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Abstract—Biometric authentication is nowadays widely used in
a multitude of scenarios. Several studies have been conducted on
electrocardiogram (ECG) for subject identification or verification
among the various modalities. However, none have considered a
typical implementation with a mobile device and the necessity for
a fast-training model with limited recording time for the signal.
This study tackles this issue by exploring various classification
models on short recordings and evaluating the performance
varying the sample length and the training set size. We run our
tests on two public datasets collected from wearable and medical
devices and propose a pipeline for ECG authentication with
limited data required for competitive usage across applications.

Index Terms—Biometric Authentication, ECG Biometrics, Per-
formance Assessment, Wearable devices.

I. INTRODUCTION

Over the last decade, with new technologies and the rise of
mobile devices, people have started to accept biometric authen-
tication and use it in a multitude of scenarios [1], [2], [3]. This
advancement has allowed the development of an increasing
number of authentication systems and modalities. Cardiac
biometrics [4] and the use of ECG data as biometric features
are relatively new. With the release of accurate sensors on
mobile devices such as smartwatches and fitness trackers, it
is now possible to consider them as a new authentication
modality [5], [6] for the commercial user [7].

ECG measures the heart’s electrical activity in terms of
polarization and depolarization of the muscles according to
the various phases of the heart’s cycle. A standard medical
diagnostic ECG system consists of 12 leads PC-based recorder.
The first 6 leads are known as the limb leads, measuring
the voltage differences between the right arm (RA), left leg
(LL) and left arm (LA) as bipolar and unipolar (augmented).
The latter 6 are the precordial leads, and they calculate the
differences between electrodes on the chest and the average
potential from the limb electrodes. Portable versions of 12-
leads ECG recorders such as Holter devices that have 6
leads [8]. Holter devices are standard medical devices because
of their 24 hours or 48 hours ECG recording and storage
capacities [9]. Although using 12 channels would provide
much more information for biometric purposes, it is unlikely
to be used in real-life scenarios.

Standard medical devices like Holter devices [8] produce
less noisy signals than wearable devices such as smartwatches,
armbands, and chest bands [10] when collecting ECG signals.

We can attribute the cause for this noise to multiple factors,
including the electrode types (dry or wet types), numbers
(1, 6 or 12 leads), and their locations (chest and wrist).
While medical-based ECG recorders have 12 or 6 wet type
electrodes, wearable devices have 1, 2 or 3 dry type electrodes.
Usually, only the first lead, the RA-LA lead, is used as
it is the easiest way to record and implement in a mobile
device, although some portable devices [11] have been able to
implement the first six leads. In addition, many chest bands
like a Qardiocore device [12], armbands [13], and wrist bands
like an Amazfit’s Health Band 1S [14] have been used for
ECG recordings via 1 or 2 leads.

Medical ECG recorders give more reliable data than wear-
able devices because of long and detailed recording and
the higher complexity of the setup. The primary issue with
ECG biometrics has been the time required to capture the
sample or the long sessions for enrollment, compared to faster
modalities (i.e. fingerprint or face recognition). We propose a
verification algorithm for mobile devices that uses the first
ECG lead with the lowest recording time and most minor
training requirements but remains a competitive option in
terms of authentication performance.

In a real-life verification scenario, a person who claims their
identity on the system will be accepted or rejected according
to the verification task. Therefore, verification time is crucial
for all biometrics systems to ensure effective performance. We
simulate a real-life scenario using a short time interval from
the ECG records, which come from wearable and medical
devices for a verification task and present our results.

II. ECG OVERVIEW

An ECG is a recording of the heart’s electrical activity,
captured using electrodes attached to specific body locations.
These electrical activities are the sum of all the electrical
waves occurring during the depolarization of the muscles. In
a normal cardiac cycle, there are three phases (Fig. 1):
− Initially, the atrial depolarization is triggered by the

sinoatrial node (P wave). Atrial repolarization follows this
depolarization. Then a new trigger by the atrioventricular
node after a short delay.

