
EasyChair Preprint
№ 4496

An Intelligent Board of Security Countermeasure
Cases in Prolog.

Frank Appiah

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 21, 2020

An Intelligent Vulnerable Prevention Specification
and Factual Response in Prolog.

Prof Frank Appiah AKA FAEng PhD (KCL)
Email:appiahnsiahfrank@gmail.com
12.2020.

Abstract. This review is on intelligible security measures in vulnerable prevention knowledge specification in
predicate syntax computation in representing facts and rules of countermeasures in such exploitations.

Keywords. AI, intelligent, predicates, logic, programming, syntax, knowledge,
representational language.

1 Introduction.

In specifying predicate syntax computations in Prolog, there is a way to get factual response in natural

alternatives - Yes or No.

 On responding to vulnerable preventions at an office to weakness to security

systems. There is a need to hold in facts specific to the security measures
identifiable to the issues. Creating a knowledgeable database for yes responses is

naturally important to the security officer or controller. On possible basis of this

security requirement is a capture of countermeasure facts in this security concerns.
In capturing, the international dimensions of counter -feiting by duplication, thefting

by deletion replacement or insertion replacement, cyberattacking, hacking /
cracking on internet / decentralized network is strong gating with incorrect measure,

ungaurding on access breach, unlawful entry, uncontrolling access system codes,

momenting by passby fights, intern replacement unverifiables and unvalidating
information are exploitations addressed.

Vulnerability is a weakness in the security system. A threat is blocked by control of

vulnerability.

 A control is a protective measure used as an action, procedure or technique.

Simply, this security measure research review is addressing the following:

1

mailto:appiahnsiahfrank@gmail.com

● Creation of security controls in unceiled secret information.

● Laying out risk of unceiled secret information and ways of dealing with it.

● Certain on ways of document process - sing with digitized image water- marking.

● Middle aging of counterfeiting by duplication with deletion replacement and insertion

replacement.

● A decentralized network with marginal error on control printing with water marking

process.

● A counterattack measure in validating and verification of authentic document.

 If it is possible or necessary watermarking secret Ceil should be used to prevent

ruining access control. Then it should be used.

If counterfeiting by duplication creates a methods of recovery in risky information.

Then, it should be recover after incident.

If a security officer or engineer can address duplication copy in cases an
attacker deletes and insert a counterfeit copy to be used by the document marker

thereby making information lose confidentiality or integrity. Then, it should be
engineered for counter measuring. If in a decentralized scenario, the document

marker will be able to authenticate as usual able to have access to the digital

document to make a copy for further processing. Then, it should create
authenticated access. If the technique of authentication and authorization can be

by password or biometry (fingers, iris, height etc). Then it should create
technology for culturing and socializing the security process of characterization.

If file transfer protocol gives the decentralized manner of network access

with secure means. Then it should create confidentiality and availability in the
security process. If Unceil secret paper creates vulnerabilities and embarrassment

in ruining the authenticity of document. Then it should leave the security room of
vulnerabilities. If security agents unchase theft document in a vulnerable situation.

Then it should be way to dismissal from the work place.

If it is hard and difficult to physically timestamp all documents at a security site.
Then watermarking by stamping should be the way to countermeasure. If

vulnerabilities prevention is a means to countermeasure a counterfeit information.

Then finally a Ceil by watermarking should be used.

A security director or officer or engineer addressing duplication copy in cases an

2

attacker deletes and insert a counterfeit copy to be used by the document

marker thereby making information lose confidentiality or integrity.

In the middle ages of counterfeiting by duplication, a copy of existing image is kept
with the security officer or engineer on deletion replacement or insertion

replacement. In the castle of counterfeiting by duplication, a different but approved
image is quickly inserted into the document processing of the watermarking paper.

Then it is casted into decentralized networks with a marginal error on the previous

information dissemination from the control printer software. The fortress of
counterfeiting by duplication a security officer will counterattack with an invalid

document fight in the sense of seizing and requesting a reprint of information to
process new.

2 Predicates in Security Dimensions.

Predicate sentences are a set of specifications of facts in Prologue database with auxiliary
factual responses in natural environment being interpreted in validable and verifiable way.

Here, sentences in the security dimensions are captured as knowledge base on

countermeasure facts in Prolog predicate syntax database.
I will capture the natural sentence along the predicate syntax. These dimensions are

all captured as cm_check(a, o) predicate syntaxes. Note a dot on every predicate to
indicate end term and begin another asserting in the database.

