
EasyChair Preprint

№ 99

Blockchain technology: possible methods of

transaction validation and version consensus

Brylov Alexandr, Ostrovskaya Kate and Mikhalyov Alexandr

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 28, 2018

Blockchain technology: possible methods of transaction
validation and version consensus

BrylovA.O.1 and Ostrovskaya K.Y.2 and Mikhalyov A.I.3

1National Metallurgical Academy of Ukraine, Ukraine
S.Brylov@outlook.com

2PhD, National Metallurgical Academy of Ukraine, Ukraine
kuostrovskaya@gmail.com

3Dr.Sc. (Ing), Professor, National Metallurgical Academy of Ukraine, Ukraine
maillich2@gmail.com

Abstract. An article contains the overview of blockchain technology, major
principals of its programming. Blockchain is the data structure consisted of
blocks where every next block is strictly connected with previous one by in-
cluding its hashcode as property. Every blockchain is also implements the de-
centralized storage of data. Several critical aspects are analyzed: optimal solu-
tions for transaction validation and algorithms of consensus between nodes in
blockchain decentralized network. The validation may be organized by storing
the transactions data in the separate nodes and by including the “bookkeeper”
class designed to review the transactions and validate it. Alternative approach is
to make the transaction”self-validating”, so it is always consists entire data re-
quired for validation. There are several ways for reaching the consensus across
network about which version of blockchain is consider as correct one. Simple
rule of ”longest and late prevails” is suitable for small, non-scalable projects,
while rule of “50%+1” needs to be implemented for larger ones. Non of those
solves the problem of wasting of resources, so this aspect remains a subject for
further research and testing.

Keywords:blockchain, validation, algorithms.

The word “blockchain” attracts significant attention of programmers, investors and,
overall, a wider society, people who watch for the innovations in IT industry. The
major part of this interest is resulted by fast monetizing of cryptocurrencies, unprece-
dented appreciation of bitcoin, and, soon later, of the other coins, though is not li-
mited to this only. The consensus among financials already exists that cryptocurren-
cies are going to take a definite place in the world economy, while experts in pro-
gramming and engineering are confident that the blockchain is breakthrough technol-
ogy that can be applied in almost every important area of life and society [1].
Let me briefly describe the core of blockchain. In general, the blockchain is nothing
more than data structure – the list or linked list (in C# terms), that implements the set
of definite rules. The block of blockchain is an entity, that stores the data and several

2

other attributes. The data stored inside the block are usually called “transaction” even
if this specific project does not connect to finance and cryptocurrency. So, in this
article I will use terms transaction, block, blockchain.
In the general case the block consists of transactions (one, two or many – it does not
matter and implemented according to the specific task), timestamp and, the most im-
portant, the previous block. Obviously, such concept leads to progressive size growth
of each next block and, thereafter, its size will exceed soon the limitations of network
data exchange. That is why one of the key feature of any blockchain implementation
is hashing of data.
Any data, regardless of data type (integers, symbols, strings, objects) can be casted to
common format, usually – to string. Moreover, any string of arbitrary length, using
crypto-algorithms, can be casted to array of symbols of fixed length (bit string). Such
algorithms usually called “hashing”: applying hashing to the input string results an
output string of fixed length. Changing of even single character in the input string
always results the completely different output string.
Thanks to above method, there is an opportunity to avoid necessity to include an en-
tire previous block into the next one. Instead, hash-code of previous block is included
only. This should be noted here, that hash does not allow decryption of input data and
it is not designed for. The most important in this concept is the fact, that attempt to
change any piece of data of previous block results in the change of its hash, hence the
incompatibility with the next block.

Fig. 1. - Block structure and blockchain build

Hash of current block is not included into the block but is a resulting string of its en-
tire content. It is written into the next block. Therefore, any changes made in block 10
lead to the situation when its output hash does not equal any more to the previous
hash of block 11. Since the verification of hashes equality is simple and does not re-
quire large computing resources, the integrity of the entire blockchain is simple and
can be monitored instantly. Thanks to that, blockchain has a high level of security[7].
In general case the programming code of the block creation (constructor) is imple-
mented as following:

public Block(inti, Transaction transactionData, string
prev = "")

 {

3

 index = i;

 Data = transactionData;

 timestamp = DateTime.Now;

PreviousHash = prev;

 Hash = CalculateHash();

 }

where the most important method – CalculateHash() – may
be defined in the way:

public string CalculateHash()

