ∼ϕ ∈ C(∅), in which case any consistent model/extension of C is ∼-
paraconsistent, and so is A 1

2
.

Proof. In that case, for any h ∈ hom(Fmω
Σ,A), h(ϕ) ∈ DA 1

2 = { 1
2}, that is, h(ϕ) =

1
2 , and so, by the ∼-paraconsistency of A|C, h(∼ϕ) = ∼Ah(ϕ) = ∼A 1

2 ∈ DA, as
required /“taking Remark 2.12 into account”. �

Theorem 6.33. Suppose C is [non-maximally] ∼-paraconsistent. [Then, the fol-
lowing hold:

(i) C 1
2

is:
(a) the proper axiomatically-equivalent extension of C relatively axiomatized

by (6.3) (in particular, it{s ∼-fragment} is not ∼-subclassical);
(b) maximally inferentially consistent;
(c) the greatest ∼-paraconsistent extension of C (in particular, it is maxi-

mally ∼-paraconsistent).
(ii) the following are equivalent:

(1) C is pre-maximally ∼-paraconsistent;
(2) C is pre-maximally consistent;
(3) C 1

2
is the only proper ∼-paraconsistent extension of C;

(4) C 1
2

is maximally consistent;
(5) C 1

2
is structurally complete;

(6) C 1
2

is the structural completion of C;
(7) C〈 1

2 〉
has a theorem;

(8) C is not ∼-subclassical;
(9) A is not classically hereditary.]

In particular, C is pre-maximally ∼-paraconsistent, whenever it “has a theorem
(i.e., is weakly disjunctive {more specifically, implicative}”/“is not ∼-subclassical”.

Proof. We use Remark 6.16 tacitly. [In that case, by Theorem 6.31(iv/iii/ii)⇒(i),
“C 1

2
is a ∼-paraconsistent extension of C”/“L3 forms a subalgebra of A2”/“A

is extra-classically hereditary (in particular, involutive) and has no ternary semi-
conjunction”, in which case (π0�L3) ∈ homS

S(A2�L3,A 1
2
), and so C 1

2
is defined by

A2�L3.
(i) (a) Clearly, C ≡1 C 1

2
, for 1

2 ∈ D
A. Likewise, (6.3), being true in A 1

2
, for A is

involutive, is not true in A under [x0/1]. Conversely, consider any Σ-rule
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R = (Γ ` φ) not satisfied in the extension C ′ of C relatively axiomatized
by (6.3), in which case φ 6∈ C ′(Γ) = C ′(Γ ∪ ∼[Γ]) ⊇ C(Γ ∪ ∼[Γ]), and
so there is some h ∈ hom(Fmω

Σ,A) such that (Γ ∪∼[Γ]) ⊆ h−1[DA] 63 φ.
Then, for each ψ ∈ Γ, h(ψ) ∈ DA 3 h(∼ψ) = ∼Ah(ψ), in which case, as
1
2 ∈ DA, h[Γ] ⊆ { 1

2} 63 h(φ), that is, R is not true in A 1
2

under h, and
so C ′ = C 1

2
, as required.

(b) Consider any inferentially consistent extension C ′′ of C 1
2
, in which case,

by Remark 2.12, it has a consistent truth-non-empty model B, and so
there are some a ∈ DB 6= ∅ and some b ∈ (B \ DB) 6= ∅. Then, by
(2.14), the submatrix D of B generated by {a, b} is a finitely-generated
consistent truth-non-empty model of C ′′ (in particular, of C 1

2
), in which

case, by Lemma 3.8, there are some set I, some submatrix E of AI
1
2

and

some g ∈ homS
S(E ,D/a(D)), and so, by Remark 2.10(ii)(b), there are

some c ∈ DE 6= ∅ and some d ∈ (E \ DE) 6= ∅. Given any j ∈ 2, let
Jj , {i ∈ i | πi(d) = j}, in which case K , (J0 ∪ J1) 6= ∅, for d 6∈ DE ,
and so we have the following complementary cases:

• J0 6= ∅ 6= J1,
in which case f : L3 → E, ē→ (((I\K)×{ 1

2})∪(
⋃

k∈2(Jk×{ek})))
is an embedding of A2�L3 into E , for E ⊇ {c, d,∼Ed} = f [L3], and
so, by (2.14), C ′′ = C 1

2
.

• there is some l ∈ 2 such that Jl 6= ∅ = J1−l,
in which case f ′ : A→ E, e 7→ (((I \ Jl)× { 1

2}) ∪ (Jl × {e})) is an
embedding of A 1

2
into E , for E ⊇ {c, d,∼Ed} = f ′[A], and so, by

(2.14), C ′′ = C 1
2
.

Thus, anyway, C ′′ = C 1
2
, as required.

(c) Consider any ∼-paraconsistent extension C ′′′ of C, in which case, by
Remark 2.12, it has a ∼-paraconsistent model F , and so, by (b)|“(2.14)
and Lemma 6.30”, C 1

2 |
is an extension of C ′′′, whenever (6.3) is |not true

in F , as required.
(ii) First, the equivalence of the optional and non-optional versions of (7) as well

as that of (5) and (6) are by the axiomatic equivalence of C and C 1
2
, being due

to (i)(a). Likewise, (7|1)⇒ | ⇔(4|3) is by (i)(b)|(i)(a,c). Next, (4/5)⇒(5/7) is
by Remark 2.5/2.13. Likewise, (8)⇒(9) is by (2.14). Furthermore, (1)⇒(8) is
by (i)(a) and the equivalence of the double-optional and non-optional versions
of Theorem 6.31(i). Now, assume (9) holds, in which case there is some
φ ∈ Fm2

Σ such that φA(1, 0) = 1
2 , and so ψ , (φ[x1/∼x0]) ∈ Fm1

Σ is a
theorem of C, because, otherwise, φ would be a ternary semi-conjunction of
A, for this is extra-classically hereditary and false-singular. Thus, (9)⇒(7)
holds. Further, (1) is a particular case of (2). Conversely, (1&7)⇒(2) is by
Lemma 6.32. Finally, (7)⇒(1) is by (i)(a,c) as well as (2.14), Lemmas 6.30,
6.32 and Remark 2.12.]

In this way, Remarks 2.6, 2.10(i)(d) and (2.5) complete the argument. �

Thus, by Theorem[s 6.33(ii)(1)⇔(9) and] 6.31(i)⇔(iii) (more precisely, its non-
optional version), we get an effective purely-algebraic criterion of [pre-]maximal
paraconsistency of pararaconsistent U3VLSN.
6.2.2.3. Classical extensions.

Lemma 6.34. Let B be a [classically hereditary {/weakly Y-disjunctive ∼-pa-
raconsistent/ (Y,∼)-paracomplete} 3-]canonically ∼-[super-]classical Σ-matrix, C ′

the logic of B and D a consistent truth-non-empty [non-∼-paraconsistent] (more
specifically, ∼-classical; cf. Remark 2.10(i)(c)) model of C ′. [Suppose either D is
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∼-negative or B either is weakly conjunctive or is non-∼-paraconsistent or has a
ternary equalizer or has a quasi-negation.] Then, B[�2] is a canonical ∼-classical
model of C ′, embeddable into a strictly surjectively homomorphic image of a sub-
matrix of (and so isomorphic to) D, in which case it defines a unique ∼-classical
extension of C ′ [ {in its turn, relatively axiomatized by (3.3)/ (x0 Y∼x0)}].

Proof. We use Remark 2.10(i)(c/d) tacitly. Take any a ∈ (D \ DD) 6= ∅ and
b ∈ DD 6= ∅. Then, by (2.14), the submatrix E of D generated by {a, b} is a
finitely-generated, consistent, truth-non-empty [non-∼-paraconsistent] model of C ′

(equal to D, for any ∼-classical Σ-matrix has no proper submatrix), an so, by
Remarks 2.8(ii) and 2.10(ii)(b), F , (E/θ), where θ , a(E) ∈ Con(E), is a simple
one (νθ being an isomorphism from E = D onto F , for any ∼-classical Σ-matrix is
simple). Hence, by Lemma 3.8, there are some finite set I, some C ∈ S∗(B[�2])I ,
some subdirect product G of it and some h ∈ homS

S(G,F), in which case, by [(2.14)
and] Remark 2.10(ii)(b), G is both consistent and truth-non-empty [as well as non-
∼-paraconsistent]. Consider the following complementary cases:

• B is both ∼-paraconsistent and extra-classically hereditary, in which case
it is involutive and classically hereditary, while { 1

2 ,∼
B 1

2} ⊆ DB 6= B, and
so DB = { 1

2 , 1}. Take any c ∈ DG = (G ∩ (DB)I) 6= ∅ and d ∈ (G \DG) 6=
∅, in which case c 6= (I × { 1

2}), for, otherwise, (2.10) would not be true
in G under [x0/c;x1/d], and so J , {i ∈ I | πi(c) = 1} 6= ∅. Then,
{〈j, (I × {j}) ∪ ((I \ J)× { 1

2})〉 | j ∈ 2} is an embedding of B�2 into G.
• B is not both ∼-paraconsistent and extra-classically hereditary, in which

case, by Lemma 6.25(i,ii), B[�2] is embeddable into G.
Thus, anyway, there is some embedding e of B[�2] into G, in which case, as B[�2],
being ∼-classical, is simple, by Remark 2.8(ii), f , (e ◦ h) is am embedding of
B[�2] into F (and so f ◦ ν−1

θ is an isomorphism from B[�2] onto D, for this, be-
ing ∼-classical, has no proper submatrix). In this way, (2.14) [{and “Theorem
3.14”/“Corollary 2.9 of [25]”}] end the proof. �

Lemma 6.35. Let B and D be Σ-matrices and h ∈ hom(B,D). Suppose B is
weakly Y-disjunctive, while h[B] = D, whereas h[DB] = DD. Then, D is weakly
Y-disjunctive.

Proof. Consider any a ∈ DD and any b ∈ D. Then, there are some c ∈ DB and
some d ∈ B such that h(c|d) = (a|b), in which case (cYBd) ∈ DB 3 (dYB c), for B is
weakly Y-disjunctive, and so {aYDb, bYBa} = h[{cYBd, dYBc}] ⊆ h[DB] = DD. �

Corollary 6.36. Suppose A is both ∼-paraconsistent and quadro-classically hered-
itary, while B , (A2�L4) is Y-disjunctive. Then, A is classically hereditary.

Proof. In that case, by (2.14), B is a ∼-negative model of C, while both π0[L4] = A
and π0[DB] = DA, whereas (π0�L4) ∈ hom(B,A), so, by Lemma 6.35, A is weakly
Y-disjunctive. Then, by Remark 2.10(ii)(a),(i)(c) and Theorem 3.10, A has a ∼-
negative (in particular, proper) submatrix D, in which case it is both consistent
and truth-non-empty, and so is not one-valued. On the other hand, the carriers
of proper submatrices of A belong to {2, { 1

2}}, in which case D = 2, and so A is
classically hereditary. �

Theorem 6.37. Let B ∈ Mod(C) and C ′ the logic of B. Suppose B is both truth-
non-empty and consistent but not ∼-paraconsistent (more specifically, ∼-classical;
cf. Remark 2.10(i)(c)), while either A 6∈ Mod(C ′) or B is two-valued, whereas
either B is ∼-negative or A either has a ternary equalizer or is weakly conjunctive
or is non-∼-paraconsistent or both has a quasi-negation and is either classically or
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quadro-classically hereditary. Then, there is some (non-proper) submatrix D of B
such that the following hold:

(i) if A is classically hereditary, then (A�2) ∈ Mod(C) is both canonically ∼-
classical and embeddable into D/a(D) (and so isomorphic to B, in which case
it defines a unique ∼-classical extension of C);

(ii) if θA ∈ Con(A) but A is not classically hereditary, then 〈χA[A], {1}〉 ∈
Mod(C) is both canonically ∼-classical and embeddable into D/a(D) (and so
isomorphic to B, in which case it defines a unique ∼-classical extension of
C);

(iii) if neither θA ∈ Con(A) nor A is classically hereditary, then A is both ∼-
paraconsistent and quadro-classically hereditary {in particular, involutive,
while B is not disjunctive} but is neither weakly conjunctive nor extra-classi-
cally hereditary {in particular, C is maximally ∼-paraconsistent} as well as
A2�L4 is a strictly homomorphic counter-image of D/a(D) (whereas θA

2�L4 ∈
Con(A2�L4), in which case 〈χA2�L4 [A2�L4], {1}〉 ∈ Mod(C) is a canonically
∼-classical strictly surjectively homomorphic image of A2�L4 isomorphic to
B, and so defines a unique ∼-classical extension of C).

In particular, [providing C is not ∼-classical] C is [genuinely] ∼-subclassical if[f ] A
is [genuinely/conjunctively/disjunctively/implicatively] classically hereditary. Like-
wise, [providing C is not ∼-classical and (either disjunctive|“weakly conjuncti-
ve/implicative” or) non-∼-paraconsistent] C is ∼-subclassical if[f ] A is classically
hereditary.

