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Abstract— Single-pixel imaging is a framework that 

reconstructs the target information only with a single bucket 

detector. The principle of the single-pixel imaging is correlating 

the measurements of a single bucket detector and the 

corresponding 2D light field distributions modulated by an 

optical field device in the scene. Single-pixel imaging has a good 

prospect in various imaging applications. To improve the 

imaging quality and speed, the compressed sensing and the basis 

scan strategies are demonstrated at the current stage. Based on 

the Fourier single-pixel imaging, the representative one of the 

basis scan strategies, and the deep learning, we propose a deep 

learning based Fourier spectrum sampling strategy for Fourier 

single-pixel imaging. Our goal is to predict and acquire the 

significant Fourier coefficients instead of the traditional 

sampling strategies to recover higher quality image under the 

same measurements. The simulation results demonstrate that the 

reconstruction image of the proposed strategy outperforms 

others. Applications to high quality and speed imaging could 

benefit from our strategy. 

I. INTRODUCTION 

Single-pixel imaging (SPI) reconstructs the target 

information by correlating the measurements of a single bucket 

detector and the corresponding 2D light field distributions 

modulated by an optical field device in the scene. The SPI 

architecture enables to build low-cost, high image quality and 

small imaging system. [1] Therefore, SPI has been studied 

widely in static imaging [2], dynamic imaging [3, 4], 

multidimensional imaging [5], microscopic imaging [6], 

remote sensing [7-9], scatter imaging [10, 11] and others [12, 

13]. 

However, the contradiction between the imaging quality 

and speed limits the development of the SPI [13]. To solve this 

problem, the compressed sensing paradigm and basis scan 

based methods are main solutions. [14] On the one hand, the 

theory of compressed sensing can be used for the 

reconstruction of an image from a small set of measurements 

at the sub-Nyquist sampling frequency, but it suffers from the 

huge computing time. [15] On the other hand, the basis scan 

strategies avoid expense of the computation and recover an 

image by inverse transforming (e.g. Hadamard, Fourier or 

wavelet) the measured data.[16-18] This kind of methods well 

balances the trade-off between the acquisition time and 

computation time. While it has the disadvantage that long 

acquisition time since the number of measurements is given by 

the number of pixels of the desired image. 
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In the recent years, adaptive and optimization schemes for 

basis scan based single-pixel imaging have emerged. [1, 11-13, 

19] It depends on the predictions of the most significant basis 

functions for the scene or the optimization of the projected 

sequence of the basis functions. These strategies have been 

deeply studied in the frameworks of wavelet single-pixel 

imaging and Hadamard single-pixel imaging.  

In comparison, less similar schemes are studied in Fourier 

single-pixel imaging (FSI). The traditional common sampling 

strategies in FSI are circular, spiral and diamond on basis of the 

uniform spectrum sampling. [18] Due to the natural image 

signal energy is mainly concentrated in the low-frequency, thus 

this implies FSI sampling the Fourier coefficients from low-

frequency band to high-frequency band for reconstruction is 

considered as an efficient strategy. Meanwhile, owing that the 

maximum spatial resolution is decided by the cut-off spatial 

frequency given by the diffraction limit in the common optical 

system, the Fourier spectrum coefficients in the low-frequency 

band stopping at the cutoff frequency or designed upper limit 

frequency are often acquired for construction from the 

practical use of FSI. Nevertheless, these traditional common 

strategies have the disadvantage that only the coarse image 

can be reconstructed because of sampling the low-frequency 

coefficients prior. Moreover, the most significant Fourier 

coefficients are not totally concentrated in the middle and low 

frequency. It means that acquiring the most significant 

coefficients can improve the reconstruction quality than the 

traditional strategy under the same sampling ratio (the ratio 

between the number of measurements and the number of total 

pixels in the reconstructed image). 

Deep learning is a kind of machine learning to learn the 

features for data modeling, sorting and decision with a deep 

neural network trained by a huge amount of data. [20] In the 

last decade, the deep learning has been developing rapidly and 

achieving excellent performance for scatter imaging [21], 

image processing [22], target classification and recognition 

based on image [23-26]. 

In this paper, combining with the FSI and deep learning, 

we propose a deep learning based Fourier spectrum sampling 

strategy for FSI. The proposed method uses deep learning to 

get high-quality image reconstruction under the low sampling 

ratio. The comparisons of the image quality between our 

strategy and traditional strategies are discussed. The simulation 

results show that the proposed strategy promises huge 

potentials in applications such as high-speed imaging and 

sensing. 
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II. METHOD AND SCHEME  

In this study, we combine the FSI and the convolutional 
neural network (CNN) to improve the imaging quality of FSI 
by predicting and acquiring the most important Fourier 
coefficients.  