 {

StringBuildersb = new StringBuilder();

 string toEncrypt = index.ToString() + Pre-
viousHash + timestamp.ToString() + Data.ToString() +
nonce;

 using (SHA256 hash = SHA256Managed.Create())

 {

 Encoding enc = Encoding.UTF8;

 Byte[] result =
hash.ComputeHash(enc.GetBytes(toEncrypt));

foreach(Byte b in result)

 {

sb.Append(b.ToString("x2"));

 }

 }

 return sb.ToString();

 }

The second most important principal of the majority of blockchain projects is decen-
tralization of data storage. Naturally for human, when one needs to protect something
valuable, he tries to hide it the most secured place and lock it behind as many lockers
as possible. But, in case intruder succeeds to break the protection, there is nothing

4

more to prevent him of destruction or changing the data. Even more, in some circums-
tances the fact of storage penetration is not always obvious. The blockchain projects
implement the opposite approach. The copies of data are stored at multiple separate
nodes. Data changes in the one of the node do not automatically lead to data changes
in the others. Vice versa, as soon as the discrepancy is identified, the node, that has
been changed (or hacked), restores the original data by synchronizing with the peers.
The probability of simultaneous and synchronized intervention into the multiple
nodes is significantly lower and, is becoming even lower as the number of network
participants is growing[2].
There are several other principals used in the majority of blockchain projects: proof-
of-work – applying a deterministic requirements to the hash of block (for example, it
must start with several zeros), proof-of-stake and other methods of confirming of the
data transaction contains, smart-contracts, but most of such principals are not neces-
sary and may have different implementation according to specific project needs.
In order to describe the most basic issues blockchain-programmer has to solve, it is
worth to give a brief overview of the structure of decentralized network which will
use this project: who are participants, what are their roles and functions.
In common practice there are three types of participants: nodes, miners, users.
Nodes store data and permanently broadcast them across the network. Users make
transactions. Miners create blocks. The last type called “miners” because the majority
of blockchain projects implement proof-of-work principal, which designed to prevent
uncontrolled block emission. The difficult mathematic problem requiring substantial
computer power must be solved in order to create new block. But in general sense, the
miners are nothing more than nodes, that serve the blockchain [7].
Users make transactions (not necessarily in financial meaning. It might be contracts,
file creation, voting, so on). Nodes receive transactions and broadcast them. Miners
collect transactions and create blocks that include transactions and pass them to the
nearest nodes. The node gets new block, verifies it, attaches it to blockchain and
broadcasts updated blockchain to peer-nodes.

Fig. 2. - General map of interaction of network participants

5

Obviously, the idea does not look complicated as well as its programming implemen-
tation. But the software developer who works on such project, faces several issues
right at the beginning. These issues might have a variety of possible solutions and, the
purpose of this article is to review such solutions. Though, as I mentioned above the
blockchain technology is not limited to cryptocurrencies only, but has a variety of
applications, in the examples below I will use cryptomoney examples and terminolo-
gy because it allows to describe the issues easier and more clearly. Therefore my ex-
amples are based on the possible implementation of blockchain for finance transac-
tions purpose.
The first problem is related to methods and algorithms of validation of transactions.
For example, user John wants to send to user Natalia 10 cryptocoins. Using some user
interface he prepares and completes the transaction. The nearest functioning node
receives this transaction. Evidently, such node needs to validate this transaction be-
fore broadcasting. In the opposite case, future blocks might include incorrect transac-
tions so the miners computing power is wasted.
The very basic transaction includes five properties: sender address, receiver address,
amount and timestamp. In order to make a validation easier, we also include the prop-
erty TransactionHash, which represents the hash of other properties.

public class Transaction

{

 public string Sender { get; set; }

 public string Recipient { get; set; }

 public decimal Amount { get; set; }

 public DateTime Timestamp { get; set; }

 public string TransacationHash { get; set; }

}

Thus the validation of transaction consists of answering three questions: does receiver
exist, does sender have sufficient funds, and, is current transaction unique (does not
exist among completed transactions).
In order to work out the algorithm, we need to decide first where and how users data
are stored (accounts usually represent the string of bit of fixed length), and, completed
transactions data. While developing a blockchain project, I tested two possible ap-
proaches:

1. Some nodes play a role of “bookkeeper”: contain the list of registered accounts
and, separately, list of completed and verified transactions. Obviously, such nodes
are also instantly synchronized between each other.