Proof. Take any d ∈ DB 6= ∅ and any b ∈ (B \ DB) 6= ∅. Then, by (2.14),
the submatrix D of B generated by {b, d} is a finitely-generated as well as non-∼-
paraconsistent (and equal to B, for this has no proper submatrix) both consistent
{for b ∈ D} and truth-non-empty {for d ∈ D} model of C ′ {in particular, of C},
and so E , (D/a(D)) is a simple one, in view of Remarks 2.8(iv) and (2.10)(ii)(b)
(while ν−1

a(B) is an isomorphism from E onto B, for this is simple). Assume both θA 6∈
Con(A), in which case A is hereditarily simple, in view of Corollary 6.24(iii)⇒(iv),
and A is not classically hereditary, in which case it is generated by 2, and so there is
some ϕ ∈ Fm2

Σ such that ϕA(1, 0) = 1
2 . Then, by Lemma 3.8, there are some finite

set I, some C ∈ S∗(A)I , some subdirect product F of it and some h ∈ homS
S(F , E),

in which case, by (2.14) and Remark 2.10(ii)(b), F is non-∼-paraconsistent as
well as both consistent and truth-non-empty, for E is so, and so is any Σ-matrix
embeddable into F . Therefore,

(6.4) (I × {j}) 6∈ F,

for all j ∈ 2, because, otherwise, by Lemma 6.25(ii), there would be some embedding
e of A, being generated by 2, into F , in which case, by Remark 2.8(ii), e ◦ h would
be an embedding of A into E , and so, by (2.14), A would be a model of C ′, while
B would not be two-valued, as 2 � 3 = |A| 6 |E| 6 |D| 6 |B|. Hence, by (6.4) and
Lemma 6.25(i), A is not weakly conjunctive but is ∼-paraconsistent, in which case
{ 1

2 ,∼
A 1

2} ⊆ DA {in particular, DA = { 1
2 , 1}}, and so

(6.5) (I × { 1
2}) 6∈ F,

for F is consistent but not ∼-paraconsistent. Take any a ∈ DF 6= ∅, in which case
a ∈ { 1

2 , 1}
I , and so, by (6.4) with j = 1 and (6.5), I 6= J , {i ∈ I | πi(a) = 1} 6= ∅.

Let G be the submatrix of A2 generated by {〈1, 1
2 〉}. Given any x, y ∈ A, set

(x G y) , ((J × {x}) ∪ ((I \ J) × {y})) ∈ AI , in which case a = (1 G 1
2 ), and

so g , {〈〈x, y〉, (x G y)〉 | 〈x, y〉 ∈ G} is an embedding of G into F {in particular,
(g ◦h) ∈ hom(G, E) is strict}, for I 6= J 6= ∅. Then, by (6.4) and (6.5), G is disjoint
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with ∆A. Let us prove, by contradiction, that G is disjoint with ∆−
2 . For suppose

there is some k ∈ 2 such that b , 〈k, 1− k〉 ∈ G, in which case, as {k, 1− k} = 2 3
0 6∈ DA, G 3 b 6∈ DG 63 〈1− k, k〉 = ∼Gb ∈ G, while ∆−

2 ⊆ G, and so G is non-∼-
negative {in particular, B is so, in view of Remark 2.10(ii)(a)}, while, if A had a
ternary equalizer τ , then G would contain τG(〈0, 1〉, 〈1, 0〉, 〈1, 1

2 〉) ∈ ∆A, contrary
to its being disjoint with ∆A {in particular, A is quadro-classically hereditary, for it
is neither classically hereditary, nor weakly conjunctive nor non-∼-paraconsistent}.
Hence, L4 3 〈1, 1

2 〉 includes G, in which case this is disjoint with ∆−
2 , for this is

disjoint with L4. This contradiction shows G is disjoint with ∆−
2 , in which case

G ⊆ L4, and so A is involutive, for, otherwise, as ∼A 1
2 ∈ DA = { 1

2 , 1}, we would
have ∼A 1

2 = 1, in which case G 3 〈1, 1
2 〉 would contain ∼G〈1, 1

2 〉 = 〈0, 1〉 6∈ L4, and
so would not be a subset of L4. Let ψ , (ϕ[x1/∼x0]) ∈ Fm1

Σ, in which case ψA(1) =
ϕA(1, 0) = 1

2 , and so ψA( 1
2 ) ∈ 2 {in particular, A is not extra-classically hereditary},

for, otherwise, G 3 〈1, 1
2 〉 would contain ψA2

(〈1, 1
2 〉) = 〈 1

2 ,
1
2 〉 ∈ ∆A. Therefore,

〈 1
2 , 1〉 ∈ {ψ

G(〈1, 1
2 〉),∼

GψG(〈1, 1
2 〉)} ⊆ G, in which caseG ⊇ {〈1, 1

2 〉, 〈
1
2 , 1〉} includes

∼A2
[{〈1, 1

2 〉, 〈
1
2 , 1〉}] = {〈0, 1

2 〉, 〈
1
2 , 0〉}, and so G = L4 {in particular, A is quadro-

classically hereditary, for G forms a subalgebra of A2}. (Furthermore, χB, being
injective, is an isomorphism from B onto H , 〈χB[B], {1}〉, being thus canonically
∼-classical {in particular, simple}, in view of Remark 2.10(ii)(a), in which case
f , (((g ◦ h) ◦ ν−1

a(B)) ◦ χ
B) ∈ homS

S(G,H) {in particular, H = f [G]}, for H has no
proper submatrix, and so χG = (f◦χH) = (f◦∆2) = f {in particular, θG = (ker f) ∈
Con(G)}.) Thus, (2.14), Remark 2.10(ii)(a), Corollaries 6.20, 6.36, Lemmas 6.18,
6.34 as well as Theorems 6.31(ii)⇒(i) and 6.26 complete the argument. �

This {more precisely, its ()-optional version} provides an effective algebraic cri-
terion of C’s being ∼-subclassical, according to which C, being ∼-subclassical,
has a unique /canonical ∼-classical extension/model to be denoted by CPC/APC

/“and constructed effectively from A”. Its item (ii) cannot be omitted, even if C
is both conjunctive and implicative (and so disjunctive), in view of Example 6.22
and Corollary 6.24(iv)⇒(ii). Likewise, its item (iii) cannot be omitted, even if C is
weakly disjunctive, in view of:

Example 6.38. Let Σ , {∨,∼}, B the canonically ∼-classical Σ-matrix with
(i∨B j) , 1, for all i, j ∈ 2, and A both false-singular and involutive (in particular,
∼-paraconsistent) with (a ∨A b) , (min(a, 1 − a) + 1

2 ), for all a, b ∈ A, in which
case, as (img∨A/B) ⊆ DA/B, A/B is weakly ∨-disjunctive, and so C/B is weakly ∨-
disjunctive/“∨∼-conjunctive (cf. Remark 2.10(i)(a))”, respectively. Then, we have
(〈 1

2 |a, a|
1
2 〉 ∨

A2
b) = 〈1| 12 ,

1
2 |1〉 ∈ (L4 ∩ DA2

), for all a ∈ 2 and all b ∈ A2. Hence,
A is quadro-classically hereditary, while χA

2�L4 ∈ homS
S(A2�L4,B), in which case,

by (2.14), B ∈ Mod(C), and so C is ∼-subclassical but is not ∼-classical in view of
Remark 2.10(i)(c), whereas (1∨A0) = (0∨A1) = 1

2 , in which case x0∨x1 is a ternary
equalizer for A, as well as A is not classically hereditary, and so, by Theorems
6.26 and 6.37(iii), C is maximally ∼-paraconsistent but neither disjunctive nor
weakly conjunctive nor genuinely ∼-subclassical (in particular, B is not genuinely
∼-classical, and so neither conjunctive nor disjunctive nor implicative). �

Finally, since A is weakly ∼-negative, whenever it is false-singular (in particular,
∼-paraconsistent), Remarks 2.6, 2.10(i)(a,c,d), Corollary 6.20, Theorems 6.26, 6.28,
6.37 and 6.31(ii)⇒(i) immediately yield:

Corollary 6.39. (x0 Z x1) is a binary semi-conjunction of any [false-singular 3-
]canonical weakly Z-conjunctive[(ly classically hereditary {in particular, genuinely/
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“weakly disjunctively 〈more specifically, implicatively〉” classically hereditary})] ∼-
[super-]classical Σ-matrix [in which case its logic has no proper ∼-paraconsistent
extension], and so C has no proper ∼-paraconsistent extension, whenever either of
the following holds:

(i) A is not extra-classically hereditary (in particular, non-involutive {more spe-
cifically, classically-valued});

(ii) C is weakly conjunctive;
(iii) C is non-purely-inferential/“weakly disjunctive (in particular, implicative)”

and is ∼-subclassical.

This subsumes both the reference [Pyn95 b] in [16], going far beyond this, and
all the ∼-paraconsistent inctances of U3VLSN summarized in Paragraph 6.2.1.1.
Generally speaking, even ∼-subclassical maximally ∼-paraconsistent U3VLSN need
not have theorems/“weakly conjunctive[ly classically hereditary] characteristic ma-
trices”, in view of Example 6.44 below /“as well as 6.38”. On the other hand, the
stipulation of C’s being non-purely-inferential/∼-subclassical cannot be omitted
in Corollary 6.39(iii) /“, even if C is strongly disjunctive”, in view of the non-
optional/optional version of:

Example 6.40. Let Σ , (Σ∼[∪{∨}]) andA both false-singular and involutive {and
so∼-paraconsistent, ∼x0 being a quasi-negation for it} [with ∨A , ((π0�∆A)∪((A2\
∆A)×{ 1

2}))], in which case [C satisfies (2.2) with i = 0 {for 1
2 ∈ D

A} as well as both
(2.3) and (2.4) {since both the commutativity and idempotence identities for ∨ are
true in A}, and so, by Lemma 6.18, C/A is ∨-disjunctive, while x0 ∨ x1 a ternary
equalizer for A, whereas] A is [neither] classically hereditary [nor quadro-classically
hereditary, for both (0 ∨A 1) = 1

2 6∈ 2 and (〈 1
2 , 0〉 YA2 〈0, 1

2 〉) = 〈 1
2 ,

1
2 〉 6∈ L4 ⊇

{〈 1
2 , 0〉, 〈0,

1
2 〉}]. Then, L3 forms a subalgebra of A2, in which case, by Theorem

6.31(i/ii)⇒(iii), C/A has “a proper ∼-paraconsistent extension”/“no binary semi-
conjunction”, and so C is “[not] ∼-subclassical”/“not weakly conjunctive”, in view
of Theorem/Corollary 6.37/6.39. And what is more, in the non-optional case,
∆−

2 forms a subalgebra of (A(�2))2, and so, by (2.14), (A(�2))2�∆−
2 is a truth-

empty model of C(PC) (cf. Theorem 6.37(i)) {in particular, this has no theorem; cf.
Corollary 3.11(ii)⇒(i)}. [On the other hand, A, being false-singular and ∼-super-
classical, is weakly ∼-negative, in which case it, being ∨-disjunctive, is not (∨,∼)-
paracomplete, in view of Remark 2.10(i)(d), and so x0∨∼x0 is a tautology/theorem
of A/C.] �

6.2.2.3.1. Maximal inferential consistency of non-subclassical non-paraconsistent
U3VLSN.

Theorem 6.41. Let B be a [ 3-]canonically ∼-[super-]classical Σ-matrix and C ′

the logic of B. [Suppose B is either weakly conjunctive or non-∼-paraconsistent.]
Then, C ′ is maximally inferentially consistent [iff it is either ∼-classical or not
∼-subclassical], in which case it is “maximally consistent”/“structurally complete”
iff it has theorems (i.e., the submatrix of B2[+1] generated by {〈0, 1[, 1

2 ]〉} is truth-
non-empty).