− The signal travels through the bundle of Hiss to the
Purkinje fibres, activating the ventricular depolarization
and contraction (QRS complex). During this phase, the



cardiac vector looks like a triangle, hence the resulting
characteristic complex.

− During the last phase, ventricular relaxation and repolar-
ization occur (T wave).

Fig. 1. ECG track for a single heartbeat. P wave, QRS complex and T wave
are labeled in proximity of the peaks.

The bandwidth of the cardiac cycle is substantial. It may
overlap with other signals (not necessarily biological), but it
is consistent with itself (considering healthy subjects) and is
unique to each subject. The entire cycle follows the same rules
and timing, is triggered by the sinoatrial node. This trigger
leads to two important conclusions: 1) another cycle cannot
occur unless there is repolarization of the muscle fibres, 2)
only the heart rate can be affected by external factors and
cannot exceed a particular value.

Therefore, the heart rate is irrelevant, and the only helpful
information we can extract is from the single cycle during the
various phases.

III. RELATED WORKS

Table I for medical-based devices, and Table II for wearable-
based devices, summarise the existing related work in the area
of ECG authentication alongside corresponding accuracy rates
and recording duration.

When considering a real-life application, it is necessary to
assume the recording of only a single ECG channel from a
mobile device in a short time window. The most probable
situation is a verification task when login into a profile or for
identity confirmation.

The state-of-the-art of the study is the comparison of
medical and wearable-based ECG recorders biometric per-
formances with low training samples using Deep convolu-
tional network (DL) and classical Machine learning (ML)
algorithms. Moreover, comparing the performances of DL and
ML algorithms in the case of several training sample sizes.
Training sample sizes are generally proportional to verification
rates. High training samples return high verification rates. The
study aims to present a robust verification system with several
training sample sizes for medical and wearable-based ECG
data. All the results from the previous works are promising.

The diversity of data is essential for the reliability and broad
applicability of authentication systems. However, each study
lacks a realistic scenario, and in the majority of the cases,
a tiny pool of subjects participated in the study, leading to
over-fitting and unreliable data. Our proposed method provides
consistent verification results for both the medical and wear-
able ECG data, with few training samples and short enrolment
time, both of which would be essential when considering a
commercial mobile system.

IV. MATERIALS AND METHODS

We ran several experiments exploring classical ML models
with extracted features and a DL model as a feature extractor
followed by classification on a distance metric. All the data
used for training and testing come from two datasets, WeSAD
(Wearable Stress and Affect Detection) [25], and E-HOL-03-
0202-003 [20], to compare verification performance with data
obtained with different devices at different sampling rates
under different circumstances. There is no previous study
that includes the comparison of WeSAD and E-HOL-03-
0202-003 dataset performances with different models. In this
section, we describe the datasets, models and procedures of
our experiments.

A. Databases
The WeSAD dataset [25] consists of 17 subjects ECG

recordings collected from a RespiBAN device simultaneously
for 36 minutes per subject. Data was collected for the subject
while sitting, speaking, and watching video clips in the sitting
position. RespiBAN has up to 16-bit sampling resolution and
700 Hz sampling frequency from the chest band. Genders did
not distribute equally (3 females, 12 males) [25]. In this study,
we used RespiBAN data from 15 subjects.

E-HOL-03-0202-003 [20] consists of 24 hours of con-
tinuous digital Holter recordings from 202 healthy subjects
collected with three electrodes positioned to obtain the pseudo-
orthogonal lead configuration. The dataset indicated that par-
ticipants had no cardiovascular diseases or disorders, high
blood pressure, and chronic illness. The population consists
of equally distributed genders (100 male, 100 females and
two undefined). The data capture was after 20 minutes resting
(supine) period, and 200 Hz sampling frequency and 10mV
of amplitude resolution recorded the ECG signals.

