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Abstract—We propose a method that relies solely on pedestrian
detections in the wild (no known fiducial points) and uses
their average height as measuring stick to calibrate monocular
surveillance systems. The core idea is that pedestrians feet and
head are aligned vertically and the calibration parameters must
therefore predict back-projected positions of the feet and head
that have the same horizontal coordinates. The advantages are
that it does not require any fiducial points; nor to assume that
the motion of pedestrians is aligned with vanishing points in
the scene; nor relies on a stable framerate as it works on static
images. The results are promising: the predicted world positions
of pedestrians minimise the vertical misalignment of head and
feet and they with the truth positions as well as expected. The
approach is very simple and the results encourage us to develop
it further with a bayesian approach.

Index Terms—imaging, calibration, automatic, pedestrian

I. INTRODUCTION

The ubiquitous presence of surveillance cameras and the
proliferation of pedestrian detection algorithms [1] leads to
the obvious question of how to geolocate the pedestrians
detected in the video. The method of choice is a perspective
projection [2] where the 2D image detections are transformed
via a homography to the 2D ground plane. The question now
becomes how to estimate the homography matrix needed. The
difficulty resides in doing so for surveillance cameras ‘in the
wild’, i.e. without additional information other than the video
feed (camera make and model, optical distortion parameters,
installation position, objects of known world position, etc). In
this work we present a very simple framework that uses solely
pedestrian detections to estimate the projection matrix.

Reference [3] tackles the problem by using multiple cam-
eras, they state one of the core ideas in automatic calibration
from pedestrian detections: “The desired information from the
pedestrian is the position in each image of the top of their
head and the point on the ground directly beneath. When a
person is standing, the point on the ground directly beneath
their head will be where their feet touch the ground”. Facing
the single view problem, [4] combines a pedestrian detection
algorithm together with the homography estimation. They
demonstrate that human body can be used as a calibration
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target by observing a person standing at various locations. In
[5] the motion of pedestrians and vehicles is used to estimate
the vanishing points. This information is combined with the
height of the camera above the ground (which is assumed
known) to estimate the intrinsic and extrinsic parameters of
the camera. An interesting approach is taken in [6] where the
measuring stick is the velocity vector of pedestrians in motion,
the velocity is assumed constant thruout the motion. It is aimed
at crowded scenes where the view of pedestrians by the camera
is guaranteed to be partially occluded.

In this work we exploit, firstly, the property already stated
by [3] that pedestrians heads and feet have the same x, y in
world coordinates. And secondly, that a minimal parametrisa-
tion of the pin hole model yields two homography matrices:
one that back-projects the feet of pedestrians from the image to
the ground plane, and a second one that back-projects the head
of pedestrians to the horizontal plane at z = h, the ‘heads’
plane. The only required input data is several detections of the
heads and feet of pedestrians and to provide the value of h,
the average physical height of pedestrians. There is no need
for multiple cameras as in [3], or the reliance on a particular
pedestrian detection algorithm as proposed in [4] (arguably
one might want to switch to other detection methods or to use
a different object other than pedestrians). Surveillance cameras
could be installed to observe any kind of scene, so it is not
guaranteed that the motion of pedestrians would be of use to
determine vanishing points as in [5]. Finally, the calculation
of velocities in [6] requires some degree of reliability of the
timestamps of the frames, or stability of the communication
network that streams the video, we aim to solve the problem
from static captures of the scene.

This work is very similar to [7]. They only require the top
and bottom detections of a target object standing at various
locations in the scene. The difference is only in the specific
mathematical solution proposed, here we aim to simplify the
implementation by relying in optimization routines.

A. The gist: back-projection of the head must be above the
back-projection of the feet

We minimalistically formalise the pin hole image formation
model as parameterised by only four magnitudes: focal dis-
tance, two orientation angles and height of the camera above
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the ground. This parameters determine a pin hole projection
matrix. Which in turn is used to construct the homography
projection matrices that map image coordinates in pixels to
world points on the ground or on the z = h plane. The
x, y coordinates of both mappings must be equal because a
pedestrians head is directly above the feet. We propose that the
error function to be optimised is the quadratic error between
them.