2. User’s accounts included in the blockchain. Every block has an entire list of regis-
tered accounts.

6

The benefits of first variant are the following: blockchain is less loaded with the data,
every block is smaller, and, actually, the transaction validation is simple, program-
ming code is shorter. But there are some disadvantages as well: additional objects are
created, and we need to work on synchronization, security of such objects and, poten-
tially, the network becomes less decentralized.
The second variant is more elegant but demands more complicated validation me-
thods and leads to increase of block size.
So the validation of transaction starts with verification of existence of receiver. In
case registered accounts are stored in separate list, such list must be iterated while
match is not found. If user’s data stored in the blockchain, the node must iterate an
entire blockchain while match is not found.

bool IsValidAddresses(Transaction someTransaction,
List<Account>ListOfAllAccounts)

{

 if (someTransaction.Sender == some-
Transaction.Recipient) return false;

 bool isValidSender = false;

 bool isValidRecipient = false;

foreach(Account account in ListOfAllAccounts)

 {

 if (someTransaction.Sender == ac-
count.Address) isValidSender = true;

 if (someTransaction.Recipient == ac-
count.Address) isValidRecipient = true;

 }

 if (isValidRecipient&&isValidSender) return
true;

 else return false;

 }

The verification of funds sufficiency is more interesting task. In traditional banking
service, banks always store the balance of each account: amount of funds available for
spending. So in order to complete a fraudulent transaction (spend an amount exceed-
ing the available funds), one number only must be changed. Such a threat contradicts
to principals of blockchain. In order to make validation more reliable, we might get
amounts of every incoming and outcoming transactions related to specific user. The
positive difference between sum of first and latter is the criterion of correct transac-

7

tion. Such approach requires the iteration of the entire array of past transactions,
whether they are stored in the separate list or included in the blocks.

public bool IsValidTransaction(Transaction some-
Transaction, Hashtable transactions,
List<Account>ListOfAllAccounts)

{

 if (!IsValidAddresses(someTransaction, ListO-
fAllAccounts)) return false;

 decimal amountRecieved = 0;

foreach(Transaction instance in TransactionsAsReci-
pent(someTransaction, transactions))

 {

amountRecieved += instance.Amount;

 }

 decimal amountSent = 0;

foreach (Transaction instance in TransactionsAsSend-
er(someTransaction, transactions))

 {

amountSent += instance.Amount;

 }

 return ((amountRecieved - amountSent - some-
Transaction.Amount) >= 0);

 }

Bitcoin project implements another interesting and elegant method of validation. It
implements so-called self-sufficient transaction architecture, the transaction that con-
tains all data required for funds verification. In such concept the transaction might
have a link to several incoming and outcoming transactions. The amount of outcom-
ing must not exceed the amount of incoming. When user John has 100 coins and
sends to Natalia 10 coins, the interface automatically generates an extra transaction:
John sends the remaining 90 coins to himself. When John decides to make next trans-
action, the 90-coins-transaction from previous one appears as incoming transac-
tion [6].
The only drawback of such approach is the complexity of transaction, as well as the
fact that it requires additional applications on user side, which will automatically

8

create transactions to self. But overall, this is an excellent example of object oriented
approach when object itself is self-sufficient.
Another problem, that I want to review in this article, are methods and algorithms of
consensus between nodes regarding to which variant of blockchain to consider as
correct one [5]. Any network communication works with some delay of data transfer.
Data arrive to every participant assynchronically, not at the same moment of time.
Closer node might get updated data sooner than the remote node. Let’s imagine, that
two miners, connected to different nodes, started to work on new block simultaneous-
ly. By some reason, first miner (let’s call him “Miner A”) has finished the job and
passed the newly created block to his nearest node (“Node A”), and, started to com-
pute the next block. The node, who has got the block, attached it to blockchain and
started to broadcast updated blockchain across network. A few milliseconds later,
second miner (“Miner B”) finished his job as well and passed it to his nearest node
(“Node B”). This has happened just one millisecond, but still before Node B receives
an updated version of blockchain from Node A. So, Node B also attaches new block
(created by Miner B) to his, old version of blockchain and started broadcasting it as
well. One of rules of blockchain is “The longer chain prevails”, that means that nodes
must consider the longest blockchain version (the blockchain containing the greatest
number of blocks) as correct. But in our case the versions at Node A and B are still
having same length though the last block is different. Such example is called “block-
chain conflict”. When (or if) Miner A creates new block, Node A attaches it and starts
broadcasting before Node B gets next block from Miner B, Node B has to accept the
most recent version of blockchain broadcasted by Node A, as correct. Now on, the
blockchain is same at both nodes and conflict has resolved. But Miner B keeps work-
ing on his second block though it will not be valid anymore because its previous hash
is not equal to hash of most recent block of blockchain. So resources of Miner B has
been wasted, wasted not only for last block, but for previous one as well.