On the one hand, due to the theorem of 2D Fourier 
transform, the reconstruction result can be expressed as a series 
of weighted sum of M × N 2-D sinusoid patterns by the 
corresponding Fourier coefficients, which can be written as [16] 

 
1, N 1

0 , 0

2 ( )1
( , ) ( , ) e , 

M

u v

xu yv
j

M Nf x y F u v
MN

− −

= =

+

=    (1) 

where M × N is the resolution of image f , (u,v) represents the 

spatial frequency, and F(u,v) is the corresponding Fourier 

coefficient. Therefore, this can be seen as acquiring the F(u,v) 

based on the Fourier basis patterns to reconstruct the target.  
According to the FSI, a Fourier basis pattern IF(x,y) can be 

generated by applying an 2D-inverse Fourier transform to a 
delta function δF(u,v,φ) [18] 
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where real( . ) represents the real part, F−1( . ) denotes an 
inverse Fourier transform, the parameter φ represents the initial 
phase and 
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Combining (1) - (3), FSI reconstructs the target information 
under view. 

On the other hand, we propose a CNN to predict the 
significant coefficient. Fig. 1 shows that our proposed network 
structure. 

Our proposed CNN network consists of a constructing and 
expansive path. The path includes convolution, rectified linear 
units (ReLU), max-pooling and fully connect layers. The 
convolution layers use convolution operations to extract the 
feature maps from the input images, which are used commonly 
in image processing. The convolution layers are denoted as 512 

× 512 × 32, 256 × 256 ×32, 128 × 128 ×64, 64 × 64 ×
64 and 32 ×  32 × 64, respectively. Taking the first 

convolution layer as instance, 512 ×512 ×32 means that the 

resolution and channels of the outputs of this layer are 512 × 

512 and 32. The convolution layers have convolution filters 

with a kernel size of 5 × 5, and the kernel weights are learned 

from the training dataset. The convolution layers reduce the 
number of pixels and generate the features of the input. 
Additionally, the zero padding are used to keep the number of 
pixels unchanged. 

The max-pooling layers down-sample the input data from 
the ReLU layers to reduce the effects of changes in position 
and size. The down-sample rate of 2 × 2 are applied. This 
means the output data size is K/2 × K/2 assuming the input size 
is K × K. 

 

Figure 1.  The proposed CNN structure . 

The three fully connect layers are used to generate the 
indexes of the significant Fourier coefficients. The sizes of first 
two layers and output layer are 1 × 24000, 1 × 24000 and 1 × 
6000. 

The output of each convolution layer and the first two fully 
connect layers utilizes a ReLU layer as the activation function 
which allows for faster and effective training of CNN on large 
and complex datasets compared with the sigmoid function. [27] 

To optimize the kernel weights and the parameters of the 
proposed CNN, the Peak Signal to Noise Ratio (PSNR) 
(between the recovery image that are reconstructed by the 
sampled and predicted coefficients and the truth image) is used 
as the loss function to train the network. The reconstructed 
images are calculated using (1). The Adam optimizer is utilized 
to minimize the PSNR using stochastic gradient descent (SGD). 
A set of datasets is selected randomly in SGD. In our 
simulations, the size of partial dataset is 50 and equals to the 
batch size. Simultaneously, the number of epochs is set as 5 to 
optimize the network parameters. 

Combining the two frameworks above, the proposed 
strategy can be expressed as two-step cycle. First, the image is 
reconstructed from the acquired Fourier coefficients directly by 
(1). Then the reconstruction image inputs the CNN to predict 
the indexes of significant Fourier coefficients. The two steps 
above are looped until finishing the sampling times. Lastly, the 
final image can be reconstructed by the sampled data. 

III. SIMULATIONS AND RESULTS  

A. Training and simulation setup 

Firstly, the parameters of the CNN are needed to train. In 
this study, the Caltech-256 [28] is chose as the dataset 
consisting of nearly 30000 general images. In order to simulate 
the acquisition, the 1% coefficients at the low frequency in the 
Fourier spectrum are sampled to construct the image as the 
inputs of the CNN and the resolution of the recovery image is 

512 ×  512 pixels. Therefore, we selected 15,000 images 

randomly from Caltech-256 and resized them to 512 × 512 
pixels. Then these images are reconstructed by FSI, using (1) 
with sampling 1% coefficients at the low Fourier frequency. 
Moreover, for a more realistic simulation, the reconstruction 
process is generated using our optical virtual simulation system 
based on a real FSI system, as illustrated in Tab. 1. 