Proof. [The ”only if” part is by the inferential consistency of classical logics. Con-
versely, assume C ′ is not ∼-subclassical (the case, when C ′ is ∼-classical, is sub-
sumed by the non-optional version), in which case, by (2.14), A is not classically
hereditary, and so is generated by 2.] Consider any inferentially consistent ex-
tension C ′′ of C ′, in which case x1 6∈ T , C ′′(x0) 3 x0, while, by Remark 2.12,
〈Fmω

Σ, T 〉 is a model of C ′′ (in particular, of C ′), and so is its finitely-generated con-
sistent truth-non-empty submatrix D , 〈Fm2

Σ, T ∩ Fm2
Σ〉, in view of (2.14). Then,

by Lemma 3.8, there are some finite set I, some C ∈ S∗(B)I and some subdirect
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product E ∈ H−1(H(D)), in which case, by (2.14) and Remark 2.10(ii)(b), E is a
consistent truth-non-empty model of C ′′, for D is so, and so, by Lemma 6.25(i,ii),
B [being generated by 2] is embeddable into E (in particular, by (2.14), C ′′ = C ′).
In this way, Remarks 2.5, 2.13 and the inferential consistency of both C ′ and any
consistent logic with theorems complete the argument. �

This (more precisely, its non-optional version) subsumes both a quite effective
algebraic criterion of structural completeness of classical logics, in its turn, subsum-
ing the well-known structural completeness of genuinely classical logics (cf., e.g.,
[14]), taking Remark 2.10(i)(d) into account, and the maximal {inferential} consis-
tency of classical logics with{out} theorems. (In this connection, it is remarkable
that our argumentation does not involve the esoteric algebraic conception of ternary
discriminator thus providing a new and purely logical insight into the issue, and so
justifying the thesis of the first paragraph of Section 1.) In the {after} next sub-
paragraph, we study the relative one of unique classical extensions of subclassical
U3VLSN.
6.2.2.3.2. Relative maximal consistency of classical extensions versus theorems and
binary semi-conjunctions.

Lemma 6.42. Let B be a [ 3-]canonically ∼-[super-]classical Σ-matrix and ϕ a
binary semi-conjunction for it. [Suppose B is either false-singular or not simple
or both classically hereditary and not extra-classically hereditary.] Then, it has a
tautology.

Proof. Then, φ , ∼(ϕ[x1/∼x0]) ∈ Fm1
Σ is a tautology of B, whenever this is two-

valued. [Otherwise, consider the following exhaustive cases:
• B is false-singular, in which case DB = { 1

2 , 1}, and so φ(φ) is a tautology
of B.

• B is not simple, in which case, by Corollary 6.24(iii)⇒(iv), θB ∈ Con(B),
while h , χB is a strict surjective homomorphism from B onto the canon-
ically ∼-classical Σ-matrix D , 〈h[B], {1}〉, and so, by (2.14), D and B
define the same logic. Then, h�2 is diagonal, in which case ϕ is a binary
semi-conjunction for D, and so φ is a tautology of D (in particular, of B).

• B is both classically hereditary and not extra-classically hereditary, in which
case there is some ψ ∈ Fm1

Σ such that ψB( 1
2 ) ∈ 2, and so φ(ψ) is a tautology

of B.] �

Theorem 6.43. Suppose C is ∼-suclassical, while A is [not] false-singular. Then,
the following are equivalent:

(i) A has a tautology (in particular, is weakly disjunctive [but is not extra-
classically hereditary]);

(ii) CPC has a theorem [while A is not extra-classically hereditary];
(iii) A has a binary semi-conjunction (in particular, is weakly conjunctive{ly/dis-

junctively classically hereditary}) [but is not extra-classically hereditary];
(iv) CPC is C-relatively maximally consistent.

Proof. First, (i)⇒(ii) is by the inclusion C(∅) ⊆ CPC(∅) [and Corollary 3.11(iv)⇒
(i)], while (iii)⇒(i) is by [Theorem 6.37(iii) and Corollary 6.24(iv)⇒(iii) as well as]
Lemma 6.42, whereas (iv)⇒(i) is by Remark 2.13.

Next, assume CPC has a theorem, in which case, by Remark 2.6, there is some
ϕ ∈ (Fm1

Σ ∩CPC(∅)), and so this is a tautology of APC. Consider the following
complementary cases:

• A is classically hereditary, in which case, by Theorem 6.37(i), APC = (A�2),
and so ∼ϕ is a binary semi-conjunction for A�2 (in particular, for A).
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• A is not classically hereditary. Consider the following complementary sub-
cases:

– θA ∈ Con(A), in which case, by Theorem 6.37(ii), APC = B ,
〈χA[A], {1}〉, and so h , χA ∈ homS

S(A,B). Consider the following
complementary subsubcases:

∗ A is truth-singular, in which case, by (2.14), ϕ is a tautology of
A, and so ∼ϕ is a binary semi-conjunction for A.

∗ A is false-singular, in which case, for each i ∈ 2, ∼BϕB(i) = 0 6∈
DB, and so ∼AϕA(i) = 0, for h�2 is diagonal (in particular, ∼ϕ
is a binary semi-conjunction for A).

– θA 6∈ Con(A), in which case, by Theorem 6.37(iii), A is ∼-paracon-
sistent (in particular, false-singular) and quadro-classically hereditary,
while D , (A2�L4) is a strictly surjectively homomorphic counter-
image of APC, and so, by (2.14), ϕ is a tautology of D. Then, for
each i ∈ 2, ϕD(〈 1

2 , i〉) ∈ D
D = {〈 1

2 , 1〉, 〈1,
1
2 〉}. Consider the following

complementary subsubcases:
∗ ϕA( 1

2 ) = 1
2 , in which case ϕD(〈 1

2 , i〉) = 〈 1
2 , 1〉, and so ∼ϕ is a

binary semi-conjunction for A.
∗ ϕA( 1

2 ) 6= 1
2 , in which case ϕD(〈 1

2 , i〉) = 〈1, 1
2 〉, and so ∼ϕ(ϕ) is a

binary semi-conjunction for A.

Thus, (ii)⇒(iii) holds.
Further, assume (iii) holds, in which case (i) does so, and so C(∅) 6= ∅. Consider

any consistent extension C ′ of C. If C ′ = C, then it is clearly a sublogic of CPC.
Now, assume C ′ 6= C, in which case, by (iii) and Theorem 6.31(ii)⇒(i), C ′ is non-
∼-paraconsistent, and so is any model of it. Then, x0 6∈ T , C ′(∅) ⊇ C(∅) 6= ∅, in
which case, by Remark 2.12, D , 〈Fmω

Σ, T 〉 is a consistent truth-non-empty model
of C ′ (in particular, A is not a model of the logic of D, for C ′ is a proper extension
of C), and so a non-∼-paraconsistent one of C. Hence, by (iii), (2.14) and Theorem
6.37, APC is a model of C ′, that is, CPC is an extension of C ′. Thus, (iv) holds.

Finally, Remark 2.10(i)(a,d),(ii)(a), Corollaries 3.11(i)⇒(iv), 6.39 and the weak
∼-negativilty of false-singular ∼-super-classical Σ-matrices complete the proof. �

This provides an effective algebraic algebraic criterion of the relative maxi-
mal consistency of unique ∼-classical extensions of ∼-subclassical uniformly three-
valued Σ-logics with subclassical negation ∼, the non-triviality of the property
involved being due to:

Example 6.44. Let Σ = Σ¬
∼ with unary ¬ and A both truth-/false-singular, non-

∼-negative /(and so ∼-paraconsistent) and non-invlolutive with ¬Aa , (1 − a),
for all a ∈ A, in which case it is classically hereditary but not extra-classically
hereditary, while ¬x0 is a quasi-negation for it, and so by Theorem 6.37(i) /“and
Corollary 6.39(i)”, C is ∼-subclassical /“and maximally ∼-paraconsistent”. Never-
theless, ∆−

2 forms a subalgebra of (A[�2])2, in which case, by (2.14), (A[�2])2�∆−
2

is a truth-non-empty model of C [PC] [cf. Theorem 6.37(i)], and so this has no the-
orem (in particular, by Lemma 6.42, A[�2] has no binary semi-conjunction, and
so, by Corollary 6.39, A�2 is not weakly conjunctive /“as well as A is not weakly
conjunctive{ly classically hereditary}”). �

6.2.2.3.3. Relative maximal inferential consistency of classical extensions versus
proper paraconsistent extensions and quasi-negations.

Theorem 6.45. Suppose C is ∼-subclassical and does [not] satisfy (2.10). Then,
CPC is C-relatively maximally inferentially consistent [iff the following hold:
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(i) C has no proper {more specifically, non-∼-subclassical} ∼-paraconsistent ex-
tension (i.e., L3 does not form a subalgebra of A2; cf. Theorem 6.31(i)⇔
(iii));

(ii) A has a quasi-negation (in particular, is involutive)].

Proof. [First, assume CPC is C-relatively maximally inferentially consistent, in
which case (i) is by the inferential consistency of∼-paraconsistent Σ-logics. Further-
more, we prove (ii), by contradiction. For suppose (ii) does not hold, in which caseA
is not involutive, and so∼A 1

2 = 1, forA is∼-paraconsistent. Let B be the submatrix
of A2 generated by S , {〈1, 1

2 〉}, in which case B ⊇ (S ∪∼A2
[S] ∪∼A2

[∼A2
[S]]) =

(S∪∆−
2 ) is disjoint with {0, 1

2}
2, and so DB ⊇ S 6= ∅, while (B\DB) = ∆−

2 6= ∅ (in
particular, B is both consistent and truth-non-empty). Then, by (2.14), the logic
C ′ of B is an inferentially consistent extension of C, in which case C ′ is a sublogic
of CPC. On the other hand, ∼A2

[∆−
2 ] ⊆ ∆−

2 , in which case the Σ-rule ∼x0 ` x0,
not being true in APC under [x0/0], is true in B, and so this contradiction shows
that (ii) holds. Conversely, assume (i,ii) hold.] Consider any inferentially consistent
extension C ′′ of C, in which case it is sublogic of the extension CPC of C, whenever
C ′′ = C. Now, assume C ′′ 6= C, in which case C ′′ is not ∼-paraconsistent, while,
by Theorem 6.41, C is not ∼-classical, and so, by Theorems 6.26 and 6.37, A is
ether classically or quadro-classically hereditary. Then, x1 6∈ T , C ′′(x0) 3 x0, in
which case, by Remark 2.12, D , 〈Fmω

Σ, T 〉 is a consistent truth-non-empty model
of C ′′, and so a non-∼-paraconsistent one of C. Hence, A is not a model of the logic
C ′′′ of D ∈ Mod(C ′′), for C ′′ is a proper extension of C. And what is more, A has
a quasi-negation, whenever it is ∼-paraconsistent. Then, by (2.14) and Theorem
6.37, APC is a model of C ′′′, so C ′′ is a sublogic of CPC. �

This provides an effective algebraic algebraic criterion of the relative maximal
inferential consistency of unique ∼-classical extensions of ∼-subclassical uniformly
three-valued Σ-logics with subclassical negation ∼, the necessity of its item (i/ii)
(and so the non-triviality of the property involved) in the “∼-paraconsistent” case
being due to /“the optional version of” Example 6.40/6.49 /below. Though infer-
entially consistent logics are consistent, Theorem 6.45 is not subsumed by Theorem
6.43, in view of Example 6.44.
6.2.2.3.4. Structural completeness of paraconsistent U3VLSN versus maximal para-
consistency and ternary equalizers.

Lemma 6.46. Let ε be a ternary equalizer for A. Suppose A is ∼-paraconsistent
but is not classically-hereditary. Then, it has a tautology.

Proof. We use Remark 6.16 tacitly. In that case, there is some φ ∈ Fm2
Σ such

that φA(0, 1) = 1
2 . Then, ψ , (φ[x1/∼x0]) ∈ Fm1

Σ, while ψA(0) = φA(0, 1) = 1
2 .

Consider the following complementary cases:
• (ψA[DA] ∩ {1}) = ∅, in which case ∼ψ is a tautology of A.
• (ψA[DA] ∩ {1}) 6= ∅. Consider the following complementary subcases:

– ψA[DA] = {1}, in which case ψ(ψ) is a tautology of A.
– ψA[DA] 6= {1}. Consider the following complementary subsubcases:

∗ (ψA[DA] ∩ {0}) = ∅, in which case ψ is a tautology of A.
∗ (ψA[DA] ∩ {0}) 6= ∅, in which case there are some a, b ∈ DA

such that ψA(a) = 0 and ψA(b) = 1, in which case a 6= b, and
so {a, b} = DA. Put ϕ , (ψ[x(2·b)−1/ψ(∼x0)]) ∈ Fm1

Σ. Then,
ϕA(1) = 1 and ϕA(0) = 1

2 . Set ξ , ε(∼x0, x0, ϕ) ∈ Fm1
Σ. Then,

ξA(0) = ξA(1). Let i , (1−χA(ξA(0))) ∈ 2 and η , ∼iξ ∈ Fm1
Σ.