We chose these two datasets for the large amount of data
provided from healthy subjects and the differences in record-
ing devices, the wearable-based chest bands versus medical-
based Holter ECG recorders. Furthermore, the lack of existing
studies about verification performance assessments using these
selected databases and the many participants in the E-HOL
database played a vital role in our dataset selection. We aim to
prove that the models are consistent and not biased by device
specifications, providing reliable biometric verification with
wearable devices.

B. Preprocessing
We filtered the ECG signals from all recordings for low-

frequency noise removal and powerline band removal with a



TABLE I
RELATED WORKS OF ECG AUTHENTICATION WITH MEDICAL ECG DEVICES

Studies Features # of Subjects Datasets Record Duration Accuracy Results Train/Test Sizes
Biel et al. [5] Fiducial Points 20 Private Unkown, 4,5 and 10 times 100 % 85 samples in training, 50 samples in testing

Israel et al. [6] Fiducial Points 29 Private 14 min 98 % 20 seconds training
Page et al. [15] QRS 90 Private 20 sec 99.96 % 70/15/15% training, validation and testing
Wang et al. [16] Temporal Points 26 (13,13) PTB & MIT-BIH Vary PTB: 84.61%, MIT-BIH:100% 50% training sample sizes
Chiu et al. [17] QRS 45 (Private), 35(QT) QT and Private 15 min 100 % (Healthy) 1 min training, 1 min testing
Chan et al. [18] Non-fiducial 50 Private 270 sec 89 % 90 sec training, 180 sec testing data
Shen et al. [19] Fiducial points 20 MIT-BIH 48 half-hour excerpts 95% TM, 80% DBNN, 100% Combine 400 training and 200 testing heartbeat samples

Proposed Model Fiducial and DL 160 E-HOL [20] 24 hours
ML: 3.64 - 6.3% EER in NB classifier,

DL: 4.98 - 5.76% EER
ML: 50, 150, 250, 500 sec. ,

DL: 5, 50, 150, 250, 500 sec in training

TABLE II
RELATED WORKS OF ECG AUTHENTICATION WITH WEARABLE ECG DEVICES

Studies Features # of Subjects Datasets Record Duration Accuracy Results Train/Test Sizes
Sriram et al. [21] Fiducial and non-fiducial 17 Private 12-15 mins (training), 5-7 mins (Testing) 88 % 4 sec test, 400 secs training per person

Wieclaw et al. [22] DL 18 Private 147x 10 seconds 88.97 % 30% testing and 70% training samples
Luz et al. [23] CNN 65 and 100 CYBHi and UofTDB Vary 1.33 – 14.27% EER 10% validation in training phase

Choi et al. [24] QRS 175 Private 60 sec 1.87% EER 15 seconds testing time

Proposed Model Fiducial and DL 15 WeSAD [25] 36 minutes x 15
ML: 3.02 - 4.57% EER in NB classifier,

the best 1.6% in DT classifier,
DL: 3.79 - 4,98% EER

ML: 50, 150, 250, 500 sec. ,
DL: 5, 50, 150, 250, 500 sec in training

high pass Butterworth cutoff at 0.5 Hz and a notch at 50/60
Hz (powerline frequency). After this, we created two different
preprocessed data structures, one to train the classical machine
learning algorithms and one for the deep learning architecture,
since the two methodologies work on different conditions.
Firstly, we filter the recording for each subject, and N number
of samples per subject is trimmed and stored in a matrix. Each
sample with the window of size T (number of temporal points
for each sample) and delay between windows s (shift time), re-
sulting in a matrix of dimensions [(N subject∗N)×(T+1)].
Each sample will be further processed to extract a feature
vector. The window size considered for each sample is ten
seconds, with a one-second shift.