● cm_check(invalid,info).
● cm_check(intern,replacement).
● cm_check(passby,riot).
● cm_check(access,system_codes).
● cm_check(unlawful,entry).
● cm_check(guard,access_breach).
● cm_check(strong_gating,incorrect).
● cm_check(hack,internet).
● cm_check(crack,decentralized).
● cm_check(cyberattack,home_net).
● cm_check(cyberattack,office_net).
● cm_check(insertion,office).
● cm_check(replacement,office).
● cm_check(thefting,deletion).
● cm_check(thefting,replacement).
● cm_check(countermeasure,duplication).

3

● cm_check(counterfeit,duplication).

There are 17 cm_check facts in the set of specifications of the database. Reading
the predicate sentences will create sentential languages like:

● A countermeasure check on information is invalidity.
● A document replacement is a check on countermeasure on intern.
● A riot check is countermeasure on passby.
● System code access should be countermeasure check.
● Unlawful entry should be check in countermeasure.
● Strong gating is incorrect and should be check in countermeasures.
● Hacking on internet is checked in countermeasure.
● Countermeasures should be checked on cracking decentralized networks.
● Cyberattacking should be countermeasure checked.
● Electronic office insertion should be checked on countermeasure.
● Electronic office replacement should be checked on countermeasure.
● Electronic deletion is thefting that should be checked in countermeasure.
● Electronic replacement is thefting that should be checked in countermeasure.
● Duplication of countermeasure should be checked in countermeasure.

The next set of facts are based on the list of security measures. The sentences in
predicate syntax includes the following :

● cm_problem(unceiled,secret).
● cm_problem(unlaid,secret).
● cm_problem(risky,secret).
● cm_problem(middle_aiding,deletion).
● cm_problem(middle_aiding,insertion).
● cm_problem(middle_aiding,replacement).
● cm_problem(invalid,document).
● cm_problem(unverified,document).

There are about 8 cm_problem predicates in the security measure of all worlds. Reading the
predicate sentences will create sentential languages like

● Secret information can be a risky problem.
● Secret information in its unceiled form can be a problem.
● Secret information unlaid is a problem in countermeasure
● Aiding deletion of information is a problem.
● Aiding insertion of information is a problem.
● Aiding replacement of information is a problem.
● Invalidating a document is a problem.
● Unverified document is a problem.

4

3 Factual Response Assessment.

Yes/No assessment is a factual response in directing on existence of facts in

Security domain. The predicate sentences described above is to run in consult

top-level loop mode. This means that a Director will initiate the main assertion of the
xProlog application based on loading a database file containing the security facts

which are coded as predicate syntax. In an unloaded loop, response on one of the
cm_check fact yields:
X-Prolog 1.0.0

| ?- cm_check(invalid,info).
message(error, error(existence_error(procedure,cm_check/2),call(user:cm_check(invalid,info)))).

It shows an error message and it claims an existence error with the predicate that takes two

arguments in calling the cm_check predicate.

It is now time to consult the database. This

is done by Clicking on the Run button at the

top of a running XProlog application. This is

a mobile version on my Android phone.

Then you will select the Top-level loop

sidebar menu. A new window will be pop up

showing a black screen on the prompt. It is

as shown. Next is to select consult on the

top dot menu. This will open the file system

view to enable you to select the prolog file

with (pl) extension. This show the prompt as

below:

The prompt response is yes after the

consultation. That means we are ready to go checking

facts in database. Let the oracle consult us good wishes

in this check.

cm_check(invalid, info).

 Response:
| ?- cm_check(invalid, info).
yes
| ?-

5

The consult of the fact has responded yes. The security measure database has

confirm the claim of this fact. The countermeasure team will have place a check on
the fact on occurrence.

The second check is on the fact:

Response:
| ?- cm_check(passby,riot).
yes

There is a countermeasure check

on the database to find out if passby
on riot is a fact. The response is

yes. This review shows that not only
that the consult helps in building the

database without asserting before or

after but it also statically response to
hold the facts on predicate

cm_check.
I will now run a few cm_problem on

the Prolog Interpreter.

cm_problem(middle_aiding,deletion).

Response:
| ?- cm_problem(middle_aiding,deletion).

yes

Again, this is interpreted on the prompt:

cm_problem(risky,secret).
Response.
| ?- cm_problem(risky,secret).

yes

6

Finally on two response request :

- cm_problem(middle_aiding,replacement).

cm_problem(invalid,document).

Response:
| ?- cm_problem(middle_aiding,replacement).
cm_problem(invalid,document).

yes
| ?-

yes
| ?-

The rest of responses are shown in the appendix 2 and the screenshot view above.

Conclusion.