Then, ηA[2] ⊆ DA, while ηA(0) = ηA(1). Let j , χA(ηA( 1
2 )) ∈ 2
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and k , max(j, 1 − χ2
A(ηA(0))) ∈ 2. Then, ∼(1−j)·k(η[xk/η]) ∈

Fm1
Σ is a tautology of A. �

Remark 6.47. If A is both false-singular and weakly Z-conjunctive, then ( 1
2 ZA 0) =

0 = (0 ZA 1
2 ), in which case (〈 1

2 , 0〉 ZA2 〈0, 1
2 〉) = 〈0, 0〉 6∈ L4 ⊇ {〈 1

2 , 0〉, 〈0,
1
2 〉}, and

so A is not quadro-classically hereditary. �

Theorem 6.48. Suppose C is ∼-paraconsistent. Then, it is structurally complete
iff the following hold:

(i) C is maximally ∼-paraconsistent (i.e., L3 does not form a subalgebra of A2,
that is, either A is not extra-classically hereditary [in particular, is non-
involutive {more specifically, is classically-valued}] or has a ternary 〈in par-
ticular, binary〉 semi-conjunction; cf. Theorem 6.31(i)⇔(ii)⇔(iii));

(ii) A is not classically hereditary;
(iii) A is not quadro-classically hereditary (in particular, non-involutive);
(iv) A has a ternary equalizer (more specifically, a binary semi-conjunction),

in which case C is neither purely-inferential nor ∼-subclassical, while any three-
valued expansion of C is structurally complete. In particular, providing C is both
weakly conjunctive and ∼-paraconsistent, it is structurally complete iff it is not
∼-subclassical iff A is not classically hereditary.

Proof. In that case, by Remark 6.16, A is false-singular, while, by Remark 2.10(i)(c),
C is not ∼-classical, so, by Theorem 6.26, θA 6∈ Con(A). First, assume (i–iv) hold,
in which case by (ii,iv) and Lemma 6.46, C has a theorem, while, by (ii,iii) and
Theorem 6.37(iii), C is not ∼-subclassical. Consider any axiomatically-equivalent
extension C ′ of C, in which case it is consistent, for C is so, as A is so, and so
Fmω

Σ 6= T , C ′(∅) ⊇ C(∅) 6= ∅. Then, by Remark 2.12, B , 〈Fmω
Σ, T 〉 is a

consistent truth-non-empty model of C ′ (in particular, of its sublogic C). We prove
that C ′ = C, by contradiction. For suppose C ′ 6= C, in which case, by (i), C ′ is
non-∼-paraconsistent, and so is B ∈ Mod(C ′). Then, by (ii,iii,iv) and Theorem
6.37(iii), A is a model of the logic of B ∈ Mod(C ′), and so of C ′, in which case
C ′ = C (in particular, C is structurally complete). Conversely, assume either of
the following hold:

(i) does not hold, in which case A is extra-classically hereditary, for L3 3 〈 1
2 ,

1
2 〉

is disjoint with ∆2, and so involutive, while, by (2.14), D , (A2�L3) ∈
Mod(C), whereas (π0�D) ∈ hom(D,A) is surjective, for π0[L3] = A, and so,
by (2.15), the logic C ′′ of D is an axiomatically-equivalent extension of C.
Then, DD = {〈 1

2 ,
1
2 〉}, in which case, the Σ-rule x0 ` ∼x0, not being true

in A under [x0/1], is true in D, for A is involutive, and so C ′′ is a proper
extension of C (in particular, C is not structurally complete).

(ii) does not hold, in which case, by Theorem 6.37(i), C is ∼-subclassical, and
so, by the optional version of Lemma 5.2(i), it is not structurally complete.

(iii) does not hold, in which case A is involutive, for L4 3 〈0, 1
2 〉 is disjoint with

22, while, by (2.14), F , (A2�L4) ∈ Mod(C) is not ∼-paraconsistent, for
〈 1
2 ,

1
2 〉 6∈ L4, whereas (π0�F ) ∈ hom(F ,A) is surjective, for π0[L4] = A, and

so, by (2.15), the logic of F is a non-∼-paraconsistent (in particular, proper)
axiomatically-equivalent extension of C (in particular, C is not structurally
complete).

(iv) does not hold, in which case, by (2.14), the submatrix G of A2 generated by
M , (∆−

2 ∪ {〈1, 1
2 〉}) is a model of C, while G is disjoint with ∆A 3 〈 1

2 ,
1
2 〉

(in particular, G is not ∼-paraconsistent), whereas (π1�G) ∈ hom(G,A) is
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surjective, for π1[M ] = A, and so, by (2.15), the logic of G is a non-∼-
paraconsistent (in particular, proper) axiomatically-equivalent extension of
C (in particular, C is not structurally complete).

In this way, Theorems 6.28, 6.37, Corollary 6.39 and Remark 6.47 end the proof. �

This provides an effective algebraic criterion of the structural completeness of
C, whenever it is ∼-paraconsistent, the opposite case being analyzed in the next
subparagraph. Its item (i) cannot be omitted, in view of the optional version of
Example 6.40, even if C is disjunctive. Likewise, its item (ii) cannot be omitted,
even if C is both conjunctive and disjunctive, in view of Remark 6.47, Corollary
6.39(ii) and the ∼-paraconsistent conjunctive disjunctive instances with classically
hereditary characteristic matrices summarized in Paragraph 6.2.1.1. Furthermore,
in view of Example 6.38, the item (iii) of Theorem 6.48 cannot be omitted, even if
C is weakly disjunctive. Finally, its item (iv) cannot equally be omitted, even if C
is weakly disjunctive, in view of the optional version of:

Example 6.49. Let Σ , Σᵀ
∼ with unary ᵀ and A both false-singular and [neither]

involutive [(and so neither extra- nor quadro-classically hereditary) nor ∼-negative]
(and so ∼-paraconsistent) with ᵀA(a) , max(a, 1

2 ), for all a ∈ A, in which case ᵀx0

is a theorem of C (and so this is weakly (ᵀx0)-disjunctive) while A is not classically
hereditary, for ᵀA0 = 1

2 6∈ 2 3 0 [whereas ∆−
2 ∪ {〈 1

2 + (i · 1
2 ), 1

2 + ((1− i) · 1
2 )〉 |

i ∈ 2}, being disjoint with ∆A ∪ {0, 1
2}

2, forms a subalgebra of A2, and so neither
A has a quasi-negation/“ternary equalizer” nor C has a proper ∼-paraconsistent
extension, in view of Theorem 6.31(ii)⇒(i)]. And what is more, in the non-optional
case, ᵀ∼x2 is a ternary equalizer for A, while, for no j ∈ 2, L3+j forms a subalgebra
of A2, because ᵀA2〈0, 1− (j · 1

2 )〉 = 〈 1
2 , 1− (j · 1

2 )〉 6∈ L3+j 3 〈0, 1− (j · 1
2 )〉, and so,

by Theorem 6.48, C is structurally complete. On the other hand, in that case,
(A2 \∆2) ⊇ ∆−

2 forms a subalgebra of A2, and so A has no binary semi-conjunction
(in particular, is not weakly conjunctive, in view of Corollary 6.39). �

In this way, the characterization of the structural completeness given by The-
orem 6.48 is minimal. In this connection, it is also remarkable that, though “the
non-involutivity”/“existence of a binary semi-conjunction” of A subsumes the items
(i,iii/iv) of Theorem 6.48, these cannot be collectively replaced by the single for-
mer stipulation, because there are structurally complete ∼-paraconsistent Σ-logics
with subclassical negation ∼ and with involutive characteristic matrix having no
binary semi-conjunction (and so not being weakly conjunctive), in view of the non-
optional version of Example 6.49. In particular, structural completeness and weak
conjunctivity do not imply one another, in view of ∼-paraconsistent conjunctive
instances with classically hereditary characteristic matrices summarized in Para-
graph 6.2.1.1. Though Theorem 6.48 refutes the structural completeness of such
instances, it equally shows that their uniform three-valued expansions (cf. Theorem
6.28) with a new nullary connective taking the value 1

2 are structurally complete.
6.2.2.3.5. Structural completeness of weakly disjunctive paracomplete U3VLSN
versus maximal paracompleteness and ternary anti-equalizers. Let K3 , (∆2 ∪
{〈 1

2 , 1〉}), K4 , (K3 ∪ {〈 1
2 , 0〉}) and K the submatrix of A2 generated by K3, in

which case A has no ternary anti-equalizer iff K is disjoint with ∆−
2 , while, provid-

ing A is classically hereditary, K ⊆ (A × 2), for π1[K3] = 2 forms a subalgebra of
A, in which case K is disjoint with ∆−

2 iff either K3 or K4 forms a subalgebra of
A2, for K3 ⊆ K4 = ((A×2)\∆−

2 ), whereas (K4 \K3) = {〈 1
2 , 0〉} is a singleton, and

so A has no ternary anti-equalizer iff either K3 or K4 forms a subalgebra of A2.

Lemma 6.50. Suppose C is ∼-subclassical but neither purely-inferential nor ∼-
paraconsistent. Then, the following are equivalent:
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(i) C is axiomatically equivalent to CPC;
(ii) (Fm1

Σ ∩(CPC(∅) \ C(∅))) = ∅;
(iii) The carrier of the subalgebra of A3 generated by {〈0, 1, 1

2 〉} is disjoint with
{〈1, 1〉} × (A \DA);

(iv) The carrier of the subalgebra of A3 generated by {〈0, 1, 1
2 〉} is disjoint with

(DA)2 × (A \DA).

Proof. In that case, by Remark 2.6, there is some φ ∈ (Fm1
Σ ∩C(∅)), and so, by

Remark 6.15, every j ∈ 2 is term-wise definable by ∼j+1φ in A, while (ii/iii) is a
particular case of (i/iv), respectively. Next, assume (ii) does not hold, in which
case there is some ϕ ∈ (Fm1

Σ ∩(CPC(∅) \ C(∅))) 6= ∅ (in particular, CPC is an
inferentially consistent proper extension of C), and so, by Theorem 6.41, C is not
∼-classical. Then, by Theorems 6.26 and 6.37, A is classically hereditary, in which
case ϕ is true in APC = (A�2), and so ϕA( 1

2 ) 6∈ DA (in particular, (iii) does not
hold). Conversely, assume (iv) does not hold, in which case there is some ξ ∈ Fm1

Σ

such that ξA[2] ⊆ DA, while ξA( 1
2 ) 6∈ DA, and so ξ is not true in A under [x0/

1
2 ].

Consider the following complementary cases:

• A is classically hereditary, in which case ξA[2] ⊆ (DA ∩ 2) = {1}, and
so, by Theorem 6.37(i), ξ is true in (A�2) = APC (in particular, ξ ∈
(Fm1

Σ ∩(CPC(∅) \ C(∅)))).
• A is not classically hereditary, in which case, since C is not ∼-paraconsis-

tent, by Theorem 6.37(iii), θA ∈ Con(A), and so, Theorem 6.37(ii), h ,
χA ∈ hom(A,APC). Then, as h�2 is diagonal, we have {1} = h[DA] ⊇
h[ξA[2]] = ξAPC [h[2]] = ξAPC [2], in which case ξ is true in APC, and so
ξ ∈ (Fm1

Σ ∩(CPC(∅) \ C(∅))).

Thus, in any case (ii) does not hold. Finally, assume (i) does not hold, in which case
there is some ψ ∈ (CPC(∅) \ C(∅)) 6= ∅, and so there is some h ∈ hom(Fmω

Σ,A)
such that h(ψ) 6∈ DA. For each a ∈ A, set Na , {i ∈ ω | h(xi) = a}. Let σ be the
Σ-substitution extending [xl/∼k+1φ;xm/x0]k∈2,l∈Nk;m∈N 1

2
and g ∈ hom(Fmω

Σ,A)

extend [xn/
1
2 ]n∈ω, in which case h = (σ ◦ g), and so, by the structurality of CPC,

σ(ψ) ∈ (Fm1
Σ ∩(CPC(∅) \ C(∅))) (in particular, (ii) does not hold). �

Lemma 6.51. Suppose C is ∼-subclassical but not ∼-paraconsistent, while A has
no ternary anti-equalizer. Let B be a [truth-non-empty] model of C, C ′ the logic of
B and ϕ ∈ (Fm1

Σ ∩(CPC(∅) \ C ′(∅))), Then, A[∈ Mod(C ′)] is truth-singular.