In the second case, we created another data structure with
each row representing a single heartbeat cycle. Noise removal
filtering follows the same procedure. We store the first 10000
cycles centred on the R peak as single samples for each
subject in the datasets. Each sample consists of 150 points,
equal to 0.75 seconds of recording. We take the R peak as
reference (from the peak, previous 0.25 seconds and following
0.5 seconds are selected). For both datasets, after trimming
with the 0.7 seconds window, all samples are downsampled
to match the 150-point size, resulting in a matrix of dimen-
sions [(N subject ∗ N) × 150]. To detect R peaks, we used
the neurokit2 libraries with the implemented Pan-Tompkins
algorithm [26].

C. Feature Extraction

From each sample in the preprocessed matrix, we extract a
feature vector with 15 features. The extracted fiducial features
are: QS, meanRR, PQ, Pamp, ST, minRR, maxRR, Qamp,
medRR, Ramp, Samp, stdRR, RR50pRatio, Tamp, RR50p With
P, Q, R, S, T waves of the signal, RR50p the number of
occurrences of R to R distances shorter than 50 points.

Distances between peaks (QS, PQ and ST) are calculated
considering the position of the max value of the two peaks and

averaged over the recording. Peak amp refers to the mean of
the maximum values of the related peaks over the recording.
To calculate each peak amplitude in each cycle, we took as
reference the R peak position (detected with Pan-Tompkins
algorithm). We evaluated the maximum (in case of P and T)
or minimum (in case of Q and S) value in a specific confident
interval of milliseconds before or after the R peak (Table III).
We did not include the number of peaks or specific peak
positions because such features depend on the starting value of
the recording (which is not fixed) and on the subject activity
(an increase in HR implies an increasing number of cycles
and, therefore, peaks). The only features partially affected by
this issue are the RR distances.

D. Models

We explored the performance of several classification mod-
els, fixing the hyperparameters (such as the number of neigh-
bours and number of hidden layers for the DL classifiers) and
changing the training size for both datasets. Used models are
Naive Bayes (NB), Decision Tree (DT), a LDA and a DL.

These classifiers are prominent, frequently-used examples
of ML models on ECG-based applications [27]. NB and LDA
are operated for linear data classification, while DT works
on non-linear data. LDA supposes Gaussian circumstantial
density model, and this classifier uses normally distributed
data. LDA is useful for removing outliers. The calculation
time of K-NN is generally longer than NB for significant
input data cases, while LDA is fast, easy to use and a simple
classifier. NB is the best option to reduce computation costs.
NB works based on prior class probabilities for test samples.
Unless it encounters the problem of zero probability, NB works
appropriately. DT is an effective way to solve classification
and regression problems. DT also helps to reduce computation
costs. It is more tolerant of missing values and non-normalized
data.



TABLE III
DESCRIPTION OF THE EXTRACTED FEATURES. t IS THE TIME VECTOR OF THE SAMPLE, N THE NUMBER OF HEARTBEATS IN A SAMPLE. P, Q , R S, T

REFER TO WAVE PEAKS.

Features Description

QS 1
N

∑N

i=1
tSi
− tQi Distances between peaks

(averaged over sample)
PQ 1

N

∑N

i=1
tQi
− tPi

ST 1
N

∑N

i=1
tTi
− tSi

Pamp µ{Pi}Ni=1

Peak amplitude

(averaged over sample)

Qamp µ{Qi}Ni=1

Ramp µ{Ri}Ni=1

Samp µ{Si}Ni=1

Tamp µ{Ti}Ni=1

minRR min{tRi
− tRi−1

}Ni=2

R-R distances statistics

maxRR max{tRi
− tRi−1

}Ni=2

medRR m{tRi
− tRi−1

}Ni=2

meanRR µ{tRi
− tRi−1

}Ni=2

stdRR σ{tRi
− tRi−1

}Ni=2

RR50p dim(A), A =
{
RR50p

∣∣ RR50p = RRi < 50
}

RR50pRatio RR50p
dim(RR)

Fig. 2. Visualization of the deep learning model. Blue sections inside layers represents the filters. Numbers describe layers and filters dimensions (height,
width and depth).