 



  

TABLE 1. THE SETUP OF THE SIMULATIONS 

Parameter Value 

Light 

source  

3W LED 

Angle of 

divergence 

3mrad 

Wavelength 532nm 

DMD DLP Discovery 4100 development kit 

(0.7-inch DMD, containing 1024×768 micro mirrors, 
maximum 22.7kHz binary modulation rate, 13.6×13.6 

μm2 each mirror) 

Detector Thorlabs PDA36A(-EC) 

Acquisition 

Card 

Gage CSEG8 

(8-Bit  2.0GS/s) 

Additionally, the simulations are executed on an Intel Core 
i5-7600@3.40 GHz computer with 8 GB of RAM memory and 
Windows 10 operating system. 

B.  Qualitative and quantitative comparison 

For quantitative comparison, we compare the proposed 
method with other traditional strategies under the different 
sampling ratio. Due that the cameraman image is the natural 
image used widely in imaging system tests and has multiple 
gray levels, we choose cameraman image as the example image. 
Fig. 2 shows the comparisons of the example image that are 
produced using the proposed strategy and other traditional 
strategies under the different sampling ratio. The first column 
shows the images recovered by the circular strategy, the second 
shows the images reconstructed by the spiral strategy, the third 
shows the results obtained by the diamond strategy, and the 
fourth shows results produced by the proposed strategy. The 
quality and contrast of the images obtained by the proposed 
strategy outperform others subjectively. 

Then, for further quantitative evaluation, the PSNR and 

structural similarity index (SSIM) are selected to evaluate the 

performance. The PSNR and SSIM are calculated by： 

2

10

(2 1)
10 log ( ),

n

PSNR
MSE

−
=    (4) 

 
1 1

1
( ( , ) ( , ))

H W

I j

MSE r i j t i j
H W = =

= −


   (5) 

and 

 
1 2

2 2 2 2

1 2

(2 )(2 )
( , ) .

( )( + )

r t rt

r t r t

c c
SSIM r t

c c

  

   

+ +
=

+ + +
  (6) 

Here, r and t are the reconstruction result and truth, μr and μt 

are their means, σr
2 and σt

2 are the corresponding variances, σrt 

is the covariance of r and t, c1=(k1L)2
 and c2=(k2L)2 are two 

constants, additionally, L=255, k1=0.01 and k2=0.03.  

Then we select 10 images randomly from the common 

gray-scale standard images as the test images. The average of 

10 comparison results are shown in Table 2. Table 2 shows 

that sampling strategy influences the quality of the 

reconstructed image and different traditional strategies may  
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Figure 2.  The comparison results by our proposed strategy and others 

TABLE 2. THE AVERAGE OF THE QUANTITATIVE EVALUATION OF THE 10 

RECONSTRUCTION RESULTS BY FOUR STRATEGIES 

 Strategy 

Sampling ratio 

5% 10% 25% 

PSNR 

(dB) 

circular 21.34 23.10 25.23 

spiral 20.52 21.92 26.01 

diamond 21.64 21.20 25.56 

proposed 22.90 24.52 26.54 

SSIM 

(%) 

circular 62.94 71.14 80.50 

spiral 62.44 69.87 81.80 

diamond 64.13 71.94 82.93 

proposed 66.02 72.80 84.01 

get different image quality under the different sampling ratio. 

Moreover, this again shows that our proposed deep learning 

based strategy can reconstruct better results than the 

traditional strategies. 

IV. CONCLUSION AND FUTURE WORK  

In this paper, we propose a deep learning based Fourier 

spectrum sampling strategy for improving performance of 

images reconstructed with FSI and present the simulations 

where a CNN was trained to predict the indexes of the 

significant Fourier coefficients. We compare the images 

reconstructed by the proposed strategy with those obtained by 

traditional strategies. The simulation results show that the 

proposed deep learning based Fourier spectrum sampling 

strategy can get higher PSNR and SSIM. In our next work, we 

will try to do the physical experiments to verify and evaluate 

the effectiveness and performance of our strategy. It has a 

good application prospect to improve the image quality under 

the same sampling ratio and replace the traditional strategies 

used in FSI. 
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