Proof. In that case, ϕ 6∈ C ′(∅) ⊇ C(∅), so CPC is an inferentially consistent
proper extension of C. Hence, by Theorem 6.41, C is not ∼-classical, in which
case, by Theorems 6.26 and 6.37, A is classically hereditary, and so ϕ, being true in
APC = (A�2), is not true in A under [x0/

1
2 ]. Therefore, DA 63 ϕA( 1

2 ) 6= 0, because,
otherwise, as 0 6∈ DA, ϕ(x2), being true in A�2, in view of the structurality of CPC,
would be a ternary anti-equalizer for A, in which case ϕA( 1

2 ) = 1
2 , for 1 ∈ DA,

and so A is truth-singular. [And what is more, since ϕ is not true in B, there is
some a ∈ B such that ϕB(a) 6∈ DB. Take any b ∈ DB 6= ∅. Then, by (2.14),
the submatrix D of B generated by {a, b} is a finitely-generated truth-non-empty
model of C ′ (in particular, of its sublogic C), in which ϕ is not true under [x0/a].
Therefore, by Lemma 3.8, there are some finite set I, some C ∈ S∗(A)I and some
subdirect product E ∈ H−1(D/a(D)) of it, in which case, by (2.14) and Remark
2.10(ii)(b), E is a truth-non-empty model of C ′ not satisfying ϕ, and so there is some
c ∈ E such that E 3 d , ϕE(c) 6∈ DE . Then, J , {i ∈ I | πi(c) = 1

2} 6= ∅, for ϕ is
true inA�2. Furthermore, by Lemma 6.25(i) with j = (1|0), E 3 (e|f) , (I×{1|0}).
Consider the following complementary cases:
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• J = I, in which case E 3 d = (I×{ 1
2}), and so, as I = J 6= ∅, {〈g, I × {g}〉 |

g ∈ A} is an embedding of A into E ∈ Mod(C ′).
• J 6= I, in which case, as J 6= ∅, h : A2 → AI , 〈k, l〉 7→ ((J×{k})∪((I \J)×
{l})) is injective. Then, h(〈1|0, 1|0〉) = (e|f) ∈ E and E 3 d = h(〈 1

2 , 1〉), for
ϕ is true in A�2, while ϕA( 1

2 ) = 1
2 , in which case h[K3] ⊆ E, and so h�K is

an embedding of K into E ∈ Mod(C ′). And what is more, since K is disjoint
with ∆−

2 3 〈1, 0〉, for A has no ternary anti-equalizer, while 1
2 6∈ 2 = π1[K],

for π1[K3] = 2 forms a subalgebra of A, whereas A = π0[K3] ⊆ π0[K] ⊆ A

(in particular, π0[K] = A), we have (π0�K) ∈ homS
S(K,A).

In this way, (2.14) completes the argument.] �

Theorem 6.52. Suppose C is not ∼-paraconsistent (in particular, A is truth-
singular). Then, it is structurally complete iff the following hold:

(i) C has a theorem (i.e., the submatrix of A3 generated by {〈0, 1, 1
2 〉} is truth-

non-empty [viz., its carrier contains 〈1, 1, 1〉]);
(ii) providing C is ∼-subclassical but not ∼-classical (in which case A is classi-

cally hereditary), the following hold:
(a) C is not axiomatically equivalent to CPC [in particular, C (viz., A)

is disjunctive {more specifically, implicative}] 〈i.e., the carrier of the
subalgebra of A3 generated by {〈0, 1, 1

2 〉} is not disjoint with {〈1, 1〉} ×
(A \DA)〉;

(b) A has no ternary anti-equalizer (i.e., either K3 or K4 forms a subalgebra
of A2),

in which case A is truth-singular, and so non-implicative (i.e., C is so).
In particular, in case A is false-singular but not ∼-paraconsistent, C is structurally
complete iff it has a theorem but no proper ∼-classical extension.

Proof. First, assume both (i) and (ii) hold. Then, in case C is either ∼-classical
or non-∼-subclassical, by (i) and Theorem 6.41, C is structurally complete. Now,
assume C is both non-∼-classical and ∼-subclassical, in which case, by (ii)(a), it is
not axiomatically-equivalent to CPC, and so, by (i) and Lemma 6.50(ii)⇒(i), there
is some ϕ ∈ (Fm1

Σ ∩(CPC(∅) \ C(∅))) 6= ∅, while, by (ii)(b), A has no ternary
anti-equalizer. Consider any axiomatically-equivalent extension C ′ of C, in which
case, by (i), ϕ 6∈ T , C ′(∅) = C(∅) 6= ∅, and so, by Remark 2.12, D , 〈Fmω

Σ, T 〉 is
a truth-non-empty model of C ′ (in particular, of its sublogic C), in which ϕ is not
true under the diagonal Σ-substitution. Then, by the optional version of Lemma
6.51 with B = D, A is a model of C ′, for D is so, in which case C ′ = C, and so C
is structurally complete. Conversely, assume either of the following holds:

(i) does not hold, in which case, by Remark 2.13, C, being inferentially con-
sistent, for A is both consistent and truth-non-empty, is not structurally
complete.

(ii) does not hold, in which case C is both ∼-subclassical and non-∼-classical
(in particular, CPC is a proper extension of C), and so is not structurally
complete, whenever it is axiomatically-equivalent to CPC. Otherwise, A both
has a ternary anti-equalizer, in which case it has a canonical one τ , and
is either truth-singular, in which case τ(x1,∼x1, x0) is a ∼-relative semi-
implication for A, or false-singular, in which case it is weakly ∼-negative and
so, by Remark 6.15, τ(x1,∼x1,∼∼x0) is a ∼-relative semi-implication for A.
Then, by the optional version of Lemma 5.2(ii)(a)(2), C is not structurally
complete.

In this way, Remarks 6.15, 6.16, Theorems 6.26, 6.37, 6.41, Corollaries 6.19, 6.20 and
Lemmas 6.18, 6.50(ii)⇒(i)⇔(iii) and 6.51 with B = A complete the argument. �
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Theorems 6.26, 6.37 and 6.52 provide an effective purely-algebraic criterion of
the structural completeness of C, unless it is ∼-paraconsistent. In view of the non-
optional version of Example 6.22, the item (i) of Theorem 6.52 cannot be omit-
ted. Such equally concerns the subitem (b) of its item (ii) (in particular, the item
(ii) itself), in view of existence of ∼-subclassical Y-disjunctive (Y,∼)-paracomplete
(and so non-∼-classical with truth-singular characteristic matrices; cf. Remarks
2.10(i)(d) and 6.17) implicative (and so non-purely-inferential; cf. (2.5)) uniformly
three-valued Σ-logics with subclassical negation ∼ like, e.g.,  Lukasiewicz’ one  L3

(cf. Example 4.17 with n = 3) and IP 1 (cf. Subparagraph 6.2.1.1.4). Likewise, its
subitem (a) cannot be omitted, while its optional stipulation of disjunctivity (as
well as the regular one in Corollary 6.19) cannot be even weakened, in view of:

Example 6.53 (The disjunction-conjunction-implication-less fragment of G3). Let
Σ , Σ∼,01 and A both truth-singular, non-involutive, non-∼-negative with (A�Σ01)
, (D3,01�Σ01), in which case, by Remark 2.10(ii)(a) and Theorems 6.26 and 6.37(i),
C is not ∼-classical but is ∼-subclassical (in particular, CPC is a proper exten-
sion of C) with APC = (A�2), for A is classically hereditary, while > is a the-
orem of C, whereas K3 forms a subalgebra of A2, and so A has no ternary anti-
equalizer as well as, by Remark 2.6, is weakly disjunctive. On the other hand, K5 ,
(22 ∪ {〈 1

2 , 0〉}) forms a subalgebra of A2, while π0�K3|5 is a surjective homomor-
phism from K′3|5 , 〈A2�K3|5, (π1�K3|5)−1[{1}]〉 onto A′

1
2 |0

, 〈A, {1, 1
2 |0}〉, whereas

(π1�K3|5) ∈ homS
S(K′3|5,A�2), in which case by, (2.14,2.15), any ϕ ∈ CPC(∅) is

true in both A′
1
2

and A′
0, and so in A, for DA = {1} = (D

A′1
2 ∩ DA′0). Then,

C is axiomatically-equivalent to CPC, and so is neither structurally complete nor
disjunctive, in view of Corollary 6.19. �

In this way, the characterization of structural completeness given by Theorem
6.52 is minimal. Nevertheless, it can be enhanced for weakly Y-disjunctive (Y,∼)-
paracomplete uniformly three-valued Σ-logics with subclassical negation ∼.

Remark 6.54. If A is both [weakly] Y-disjunctive and truth-singular as well as has
both a tautology ϕ of rank 1 and a ternary canonical anti-equalizer τ , then it is
[weakly] o-negative, where ox1 , (τ(∼ϕ,ϕ, x0) Y∼x0). �

Theorem 6.55. Suppose A is both weakly |strongly Y-disjunctive and (Y,∼)-para-
complete (viz., C is so) [as well as is extra-classically hereditary (i.e., C is purely-
inferential)]. Then, (i[i]–iv) are equivalent to one another, while {providing A is
not extra-classically hereditary (i.e., C has a theorem)} (iv)⇒{|⇔}(v)⇒|⇔(vi),
where:

(i) C is structurally complete;
(ii) C is maximally [inferentially] (Y,∼)-paracomplete;
(iii) any [inferentially] consistent proper extension of C is [either] ∼-classical [or

the purely inferential version of a ∼-classical one];
(iv/v/vi) the following [but (a)] hold[s]:

(a) A is not extra-classically hereditary (i.e., C has a theorem);
(b) providing A is classically hereditary (i.e., C is ∼-subclassical), it “has

no ternary anti-equalizer (i.e., either K3 or K4 forms a subalgebra of
A2)”/“is non-negative”/“is non-implicative (viz., C is so)”.

In particular, providing C (viz., A) is, in addition, implicative, it is structurally
complete iff it is not ∼-subclassical (i.e., A is not classically hereditary).

Proof. We follow Remark 6.17 tacitly. Furthermore, by Remark 2.10(i)(d), C is not
∼-classical, and so, by Theorems 6.26 and 6.37, C, being non-∼-paraconsistent,
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is ∼-subclassical iff A is classically hereditary. in which case APC = (A�2) is
truth-non-empty, and so, by (2.15), A× (A�2) is both truth-non-empty and (Y,∼)-
paracomplete (in particular, inferentially so), for A is so. Likewise, as A is truth-
singular, (A�Σ∼)�{ 1

2} is the only truth-empty submatrix of A�Σ∼, and so, by
Corollary 3.11(i)⇔(iv), C has theorems iff A is not extra-classically hereditary.
Now, assume A has no ternary anti-equalizer, whenever it is classically hereditary.
Consider any inferentially consistent proper extension C ′ of C, in which case, by
Theorem 6.41, C is ∼-subclassical, that is, A is classically hereditary, and so this has
no ternary anti-equalizer. Therefore, if C ′ was inferentially (Y,∼)-paracomplete,
then we would have (x0 Y∼x0) 6∈ T , C ′(x1) 3 x1, in which case, by Remark 2.12,
B , 〈Fmω

Σ, T 〉 would be a truth-non-empty (Y,∼)-paracomplete (more precisely,
ϕ , (x0 Y∼x0) would not be true in B under the diagonal Σ-substitution) model of
C ′ (in particular, of its sublogic C), and so, by Remark 2.10(i)(d) and the optional
version of Lemma 6.51, we would get C ′ = C. Hence, C ′ is not inferentially (Y,∼)-
paracomplete, that is, the optional version (tacitly presumed throughout the rest of
the proof) of (2.11) is satisfied in it. In this way, if C ′ has a theorem φ, then, by the
structurality and the transitivity of C ′ as well as (2.11)[x1/φ], x0Y∼x0 is satisfied in
C ′, for φ is so, in which case, by Lemma 6.34, C ′ is an inferentially consistent exten-
sion of CPC, and so, by Theorem 6.41, C ′ = CPC. [Otherwise, C, being a sublogic
of C ′, has no theorem. Let C ′′ be the closure operator over Fmω

Σ dual to the closure
system over Fmω

Σ with basis B , ((imgC ′) \ {∅}), in which case (C ′′�℘∞\1(Fmω
Σ))

= (C ′�℘∞\1(Fmω
Σ)), and so, for every Σ-substitution σ and all X ∈ ℘∞\1(Fmω

Σ),
σ[C ′′(X)] = σ[C ′(X)] ⊆ C ′(σ[X]) = C ′′(σ[X]), since σ[X] ∈ ℘∞\1(Fmω

Σ). Now,
consider any S ∈ B and any ψ ∈ C ′′(∅) = (Fmω

Σ ∩
⋂

B), in which case V ,
Varω(ψ) ∈ ℘ω(Varω), and so (Varω \V ) 6= ∅, for Varω is infinite. Take any ξ ∈ S 6=
∅, in which case, by the monotonicity and the transitivity of C ′, we have C ′(ξ) ⊆ S,
and any v ∈ (Varω \V ) 6= ∅, in which case C ′(v) ∈ B, for C ′(v) 3 v is non-empty,
and so ψ ∈ C ′(v). Let σ′ be the Σ-substitution extending (σ�(Varω \{v})) ∪ [v/ξ],
in which case, by the structurality of C ′, we have σ(ψ) = σ′(ψ) ∈ C ′(σ′(v)) =
C ′(ξ) ⊆ S, and so we get σ[C ′′(∅)] ⊆ C ′′(∅) = C ′′(σ[∅]). Likewise, by (2.11)[x1/ξ]
and the structurality of C ′, we have (x0 Y ∼x0) ∈ C ′(ξ) ⊆ S, in which case
(x0 Y ∼x0) ∈ C ′′(∅), and so C ′′ is a non-(Y,∼)-paracomplete extension of C ′ (in
particular, of its sublogic C), inferentially-equivalent to C ′ (in particular, infer-
entially consistent, for C ′ is so), such that ((imgC ′′) ∪ {∅}) = (imgC ′), that is,
C ′′

+0 = C ′. Then, by Lemma 6.34, C ′′ is an inferentially consistent extension of
CPC, in which case, by Theorem 6.41, C ′′ = CPC, and so C ′ = C ′′

+0 = CPC
+0 .]