II. MODEL DEFINITION WITH REDUCED DEGREES OF
FREEDOM

The pinhole camera model [8]–[10] maps a 3D coordinate
(x, y, z) in the world frame of reference to a 2D image
coordinate (u, v) like so:

s

 u
v
1

 =

 f 0 cx
0 f cy
0 0 1

 [R | T ]


x
y
z
1

 (1)

s

 u
v
1

 = K [R | T ]


x
y
z
1

 =M


x
y
z
1

 (2)

where the rotation matrix R3×3 has three degrees of freedom
(interpreted as angles as in the Euler convention or components
of a Rodrigues vector) and the 3D translation vector T 3×1

has another three degrees of freedom. The intrinsic projection
matrix K is defined with three parameters. In total we would
need to estimate nine parameters to define the projection.
We argue that we can simplify the problem to much fewer
parameters, in this work we will only need to estimate four
parameters. To begin, the intrinsic parameters (cx, cy) can be
assumed to be at the exact center of the image [3], leaving
only f to be estimated.

Arguably, out of the six roto translation parameters only
three can be estimated from the detections of pedestrians in
the image: the orientation of the ground plane with respect
to the camera and the distance between them. The data that
is available is the pixel coordinates of the heads and feet of
pedestrians, their corresponding world positions are unknown.
Without loss of generality, the origin of the ground plane is
arbitrarily defined to be below the camera, and the y versors
of the world and camera frame of reference are contained in
the same vertical plane. We chose to parameterize the roto-
translation in terms of fixed axis x-z-x rotations as
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that are easy to interpret as shown in Fig. 1, assuming the
camera to be directly above the origin of the world t is the
height of the camera above the ground, and α, β are angles of
rotation.

The selected minimalistic parameters f, α, β, t univocally
define M that projects any 3D world coordinates into the
image by the pin hole model in (2). In what follows we will

Rotation of −90◦ around world’s x axis.

Rotation of −β around world’s z axis.

Rotation of −α around world’s x axis.

Translation of t along the world’s z axis.

Fig. 1. The transformations that define [R | T ]−1

exploit two particular cases: world coordinates restricted to the
ground plane and restricted to the horyzontal z = h plane.

A. Back projecting feet and head to calculate error function

Pedestrians feet are in the ground plane and pedestrian
heads are in a horizontal plane at z = h above the ground.
The perspective transform that projects those world horizontal
planes unto the image are defined by homography matrices
Hf and Hh, we will calculate them from h and the four



columns of M denoted as Mi. Starting with the feet, their
world coordinate has z = 0 so it is evident that

Hf = [M1 |M2 |M4]. (4)

The projection for the heads can be rearranged as
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so evidently Hh = [M1 |M2 | hM3 +M4]. (6)

A pedestrian’s feet detected in the image at (uf , vf ) must
yield the same (x, y) when back projected to the ground plane
than the head detected at (uh, vh) when back projected to the
z = h plane. For some set of values (f, α, β, t) the back
projection error is calculated as follows. Fist, calculate M as
defined in (2) and (3). Combine its columns and the constant
h to calculate the homography matrices HF and Hh as in (4)
and (6).

Back project the detections of feet and head to their corre-
sponding horizontal world planes by doing xf
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And finally calculate the squared error as

E = (xf − xh)2 + (yh − yf )2. (9)

The sum over all the data has been omitted for simplicity.
Starting from an ad-hoc defined seed value for f, α, β, t we

use a non linear minimization routine in scipy [11] to find the
point estimates of the most likely values of the parameters.

III. RESULTS

To test the method we took a picture with 16 objects of
equal height (h = 12cm) to simulate pedestrians. To validate
our method we generated ground truth world positions of the
objects by marking four ‘tag’ points whose world position
were measured by hand. This tag points were used to estimate
a homography matrix that maps the feet of the detected
pedestrians to their true world position. Fig. 2 shows the
detections of simulated pedestrians (both head and feet) along
with the four tag points. The true world positions of the
pedestrians is shown in Fig. 3 as blue dots, the red dots are
the tag points.