For this reason, it might be an effective way for wearable-
based data. We use NB for solving linear, parabolic and
elliptic decision boundaries. For this reason, we used several
classifiers to compare their results in different training sample
size cases. The DL model is a unidimensional convolutional
network based on a previous implementation by Labati et al.
[28], but with a smaller structure and different set of weights
and parameters to make it faster. It has four successions of
convolutional and pooling layers, a dropout, a flatten layer and
a fully connected layer (Fig. 2). During the training phase, we
used a softmax layer and a cross-entropy loss function. During

the validation with unseen subjects, we used the output of the
fully connected layer as a feature extractor.

We created the user pattern averaging the extracted features
from five samples after an L2 normalization, and later, we
performed authentication calculating the euclidean distance
between the pattern and testing sample.

V. EXPERIMENTS AND RESULTS

We performed several experiments on the different classi-
fiers with fixed hyperparameters and varied both databases’
train and test sizes.



Fig. 3. Comparison of results in terms of EER with different classifiers varying the enrollment time for E-HOL dataset. Authentication is performed with a
10 seconds window ( 3 seconds or less for the convolutional model), therefore 5s ML results cannot be calculated.

Fig. 4. Comparison of results in terms of EER with different classifiers varying the enrollment time for WeSAD dataset. Authentication is performed with a
10 seconds window ( 3 seconds or less for the convolutional model), therefore 5s ML results cannot be calculated.

For classical ML classifiers, we used a 10 seconds time
window for each sample during the preprocessing. We cal-
culated the mean EER for each model. We used 50, 150,
250 and 500 seconds of samples from genuine and imposter
subjects for training; in the case of the DL algorithm, we
also included a smaller training window of 5 seconds that
classical models could not achieve. We selected imposter
samples at random from the remaining users in the dataset
different from the enrolled subject. In the testing protocol, we
used randomly selected impostors and genuine samples for
binary classification. The authentication time corresponds to
the single sample window of 10 seconds ( 2 seconds for the
DL model).

In the DL algorithm, we used all the preprocessed samples
from 160 subjects of the E-HOL dataset to train the weights
and the remaining for validation. Then, we used the various
samples from each unseen subject to create the pattern and

used the euclidean distance as the similarity metric according
to the different enrolling times. Thus, we had two test sets:
unseen users from the E-HOL dataset (Fig. 3) and unseen users
from the WeSAD dataset (Fig. 4).

We achieved the best results with NB and DT classifiers,
both models achieving an EER lower than 5% and 10%,
respectively, with an enrollment time of 150 seconds. The
DL model also achieved 5.76% EER on the E-HOL dataset
and 7.07% EER on the WeSAD dataset with only 5 seconds
of enrollment. In both cases, the short time required for
enrollment and verification makes it the best choice.

VI. CONCLUSIONS

The results lead to many conclusions; it is vital to observe
how statistical methods perform better than hyperplane separa-
tors. NB has the best performance in terms of EER. However,
the DL model outclasses it in terms of enrollment samples



required and the time window on verification. Our results are
slightly worse than previous studies; however, our evaluation is
against many subjects using the most miniature recording time
windows and training samples. We outperform all the previous
works in terms of enrollment samples required and verification
time. Only [21] provides a challenging methodology with
only four seconds of recordings required for authentication.
However, due to the five minutes of enrollment required, their
proposal becomes hard to be accepted by the public. Our
DL model requires a shorter enrolment, only 5 seconds of
recorded data, providing fast authentication on the query. We
also proved the consistency and generalisation of our work
over different datasets and devices, as can be seen in Fig. 3
and Fig. 4. The novelty of the proposed method is a robust
authentication for medical and wearable ECG recorders, even
in the case of short enrollment times.

We can conclude that ECG biometrics will be a valid
verification option and could be used in the future as an au-
thentication method, not only continuously, through wearable
devices.
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