This is a review on intelligent vulnerable prevention specification and yes/no
assessment response. A total of about 28 facts were interpreted. There were about

three categorical predicate sentences in this review only. These predicates were
enumerated and along with sentences in natural language processed. This prolog

interpretation is a mobile interpreter that a security officer or engineer can use to run

security routine with a team in countermeasure strategies. The logic program is
programmed in XProlog Android on Honor model from Huawei corporation. The

benchmark set from AI Expert on this device is shown in Appendix 3.

Further Reading
[1] Frank Appiah (2020). Security Controls or Countermeasures: Vunerabilities Prevention, Easychair
Preprint 4410.

7

[2] XProlog (2020). XProlog Android Package, Playstore. Programming IDE. Online Accessed.
[3] Android Mobile (2020). Huawei Device Honor Model. Programming with Footprint Minicomputers.
Huawei Corporation.

Appendix 1. Prolog Code.

FACTS: countermeasure.pl

cm_check(invalid,info).
cm_check(intern,replacement).
cm_check(passby,riot).
cm_check(access,system_codes).
cm_check(unlawful,entry).
cm_check(guard,access_breach).
cm_check(strong_gating,incorrect).
cm_check(hack,internet).
cm_check(crack,decentralized).
cm_check(cyberattack,home_net).
cm_check(cyberattack,office_net).
cm_check(insertion,office).
cm_check(replacement,office).
cm_check(thefting,deletion).
cm_check(thefting,replacement).
cm_check(countermeasure,duplication).
cm_check(counterfeit,duplication).

cm_protect(action,procedure,technique).
cm_protect(vulnerable,weakness,security).

cm_problem(unceiled,secret).
cm_problem(unlaid,secret).
cm_problem(risky,secret).
cm_problem(middle_aiding,deletion).
cm_problem(middle_aiding,insertion).
cm_problem(middle_aiding,replacement).
cm_problem(invalid,document).
cm_problem(unverified,document).

Appendix 2: Execution Runs.

X-Prolog 1.0.0

| ?- ['/storage/emulated/0/Download/assertcounter.pl'].

8

message(informational,
[task_begin(consult),file_name('/storage/emulated/0/Download/assertcounter.pl')]).
message(informational,
[task_end(consult),file_name('/storage/emulated/0/Download/assertcounter.pl')]).

yes
| ?- cm_check(invalid, info).

yes
| ?- cm_check(passby,riot).

yes
| ?- cm_problem(middle_aiding,deletion).

yes
| ?- cm_problem(risky,secret).

yes
| ?- cm_problem(middle_aiding,replacement).

yes
| ?- cm_problem(middle_aiding,replacement).
cm_problem(invalid,document).

yes
| ?-
yes
| ?- cm_check(guard,access_breach).
cm_check(strong_gating,incorrect).

yes
| ?-
yes
| ?- cm_check(intern,replacement).

yes
| ?- cm_check(cyberattack,home_net).
cm_check(cyberattack,office_net).
cm_check(insertion,office).
cm_check(replacement,office).

yes
| ?-
yes
| ?-
yes
| ?-
yes
| ?- cm_protect(action,procedure,technique).

yes
| ?- cm_protect(action,procedure,technique).

9

cm_protect(vulnerable,weakness,security).

yes
| ?-
yes
| ?-

Appendix 3. Benchmark Set from AI Expert magazine.

Benchmark Iterations Average

tail_call_atom_atom 50,000 6.20
binary_call_atom_atom 50,000 9.60
cons_list 50,000 6.80
walk_list 50,000 5.20
walk_list_rec 50,000 6.60
args(1) 50,000 6.20
args(2) 50,000 8.80
args(4) 50,000 14.80
args(8) 50,000 25.20
args(16) 50,000 46.40
cons_term 50,000 8.40
walk_term 50,000 7.40
walk_term_rec 50,000 7.00
shallow_backtracking 50,000 5.20
deep_backtracking 50,000 17.80
trail_variables 50,000 15.40
medium_unify 50,000 0.80
deep_unify 10,000 1.00
integer_add 10,000 9.00
floating_add 10,000 10.00
arg(1) 50,000 22.80
arg(2) 50,000 23.20
arg(4) 50,000 20.60
arg(8) 50,000 18.40
arg(16) 50,000 18.60
index 20,000 8.50
assert_unit 10,000 98.00
access_unit 10,000 92.00
slow_access_unit 10,000 94.00
setof 10,000 43.00
pair_setof 10,000 67.00
double_setof 10,000 676.00
bagof 10,000 27.00

10

28,110 msec

11