The seed values were

(f, α, β, t) = (cx, 36
◦, 36◦, 7h).

that correspond to a quadratic error as defined in (9) of
Eseed = 1374679.829cm2. The optimization routine returned
the optimal values of

(f, α, β, t) = (2854.24, 2.54◦, 31.81◦, 64.9cm)

Fig. 2. Test image.

Fig. 3. World xy coordinates. Red dots are the tag points used to generate
the ground truth positions of the objects, shown in blue. After optimization
our method predicts the positions of the feet (green) and head (yellow) of the
pedestrians.

that yield an error of Eoptim = 78.53cm2 which means that
the projections of feet and head have a standard deviation
of ∼ 2.2cm. In Fig. 3 we show that the projections of feet
and head of the pedestrians in the world’s ground plane are
reasonably close to each other.

One step left lo mention is that the projections calculated
in (7) and (8) are in the world frame of reference whose
origin is below the camera, not in the ‘tag’ frame of reference.
The necessary change of base was calculated as an affine
transformation [12] such that the tag points projected would
coincide with their true world positions.

IV. CONCLUSION AND DISCUSSION

We propose a simple approach of calibrating a single view
vision system ‘in the wild’ by just using pedestrian detec-
tions. Pedestrians can be detected by many image processing
routines and we focus on the calibration that comes after that
using the average height of the pedestrians as measuring stick.
The calibration parameters allow the back-projections of the
feet and head of the pedestrians to the ground and heads plane.
The proposed algorithm is to minimise the discrepancy of both
back-projections, i.e. the heads and feet of the pedestrians must
be vertically aligned.



It is noteworthy that the relationship between the homogra-
phy that projects from two horizontal planes to the image is
as simple as shown in (6).

Clearly the results are encouraging, judging from Fig. 3 the
discrepancies between head and feet projections are reasonably
small and they both are in general close to the true positions.
In general the distance between the estimated back projections
and the true positions is similar to the discrepancy between
head and feet back-projections, a loose interpretation is that
the fit error is similar to the validation error, meaning that
the model is constructed reasonably well and that the fit was
reasonably good. This toy example shows that the general
approach of minimising the discrepancy of head and feet
projection is worth developing further.

The roadmap of further development is clear. Mainly the
estimation of calibration parameters must be approached from
a bayesian perspective, yielding uncertainty estimations in-
stead of the simple point-estimates shown here. This will
allow firstly to account for the natural variation of pedestrian
heights. Secondly, this will better weight the calibration data,
we have seen in [13] the calibration points yield different
uncertainties depending on distance to the camera and view
factor of the camera with respect to the projecting world plane.
A more appropriate weighting of the calibration points based
on their associated uncertainties should on average reduce the
prediction error.
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[7] T. Fäulhammer and P. V. Borges, “A semi-automated framework for
homography estimation,” in Computer Graphics and Imaging / 798:
Signal Processing, Pattern Recognition and Applications, ACTAPRESS,
2013.

[8] D. Forsyth and J. Ponce, Computer vision: a modern approach. Always
learning, One Lake Street, Upper Saddle River, New Jersey 07458:
Pearson Education, 2012.

[9] L. Sobel, “Camera Models and Machine Perception,” tech. rep., Com-
puter Science Department, Technion, 1972.

[10] P. Corke, Robotics, Vision and Control - Fundamental Algorithms in
MATLAB. Springer, 2011.

[11] T. E. Oliphant, Guide to NumPy. Scotts Valley, California, US:
CreateSpace Independent Publishing Platform, 2 edition ed., Sept. 2015.

[12] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[13] S. I. Arroyo, U. Bussi, F. Safar, and D. Oliva, “A monocular wide-
field vision system for geolocation with uncertainties in urban scenes,”
Engineering Research Express, vol. 2, p. 025041, jun 2020.


	Introduction
	The gist: back-projection of the head must be above the back-projection of the feet

	Model Definition with Reduced Degrees of Freedom
	Back projecting feet and head to calculate error function

	Results
	Conclusion and discussion
	References