Fig. 3. - Short blockchain conflict

This problem has two sides: first – the definition of optimal algorithm of consensus,
second – optimizing of usage of computing resources[4].
If the network is small, number of participants and transaction frequency is expected
to remain limited, then the very simple algorithm can be implemented. The block
creation shall be engineered in a such way so the average block creation time is sub-
stantially longer than the time required for every node of network to receive an update
of latest blockchain version. Then we can define the frequency the nodes to synchron-
ize: each node gets blockchain version from every other node. The node can then
check the length of each version and save the longest one.

9

An extra criterion applied in case of existence of several versions with the same
length: for example, timestamp of last block. But, this approach does not satisfy the
requirements of scalability and it can’t be implemented if data transfer time between
remote nodes exceeds new block creation time.
The full synchronizing between nodes might take much longer time the speed of
blockchain updating in separate nodes in the larger projects, that designed to serve the
nodes located very far from each other. In such case, we might face a scenario when
alternative versions of blockchain might appear and keep living for long time inside
the remote segments of the network. Such event called “soft-fork”. As shown in the
above example, that means the large amount of blocks have to be wasted when finally
the consensus is achieved. Therefore, many transactions that have been included al-
ready in that thrown away blocks, become unconfirmed again and must be re-worked
into new blocks. The partial solution (or at least some optimizing) is to include addi-
tional property into the block structure: number of confirmation, i.e. the number of
nodes that have accepted this block as valid and have added it to blockchain. This
reduces the accumulation of conflicts: consensus between the nodes to be found much
earlier than the length of some node’s version becomes bigger. Finally, it implements
the “50%+1” principal: if large soft-fork has happened the network finally accepts the
blockchain variant that collects more than 50% of confirmations [6].

Fig. 4. - Extended conflict – soft-fork

But the sad issue of multiple wasted blocks still remains. I can see two ideas for future
research and testing. The first is, let say, “planned soft-fork”. Transactions are to be
pre-definitely distributed between miners for further computing. Miners create blocks
that are attached by the nodes to its blockchain versions. Soft-forks are allowed for
some determined length, for example, 10 blocks. When several versions have
achieved this length, the computing of new blocks has to be stopped until one special
joining block is created. Such special block must include hash of hashes of all block-
chain versions and pointers to the latest blocks of both.

Fig. 5. - Planned soft-fork

10

The second idea is to build the proof-of-work algorithm in a such way so the mathe-
matical problem that has to be solved to create the new block can be divided into parts
and those parts to be distributed between miners. It can be possible to find an algo-
rithm, that allows to pre-compute the block independently on the transactions to be
recorded in. This makes possible to use the computing job done once to be applied to
any future block.
Both ideas are not yet implemented and require future analysis and discussion as well
as deep testing to determine the complexity, resources required and fault tolerance. At
high extent, this definition is valid for the entire blockchain technology, because,
despite hundreds and thousands of projects already launched, technology is still on the
stage of its birth. Evidently, the potential is great, the sphere of application is very
wide [3]. Therefore, I believe that development and further research of blockchain is
an excellent area of study and work for at least one entire generation of software en-
gineers.

References

1. Tapscott Don, Tapscott Alex. Blockchain revolution. New York, 2016.
2. Antonopoulos Andreas M. Mastering Bitcoin. Programming the open blockchain. New

York, 2017.
3. Vigna Paul, Casey Michael J. The Age of Cryptocurrency: How Bitcoin and the Block-

chain Are Challenging the Global Economic Order. New York, 2016.
4. Wattenhover Roger. The Science of the Blockchain. New York, 2016.
5. Pease Marshall, Shostak Robert. The Byzantine Generals Problem. ACM Transactions on

Programming Languages and Systems. 1982.
6. Satoshi Nakamoto. Bitcoin:A Peer-to-Peer Electronic Cash System. Bitcoin whitepaper at

https://bitcoin.org/bitcoin.pdf.
7. Dorier Nicolas. Blockchain Programming in C#. https:// programmingblockchain. git-

books.io/.