Finally, any (inferentially) (Y,∼)-paracomplete Σ-logic is (inferentially) consistent
(for it is structural), while any Σ-logic with theorems is consistent/(Y,∼)-paracom-
plete iff it is inferentially so. In this way, Remarks 2.5, 2.6, 2.10(i)(b,d), 2.11, 6.54,
Lemmas 5.2, 6.18, Corollary 6.20 and Theorem 6.52 complete the argument. �

This provides a purely-algebraic criterion of “maximal [inferential] (Y,∼)-para-
completeness”/“structural completeness” of weakly Y-disjunctive (Y,∼)-paracomp-
lete uniform three-valued Σ-logics with subclassical negation ∼ [and without theo-
rems]/, covering positively both G〈∗〉

3 〈cf. [17, 19]〉 {with K3(+1) (not) forming a sub-
algebra of A2} and KL3,01 as well as [non-]negatively/negatively KL3 with extra-
classically hereditary characterisic matrix {with K4(−1) (not) forming a subalgebra
of A2}, and so demonstrating the necessity of regarding both K3 and K4 as well as
both yielding a new insight into the non-implicativity of the weakly ⊃-implicative
G3 {cf. Subparagraph 6.2.1.1.2} and showing that “implicativie” cannot be replaced
by “weakly implicative” {in particular, in the formulation of Theorem 5.4}. {And
what is more, in view of Lemma 4.24 of [25] with B = DM3,1 and Σ = Σ∼,+,01,
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KL3,01 is axiomatically-equivalent to B4,01, in which case the former, being struc-
turally complete, is the structural completion of the latter.} Likewise, it negatively
covers implicative (and so non-purely-inferential; cf. (2.5)) Y-disjunctive (Y,∼)-
paracomplete uniform three-valued ∼-subclassical Σ-logics like  Lukasiewicz’ one  L3

(cf. Example 4.17 with n = 3) and IP 1 (cf. Subparagraph 6.2.1.1.4). (On the
other hand, three-valued expansions {cf. Theorem 6.28} of such logics by a nullary
connective taking the value 1

2 are structurally complete.) In this way, instances of
KL3, KL3,01 and  L3 demonstrate that structural [in]completeness is not inherited
by ∼-conservative fragments of non-∼-paraconsistent uniform three-valued Σ-logics
with subclassical negation ∼ [as opposed to those of ∼-paraconsistent ones; cf. The-
orem 6.48]. And what is more, the instance of KL3,01 shows that the stipulation of
implicativity cannot be replaced by the joint one of both disjunctivity and conjunc-
tivity in the formulation of Theorem 5.4 as well as, collectively with Subsection 4.17
in general, highlights the crucial role of implicativity for structural incompleteness
of ∼-subclassical non-∼-classical non-∼-paraconsistent Σ-logics (cf. Theorem 5.4),
when the implication-less fragment (namely, KL3,01) of implicative logics of such
a kind (more precisely,  Ln, where n ∈ (ω \ 3)) appears to be structurally complete.
6.2.2.4. Self-extensionality versus discriminating endomorphisms. A (truth-)discri-
minating operator/endomorphism on/of A is any h ∈ (AA/hom(A,A)) such that
χA(h( 1

2 )) 6= χA(h(kA)), in which case h( 1
2 ) 6= h(kA), and so h is neither diagonal

nor singular, the set of all them being denoted by (∂/ð)(A), respectively. Then,
since img[θA \ ∆A] = {{ 1

2 ,k
A}}, by Example 4.2, Corollary 4.12 and Theorem

6.26(iii)⇒(i), we have:

Corollary 6.56. [Providing A is either implicative or both conjunctive and dis-
junctive] C is self-extensional if[f ] either it is ∼-classical or ð(A) 6= ∅.

Though there are 33 = 27 unary operations on A, only few of them may be
discriminating operators/endomorphisms on/of A. More precisely, let h+|−,a ,

(∆+|−
2 ∪ {〈 1

2 , a〉}) ∈ A
A, where a ∈ A, H , (

⋃
a∈A{h+,a, h−,a}) and HA , ({h−,a |

a ∈ A,χA(a) = kA} ∪ {h+,1−kA}). Clearly,

(6.6) (H ∩ ∂(A)) = HA.

Conversely, since ð(A) = (∂(A) ∩ hom(A,A)), by (6.6) and Lemma 6.23(i) with
D = A = B, we have:

Corollary 6.57. ð(A) ⊆ H. In particular, ð(A) = (HA ∩ hom(A,A)).

Combining Corollaries 6.56 and 6.57, we eventually get:

Theorem 6.58. [Providing A is either implicative or both conjunctive and disjunc-
tive] C is self-extensional if[f ] either it is ∼-classical or (HA ∩ hom(A,A)) 6= ∅.

This yields a quite effective purely-algebraic criterion of the self-extensionality of
C with either implicative or both conjunctive and disjunctive A that can inevitably
be enhanced a bit more under separate studying the alternatives involved excluding
a priori some elements of HA from ð(A) (i.e., from hom(A,A); cf. Corollary
6.57), because, under the stipulation of C’s being both self-extensional and non-∼-
classical, the alternatives under considerations are disjoint, as it is shown below.
6.2.2.4.1. Self-extensionality versus equational truth-definitions.

Lemma 6.59. Let f be an equational truth definition for A. Suppose A is either
false-singular or A-implicative, while C is not ∼-classical. Then, any non-singular
endomorphism h of A is diagonal. In particular, providing A is either implicative
or both conjunctive and disjunctive, C is not self-extensional.
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Proof. Then, for any a ∈ A, we have (a ∈ DA) ⇔ (A |= (
∧

f)[x0/a]) ⇒ (A |=
(
∧

f)[x0/h(a)]) ⇔ (h(a) ∈ DA), in which case h ∈ hom(A,A) (in particular,
h(1) 6= 0, for 1 ∈ DA 63 0), and so, by Lemma 6.23(i) with D = A = B, h�2 is
diagonal. Therefore, if h( 1

2 ) was equal to kA, then h would be equal to χA, in
which case θA = (kerh) would be a congruence of A, and so, by Theorem 6.26, C
would be ∼-classical. Hence, in case A is false-singular, h( 1

2 ) = 1
2 , for 1

2 ∈ D
A 63 0.

Otherwise, A is A-implicative, in which case ( 1
2 AA 0) = 1 and (1 AA 0) 6= 1, and

so h( 1
2 ) = 1

2 , for otherwise, we would have h( 1
2 ) = 1, in which case we would get

1 6= 1. Thus, in any case, h( 1
2 ) = 1

2 , and so h is diagonal. In this way, Corollary
4.13 and Theorem 6.26(iii)⇒(i) complete the argument. �

This “equational truth definition” analogue of Corollary 4.15 provides another
and much more transparent insight into the non-self-extensionality of the instances
discussed in Example 4.18 and summarized below. In this connection, we first have:

Corollary 6.60. Suppose A is both A-implicative and either weakly Z-conjunctive
(in particular, o-negative with Z = ]oA; cf. Remark 2.10(i)(a)) or truth-singular.
Then, A has a finitary equational truth-definition. In particular, C is not self-
extensional, unless it is ∼-classical.

Proof. The case, when A is truth-singular, is due to Remark 4.14(iv). Otherwise, A
is weakly Z-conjunctive, while { 1

2} does [not] form a subalgebra of A [that is, there is
some ϕ ∈ Fm1

Σ such that ϕA( 1
2 ) ∈ 2], so {(x0 A φ) ≈ φ} with φ , (ψ[Z(ψ[x0/ϕ])])

and ψ , (x0 Z ∼x0) is a finitary equational truth definition for A. In this way,
Lemma 6.59 completes the argument. �

This is why the contexts of the next two subparagraphs are disjoint, whenever C
is self-extensional but not ∼-classical. Before coming to discussing them, we provide
practically immediate applications of the above results of this subparagraph to some
of the logics specified in Paragraph 6.2.1.1.

Remark 6.61. Suppose A is both ∼-paraconsistent (and so false-singular), conjunc-
tive and Y-disjunctive as well as both classically- and extra-classically-hereditary.
Then, {x0 ≈ (x0 Y ∼x0)} is an equational truth definition for A, so, by Remark
2.10(i)(c) and Lemma 6.59, C is not self-extensional. �

This subsumes disjunctive conjunctive ∼-paraconsistent LP and HZ, providing
a more transparent insight into the non-self-extensionality of them than that given
by Example 4.18. Likewise, [I]P 1 is subsumed by:

Remark 6.62. Suppose A is both classically-valued and �-conjunctive/-disjunctive
/(in particular, A-implicative with � = ]A). Then, it is o-negative, where ox0 ,
∼(x0 � x0), in which case, by Remark 2.10(i)(a), A is both Z-conjunctive and Y-
disjunctive, where Z , �/o and Y , �o/, and so, by Remark 2.10(i)(b), A is Ao

Y-
implicative. On the other hand, as 1

2 6∈ 2, any idempotent binary operation on
A, being term-wise definable in A, is so by either x0 or x1, in which case it is not
symmetric, for A is not a singleton, and so A is not a semi-lattice (in particular, is
not a [distributive] lattice). And what is more, {((x0 Ao

Y x0) Ao
Y x0) ≈ (x0 Ao

Y x0)}
is a finitary equational truth definition for A, so, providing A is not ∼-negative (in
which case it is ∼-paraconsistent|(Y,∼)-paracomplete, whenever it is false-|truth-
singular), so, by Remark 2.10(i)(c|d) and Lemma 6.59, C is not self-extensional. �

6.2.2.4.2. Conjunctive U3VLSN.

Lemma 6.63. Let B be a consistent/truth-non-empty weakly �-conjunctive/-dis-
junctive Σ-matrix. Suppose B is a �-semi-lattice with bound. Then, βB

� 6∈ / ∈ DB.
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Proof. By the weak �-conjunctivity/-disjunctivity of B, we do have βB
� = (βB

� �B

a) 6∈ / ∈ DB, where a ∈ ((B \DB)/DB) 6= ∅. �

Lemma 6.64. Suppose C is Z-conjunctive and self-extensional. Then, A is a
Z-semi-lattice with bound such that the following hold:

(i) (0 ZA 1) = βA
Z ;

(ii) 1
2 ≤

A
Z 1;

(iii) [providing ð(A) 6= ∅, (g)⇒](a)⇒(b)⇒(c)⇔(d)⇔(e)⇔(f)⇒(g)⇒(h)[⇒(f)],
where:
(a) h+,1−kA ∈ hom(A,A);
(b) A is classically-hereditary;
(c) βA

Z = 0;
(d) 0 ≤A

Z
1
2 ;

(e) 0 ≤A
Z 1;

(f) A is not involutive;
(g) h−,a ∈ hom(A,A), for no a ∈ A;
(h) h−, 1

2
6∈ hom(A,A);

Proof. In that case, by Theorem 4.6(i)⇒(iv), A, being finite, is a Z-semi-lattice
with bound, so, by Lemma 6.63, βA

Z 6∈ DA. Let ξ0[+1] , [∼]x0 as well as both
φk , ξk(x0 Z∼x0) and ψk , φk(∼x0), where k ∈ 2.

(i) In case βA
Z = 0, we have 0 = βA

Z ≤A 1, and so get (0 ZA 1) = 0 = βA
Z .

Otherwise, as 1 ∈ DA, we have DA 63 βA
Z = 1

2 , in which case A is truth-
singular, and so is non-∼-paraconsistent, that is, C is so. Then, by (2.10)
and the conjunctivity of C, we have x1 ∈ C(φ0), in which case, by Theorem
4.6(i)⇒(iv), we get βA

Z ≤A (0 ZA 1) = φA
0 (0) ≤A

Z βA
Z , and so eventually get

(0 ZA 1) = βA
Z .

(ii) Consider the following complementary cases:
• A is false-singular, in which case, by (i), for each k ∈ 2, φA

0 (k) = φA
0 (0) =

βA
Z = 0, and so (φ|ψ)A

1 (k) = 1 ∈ DA. Then, by the false-singularity of
A, ψA

1 ( 1
2 ) = (1

2 |1) ∈ DA, in which case ψ1 is true in A (in particular,
ψ1 ∈ C(x1)), and so, by Theorem 4.6(i)⇒(iv), 1

2 ≤
A
Z ψA

1 (0) = 1.
• A is truth-singular, in which case it is non-∼-paraconsistent, that is, C is

so, and so, by (2.10) and the Z-conjunctivity of C, x1 ∈ C(φ0). Consider
the following complementary subcases:

– 1
2 is equal to either βA

Z or ∼A 1
2 , in which case we have 1

2 = φA
0 ( 1

2 ),
and so, by Theorem 4.6(i)⇒(iv), get 1

2 ≤
A
Z 1, for x1 ∈ C(φ0).

– βA
Z 6= 1

2 6= ∼A 1
2 , in which case, as 1 ∈ DA, by (i), for each k ∈ 2,

φA
0 (k) = (0 ZA 1) = βA

Z = 0, and so (φ|ψ)A
1 (k) = 1 ∈ DA (in

particular, ψA
1 ( 1

2 ) = φA
1 (∼A 1

2 ) = 1 ∈ DA). Then, ψ1 is true in
A, in which case ψ1 ∈ C(x1), and so, by Theorem 4.6(i)⇒(iv),
1
2 ≤

A
Z ψA

1 (0) = 1.
(iii) First, (d/h) is a particular case of (c/g), while (d/e)⇒(e/c) is by (ii/i),

whereas (b)⇒(e) is by the Z-conjunctivity of A and the fact that 1 ∈ DA 63 0.
Next, (a)⇒(b) is by the fact that img(h+,1−kA) = 2. Further, assume (f)
holds, in which case l , ∼A 1

2 ∈ 2, and so ξA
1−l(

1
2 ) = 1 ∈ DA. We prove

(e) by contradiction. For suppose (e) does not hold, in which case βA
Z 6= 0,

and so, by Lemma 6.63, βA
Z = 1

2 , for 1 ∈ DA (in particular, φA
0 ( 1

2 ) = 1
2 ).

Likewise, by (i), for each k ∈ 2, φA
0 (k) = (0 ZA 1) = βA

Z = 1
2 , in which case

φ1−l is true in A, and so φ1−l ∈ C(x1). Then, by Theorem 4.6(i)⇒(iv),
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0 ≤A
Z φA

1−l(0) = 1. Thus, (e) holds. [Conversely, assume (f) does not hold, in
which case ∼Aa = (1−a), for all a ∈ A. Take any h ∈ ð(A) 6= ∅, in which case
it is neither diagonal nor singular, and so, by Lemma 6.23, (h�2) ∈ {∆+

2 ,∆
−
2 }.

Then, we have h( 1
2 ) = h(∼A 1

2 ) = ∼Ah( 1
2 ) = (1 − h( 1

2 )), in which case we
get h( 1

2 ) = 1
2 , and so h = h−, 1

2
, for, otherwise, h would be diagonal. Thus,

(h)⇒(f) holds.] Now, assume (e) holds (that is, (c) does so), in which case,
for each k ∈ 2, φA

0 (k) = (0 ZA 1) = 0, and so φA
1 (k) = 1 ∈ DA. We prove (f)

by contradiction. For suppose ∼A 1
2 = 1

2 , in which case φA
0 ( 1

2 ) = 1
2 , and so

φA
1 ( 1

2 ) = 1
2 . Consider the following complementary cases:

• A is false-singular, in which case φA
1 ( 1

2 ) = 1
2 ∈ DA, and so φ1 is true

in A (in particular, φ1 ∈ C(x1)). Then, by Theorem 4.6(i)⇒(iv), 1 ≤A
Z

φA
1 ( 1

2 ) = 1
2 , in which case, by (ii), 1

2 = 1, and so 1
2 ∈ 2.

• A is truth-singular, in which case it is not ∼-paraconsistent, and so,
by (2.10) and the Z-conjunctivity of C, x1 ∈ C(φ0). Then, by Theorem
4.6(i)⇒(iv), 1

2 = φA
0 ( 1

2 ) ≤A
Z 0, in which case, by (c), 1

2 = 0, and so 1
2 ∈ 2.

Thus, as 1
2 6∈ 2, (f) does hold. Furthermore, if any h : A→ A with (h�2) = ∆−

2

was an endomorphism of A, then, by (e), we would have 1 = h(0) = h(0 ZA

1) = (h(0) ZA h(1)) = (1 ZA 0) = (0 ZA 1) = 0, and so (g) holds. [Finally,
(g)⇒(a) is by (6.6) and Lemma 6.23, for ð(A) = (∂(A) ∩ hom(A,A)).] �

Theorem 6.65. Suppose C is Z-conjunctive, non-∼-classical and self-extensional.
Then, ð(A) 6= ∅.

Proof. Then, by Remark 2.10(i)(a,b), Theorem 6.26 and Corollary 6.60, A is hered-
itarily simple but is not implicative (in particular, not negative), while by Theo-
rem 4.6(i)⇒ (iv) and Lemma 6.63, A, being finite, is a Z-semi-lattice with bound
βA

Z 6∈ DA, in which case, as 1
2 6∈ 2 3 kA (in particular, 1

2 6= kA), by the commuta-
tivity identity for Z, there are some ā ∈ ({ 1

2 ,k
A}2 \∆A) and some i ∈ 2 such that

a1−i 6= (ai ZA a1−i), and so B , 〈A, F 〉, where ai ∈ F , {b′ ∈ A | ai ≤A
Z b′} 63 a1−i,

being both truth-non-empty and Z-conjunctive, is a finite consistent truth-non-
empty model of C. Then, as 2 forms a subalgebra of A�Σ∼, by Remark 2.10(ii)(b),
Lemmas 3.8, 6.25(i,ii) with Σ′ = Σ∼ and the conjunctivity of A, ((A�Σ∼)�2), be-
ing ∼-classical, belongs to I(S(H−1(H(B�Σ∼)))), in which case, by (2.14), ∼ is
a subclassical negation for the logic C ′ of B, and so, by Theorem 6.12, B, being
three-valued, is ∼-super-classical. Let D be the 3-canonization of B, in which case
they are isomorphic, and so, by (2.14), C ′ is defined by D. Consider the following
complementary cases:

• C ′ is ∼-classical, in which case, as it is Z-conjunctive, for its sublogic C is so,
by Theorem 6.26, D is a strictly surjectively homomorphic counter-image
of a ∼-classical Σ-matrix E , and so is B, being isomorphic to D. Then, by
(2.14), E is a ∼-classical model of C, for B ∈ Mod(C), in which case, by
Theorem 6.37, A is classically hereditary, A�2 being isomorphic to E , and
so B is a strictly [surjectively] homomorphic counter-image of A[�2].

• C ′ is not ∼-classical, in which case, by Theorem 6.26, D, being 3-canonically
∼-super-classical and defining C ′, is simple, and so is B, being isomorphic
to D, in view of Remark 2.8(iii). Hence, by Lemma 3.8, there are some
finite set I, some C ∈ S∗(A)I , some subdirect product G of it and some
g ∈ homS

S(G,B), in which case, by Remark 2.10(ii)(b), G is both consistent
and truth-non-empty, for B is so, and so, by Lemma 6.25(i), a , (I×{1}) ∈
G 3 b , (I×{0}). We prove, by contradiction, that A is truth-singular. For
suppose it is false-singular, in which case, by Lemma 6.63, 0 = βA

Z ≤A
Z 1,

and so, by Lemma 6.64(ii)/(iii)(c)⇒(f), (1 = δβA
Z )/(∼A 1

2 ∈ 2), respectively.
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Then, ai 6= 1
2 , for, otherwise, we would have 1

2 = ai 6≤A
Z a1−i = kA = 1 =

δβA
Z . Hence, ai = kA = 1, in which case DB = {1}, for 1 = δβA

Z , and
so B is a finite, truth-singular, consistent, truth-non-empty model of C,
in which (2.10) is true, for ∼A|B[DB] = {0} is disjoint with DB = {1},
as 0 6= 1. Therefore, by Remark 2.10(ii)(c) and Lemma 3.8, A, being
finite and simple but not truth-singular, is not a model of C ′, for truth-
singularity is clearly preserved under P, in which case, by Theorem 6.37(iii),
A, being conjunctive, is classically hereditary. Then, as a ∈ DG , for 1 ∈ DA,
g(a) = 1, in which case g(b) = g(∼Ga) = ∼Ag(a) = 0, and so g[{a, b}] = 2.
Hence, there is some c ∈ G such that g(c) = 1

2 6∈ DB, in which case
c 6∈ DG , and so there is some j ∈ I such that πj(c) = 0, for Cj ∈ S∗(A),
while 0 is the only non-distinguished value of A. Let H be the submatrix
of G generated by {a, b, c}, in which case h , (g�H) ∈ homS

S(H,B), for
g[{a, b, c}] = A, while, since πj [{a, b, c}] = 2 forms a subalgebra of A,
f , (πj�H) ∈ hom(H,A�2) is surjective. Furthermore, if d , ∼A 1

2 was
equal to 0, then A, being false-singular, would be ∼-negative. Hence, d ∈ 2
is equal to 1, in which case B is weakly ∼-negative, for ∼A0 = 1 ∈ DB,
and so is H, in view of Remark 2.10(ii)(a). Then, by the following claim,
f ∈ homS

S(H,A�2), for A�2 is ∼-classical:

Claim 6.66. Let A′ and B′ be Σ-matrices. Suppose A′ is weakly ∼-
negative, while B′ is consistent but not ∼-paraconsistent (in particular,
∼-negative/-classical; cf. Remark 2.10(i)(c)). Then, any g′ ∈ hom(A′,B′)
is strict.

Proof. Take any b′ ∈ (B′ \DB′) 6= ∅. If, for any a′ ∈ (A′ \DA′), g′(a′) was
in DB′ , then, by the weak ∼-negativity of A′, we would have ∼A′a′ ∈ DA′ ,
in which case we would get ∼B′

g′(a′) = g′(∼A′a′) ∈ g′[DA′ ] ⊆ DB′ , and
so (2.10) would not be true in B′ under [x0/g

′(a′), x1/b
′] (in particular, B′

would be ∼-paraconsistent). �

Therefore, by (2.14), C ′, being defined by B, is defined by A�2 (in par-
ticular, is ∼-classical, for A�2 is so). This contradiction shows that A is
truth-singular, in which case B is so, in view of Remark 2.10(ii)(c), for
truth-singularity is clearly preserved under P, and so DB = {ai} (in par-
ticular, by Lemma 6.64(ii), ai 6= 1

2 , for 1 6= 1
2 ). Then, βA

Z 6= ai = kA = 0,
in which case, by Lemma 6.64(iii)(b)⇒(c), A is not classically-hereditary
(in particular, is generated by 2), and so, by Lemma 6.25(ii), there is some
embedding e of A into G. Therefore, by Remark 2.8(ii), e′ , (e ◦ g) is an
embedding of A into B, for A is simple, in which case it is an isomorphism
from A onto B, as |A| = 3 
 k, for no k ∈ 3 = |B|, and so e′−1 ∈ hom(B,A)
is strict.

Thus, anyway, there is some strict h′ ∈ hom(B,A) ⊆ hom(A,A), in which case
h′(ai) ∈ DA 63 h′(a1−i), for ai ∈ DB 63 a1−i, and so h′ ∈ ð(A), as required. �

Then, combining Theorems 6.37(iii), 6.65 and Corollary 6.56 with Lemmas 6.63
and 6.64, we immediately get the following two corollaries:

Corollary 6.67. Suppose C is both Z-conjunctive and non-∼-classical, while A
is false-/truth-singular. Then, C is self-extensional iff /either h+,1−kA /“or h−, 1

2
”

is an endomorphism of A [while A is a Z-semi-lattice with 1
2 ≤

A
Z 1, whereas it is

that with 0 ≤A
Z

1
2 and/iff it is that with bound 0 and/iff it is that with dual bound

1 and/iff it is a chain one and/iff A is non-involutive and/iff A is classically-
hereditary (i.e., C is ∼-subclassical), as well as A is not ∼-negative].
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Corollary 6.68. Suppose A is both Z-conjunctive and Y-disjunctive, while C is
not ∼-classical. Then, C is self-extensional iff h+,1−kA ∈ hom(A,A), in which case
A is a distributive (Z,Y)-lattice with zero 0 and unit 1, while A is neither involutive
nor ∼-negative as well as classically-hereditary, and so C is ∼-subclassical.

These immediately yield the self-extensionality of [P ]G(∗)
3 , for h+,1−kA is an endo-

morphism of the underlying algebra of its conjunctive (disjunctive) characterisic ma-
trix. And what is more, they immediately imply the non-self-extensionality of [I]P 1,
for the underlying algebra of its conjunctive (disjunctive) characteristic matrix is
not a semi-lattice at all {cf. Remark 6.62}. Likewise, the non-self-extensionality of
the conjunctive (disjunctive) HZ {cf. Subparagraph 6.2.1.1.3} ensues from either
the involutivity of its conjunctive (disjunctive) classically-hereditary characteris-
tic matrix or the fact that the underlying algebra of this matrix, though being a
distributive lattice, is not that with both zero 0 and unit 1. Finally, the above
corollaries imply immediately the non-self-extensionality of LP[01]/KL3[01], in view
the involutivity of their conjunctive (disjunctive) classically-hereditary character-
istic matrices, providing, as opposed to Example 4.18, a more [perhaps, the most]
transparent and immediate generic insight into the non-self-extensionality of the
latter independent from that of the former, and so into that of  Lukasiewicz’ finitely-
valued logics [8] {cf. Example 4.17}, for these are expansions of KL3. On the other
hand, Corollary/Theorem 6.68/4.7 does not subsume Corollary/Theorem 6.67/6.65,
due to existence of self-extensional conjunctive but non-disjunctive non-∼-classical
uniform three-valued Σ-logics with subclassical negation ∼, in view of:

Example 6.69. Let Σ , {∧,∼} and A the Σ-reduct of the [non-]truth-singular
Σ⊃
∼,+,01-matrix specified in Subparagraph 6.2.1.1.2, in which case the former is both

∧-conjunctive and non-∼-negative, for the latter is so, and so [P ]G∧
3 , C, being

the Σ-fragment of the self-extensional [paraconsistent counterpart of] Gödel’s three-
valued logic [P ]G3 [3], is both ∧-conjunctive and self-extensional as well as, by
Remark 6.21 and Theorem 6.26, not ∼-classical. On the other hand, by induction
on construction of any ϕ ∈ Fm2

Σ, we prove that either ϕA( 1
2 ,

1
2 ) 6= 1

2 or there are
some a, b ∈ A such that max(a, b) 
 ϕA(a, b). In case ϕ = x0|1, taking a , (0|1)
and b , (1|0), we get max(a, b) = 1 
 0 = ϕA(a, b). Likewise, in case ϕ = ∼ξ,
where ξ ∈ Fm2

Σ, as (img∼A) ⊆ 2 63 1
2 , we have ϕA( 1

2 ,
1
2 ) 6= 1

2 . Finally, in case
ϕ = (φ∧ψ), where φ, ψ ∈ Fm2

Σ, if ϕA( 1
2 ,

1
2 ) is equal to 1

2 , then so is either φA( 1
2 ,

1
2 )

or ψA( 1
2 ,

1
2 ), for A is classically-hereditary, while, if, for any a, b ∈ A, it holds that

max(a, b) 6 ϕA(a, b) = min(φA(a, b), ψA(a, b)), then both max(a, b) 6 φA(a, b) and
max(a, b) 6 ψA(a, b) hold, and so the induction hypothesis completes the argument.
In particular, max∩A2 is not term-wise definable in A. Therefore, by Lemma 6.18
and Corollary 6.68, [P ]G∧

3 is not disjunctive. �

Example 6.70. Let Σ , {∧,∼} and A both truth-singular and involutive (in
particular, non-∼-negative) with (a∧A a) , a, for all a ∈ A, as well as (a∧A b) , 1

2 ,
for all b ∈ (A \ {a}). Then, A is a ∧-semi-lattice with bound 1

2 and maximal
elements in 2, in which case A is ∧-conjunctive and, being involutive, is not ∼-
negative, and so C is Z-conjunctive and, by Remark 6.21 and Theorem 6.26, not
∼-classical. Moreover, h−, 1

2
is an endomorphism of A, so, by Corollary 6.67, C is

self-extensional, while, by Corollary 6.68, C is not disjunctive. �

The latter example shows that, in the “truth-singular” case, the “involutive|non-
chain” alternative cannot be disregarded in Corollary 6.67, by which, among other
things, any conjunctive self-extensional uniform three-valued non-∼-classical logic
with subclassical negation ∼ is a ∼-conservative term-wise definitional expansion
of either of the three instances discussed above, and so is ∼-paraconsistent, unless
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its characteristic matrix is truth-singular. Likewise, by Corollary 6.68, any con-
junctive Y-disjunctive self-extensional uniform three-valued non-∼-classical logic
with subclassical negation ∼ and [non-]truth-singular characteristic matrix is a
∼-conservative term-wise definitional expansion of [P ]G∗

3, and so is [not] non-∼-
paraconsistent as well as [non-](Y,∼)-paracomplete.
6.2.2.4.3. Implicative U3VLSN. We start from marking the framework of the self-
extensionality of C under its being both non-∼-classical and implicative:

Corollary 6.71. Suppose A is A-implicative. Then, C is not self-extensional,
unless it is either ∼-paraconsistent or ∼-classical. In particular, C is not self-
extensional, unless it is ∼-classical, whenever A is truth-singular (more specifically,
both (Y,∼)-paracomplete and weakly Y-disjunctive).

Proof. If A is both false-singular and non-∼-paraconsistent, then it is ∼-negative.
So, Remark 2.10(i)(d), Corollary 4.16 and Theorem 6.26 end the proof. �

Theorem 6.72. Suppose A is A-implicative, while C is not ∼-classical. Then,
the following are equivalent:

(i) C is self-extensional;
(ii) h−, 1

2
∈ hom(A,A) [while A is an A-implicative intrinsic semi-lattice with

bound 1
2 , whereas A is both false-singular and involutive as well as not clas-

sically-hereditary, and so C is not ∼-subclassical];
(iii) A 1

2
is a (∼-paraconsistent) model of C;

(iv) C is non-maximally {pre-maximally} ∼-paraconsistent.

Proof. First, the equivalence of the non-optional version of (iv) and the optional
version of (iii) is due to Theorem 6.31(i)⇔(iv). Likewise, the equivalence of the
optional and non-optional versions of (iv) is due to Theorem 6.33. Next, the fact
that the non-optional version of (ii/iii) implies (i) is by Theorem 6.58/“4.1(vi)⇒(i)
with S = {A,A 1

2
}, for (θA ∩ θA 1

2 ) = ∆A”. Further, assume the optional version
of (ii) holds. Then, h−, 1

2
is a strict surjective homomorphism from B , 〈A, {0, 1

2}〉
onto A, for this is false-singular, in view of (ii), in which case, by (2.14), B is a model
of C, for A is so, and so is A 1

2
, for { 1

2} = (DA ∩DB). Thus, the optional version of
(iii) holds, for the involutivity of A implies the ∼-paraconsistency of A 1

2
, as this is

consistent. Finally, assume (i) holds. Then, by Theorem 4.9, A is an A-implicative
intrinsic semi-lattice with bound a , ( 1

2 AA 1
2 ) = (b AA b), for any b ∈ A, while,

by Corollary 6.71, A is ∼-paraconsistent (in particular, false-singular), in which
case a ∈ DA = { 1

2 , 1}, and so a = 1
2 [in particular, ∼Aa ∈ DA, and so ∼Aa = 1

2 ],
for, otherwise, we would have [∼A]a = 1, in which case we would get ∼A[∼A]a =
∼A1 = 0 6∈ DA, and so A would be o-negative, where ox0 , (x0 A ∼[∼](x0 A x0))
(in particular, by Corollary 6.60, C would not be self-extensional). In that case, A
is involutive as well as not classically-hereditary, for (0 AA 0) = a = 1

2 6∈ 2 3 0,
and, for any h ∈ hom(A,A), h( 1

2 ) = (h( 1
2 ) AA h( 1

2 )) = a = 1
2 , so Theorems 6.37

and 6.58 end the proof. �

It is remarkable that Theorem 6.72(i)⇔(iv) appears to be opposite to Theorem
6.11. Corollary 6.68/6.67 and Theorem 6.72, in particular, “provide one more in-
sight into their context’s being disjoint, in view of opposite requirements on the
involitivity of characteristic matrices”/“taking Example 4.2 into account, immedi-
ately yield the following essential (mainly, due to elimination of the disjunctivity
stipulation) enhancement of Theorem 6.58”:

Corollary 6.73. Suppose A is either implicative or conjunctive. Then, C is self-
extensional iff either it is ∼-classical or ({h+,1−kA , h−, 1

2
} ∩ hom(A,A)) 6= ∅.
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Finally, we present a term-wise definitionally minimal instance of a self-extensi-
onal paraconsistent implicative U3VLSN:

Example 6.74. Let Σ , Σ⊃
∼ and A both false-singular and involutive with (a ⊃A

a) , 1
2 and (a ⊃A b) , b, for all a ∈ A and all b ∈ (A \ {a}). Then, A is both ∼-

paraconsistent and ⊃-implicative. And what is more, h−, 1
2
∈ hom(A,A). Hence, by

Theorem 6.72, C is self-extensional. Now, let Σ′ 3 ∼ be a signature with (possibly,
secondary) binary connective A, A′ an A-implicative 3-canonical ∼-super-classical
Σ′-matrix and C ′ the logic of A′. Assume C ′ is self-extensional. Then, by Corollary
6.71 and Theorem 6.72, A′ is false-singular, in which case DA′ = DA, as well as
involutive, in which case ∼A′ = ∼A, while A′ is an A-implicative intrinsic semi-
lattice with bound 1

2 = (a AA[′] a), for any a ∈ A′ = A, whereas h , h−, 1
2
∈

hom(A′,A′). Therefore, by (4.2), for all a ∈ A, ( 1
2 AA′ a) = ((a AA′ a) AA′ a) = a.

Furthermore, by the A-implicativity and false-singularity of A, for each b ∈ DA,
(b AA′ 0) = 0, and so (h(b) AA′ 1) = h(0) = 1. Likewise, (0 AA′ b) ∈ DA, in
which case (0 AA′ 1

2 ) = 1
2 , for, otherwise, DA 3 (1 AA′ 1

2 ) = h(1) = 0 6∈ DA,
while (0 AA′ 1) = 1, for, otherwise, DA 63 (1 AA′ 0) = h( 1

2 ) = 1
2 ∈ DA, and so

(1 AA′ 1
2 ) = h( 1

2 ) = 1
2 . In this way, AA′ = ⊃A. Thus, C ′ is a ∼-conservative

term-wise definitional expansion of C. �

This definitely shows that the justice is, at least, in that, when quirk crooks
(such as Avron and Beziau et al.) plagiarize somebody else’s labor (mine, in that
case) and rewrite the genuine history of science for their exclusive benefit (in par-
ticular, by means of publishing plagiarized work backdating under the complicity
of equally dishonest editors — like M. Fitting, C. Franks, D. Gabbay, R. Goldblatt,
J. Malinowski, A. Pillay, S. Standefer, R. Wojcicki et al. — of foul pseudo-scientific
journals — like Algebra Universalis, Australasian Journal of Logic, Logic Journal
of IGPL, Logica Universalis, Notre Dome Journal of Formal Logic, Studia Log-
ica, etc.), they inevitably lose the capability (if any was at all ever) of obtaining
and publishing new and correct results, as well as that advanced strong non-trivial
mathematical results (like those on absence of objects of certain kind, including
maximality ones) might hardly be obtained by means of merely superficial philo-
sophical verbiage typical of those mediocre pseudo-researches as them, so appear-
ance of such issues under their authorship cannot but be qualified as plagiarism.

7. Conclusions

Aside from quite useful general results and their equally illustrative generic appli-
cations (sometimes, even multiple ones providing different insights, and so demon-
strating the whole power of universal tools elaborated here) to infinite classes of par-
ticular logics, the incompatibility of the self-extensionality of either implicative or
both conjunctive and disjunctive finitely-valued logics with unitary equality deter-
minant and the algebraizability (in the sense of [18, 17]) of two-side sequent calculi
(associated with such logics according to [20]), discovered here, looks quite remark-
able, especially due to its providing a new insight into the non-“self-extensinality
of”/“algebraizability of sequent calculi associated with” certain logics of such a kind
proved originally ad hoc, and so justifying the thesis of the first paragraph of Section
1. Likewise, equivalence of structural completeness and maximal paracompleteness
of both uniform four-valued expansions of Belnap’s logic and weakly disjunctive
paracomplete U3VLSN as well as equally interesting connections between maximal
paraconsistency and implicativity/self-extensionality of self-extensional/implicative
uniform “four-valued expansions of Belnap’s logic”/“three-valued logics with sub-
classical negation” deserve a particular emphasis within the context of General
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Logic. The equivalence of structural completeness and maximal paracompleteness
of both uniform four-valued expansions of Belnap’s logic and weakly disjunctive
paracomplete U3VLSN deserves an equally particular emphasis within the context
of General Logic. Likewise, the fact that any weakly [more specifically, strongly]
disjunctive paracomplete U3VLSN is structurally complete iff it has no non-classical
consistent proper extension [if and] only if it has a theorem but either no classi-
cal extension or no classical implication is equally interesting. In this connection,
structural incompleteness of both subclassical and either implicative non-classical
or paraconsistent logics looks especially remarkable. And what is more, the equiv-
alence of structural completeness of “weakly conjunctive”/implicative paraconsis-
tent/paracomplete U3VLSN and absence of classical extensions, disproving struc-
tural completeness of all known particular instances of such U3VLSN but proving
that of their expansions by a constant taking the third (extra-classical) value, is a
strong universal result as well. In general, Subsection 6.2 constitutes foundations
of an algebraic theory of U3VLSN. In this connection, taking Theorem 6.65 into
account, the most acute problem remaining still open is marking the framework of
elimination of disjuctivity stipulation in Theorem 4.7.
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