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Abstract—In this research paper storage as well as retrieval of
1-D/2-D/3-D information using Hopfield type Associative Mem-
ories (AMs) is discussed. Various Artificial Neural Networks
(ANN) architectures are proposed. Also, implementational issues
associated with those Associative Memories are discussed. Cas-
cade connection of AM and Convolutional Neural Network is
proposed for noise immunity.

Index Terms—Associative Memories, Hopfield Network

I. INTRODUCTION

In an effort to the model, biological memory, Hopfield
proposed an Associative Memory ( the so-called Discrete
Time Hopfield Neural Network). The proposed Associative
Memory (AM) is based on a vector of {+1,-1} as the state
of the dynamical system. Thus, in such an Artificial Neural
Network(ANN), only one dimensional information can be
stored.

In [8], the author proposed the design of Multi-Dimensional
Neural Networks.A natural question that arises is how to
design an associative memory which can store two/three
dimensional information. As a first attempt to answer the
question, researchers attempted designing associative memory
with {+1,-1} arrays as the state of the system.Further some
researchers studied associative memories with multi-state
neurons, whose state vector has more than two elements [11],
[9]. These efforts have many applications for content based
Image Retrieval and other problems.

It is well known that the research area of Content Based
Image Retrieval(CBIR) has been progressed by researchers. In
fact CBIR based on Convolutional Neural Networks (CNNs)
is a current active research area. Also, audio/video database
technology is actively being developed. These efforts almost
utilize the ideas of associative memory design.

In this research paper we propose storage/retrieval of
1-D/2-D/3-D information from 1-D/ 2-D/ 3-D queries based

on the ideas of associative memory.

This research paper is organized as follows. In Section-II,
review of related research literature is presented. In Section-
III, an architecture based on Parallel Hopfield Neural Network.
is proposed. In Section-IV, we proposed new architectures
by stacking of parallel Hopfield Associative Memories for
conversion of lower dimension to higher dimensions. We also
discussed on Ceiling Neuron based Associative Memory.In
Section-V, a novel deep learning architecture is proposed.
In Section-VI, applications are discussed. In Section-VII,
results of all the proposed architectures are discussed and
implemented on Black & White Images. The research paper
concludes in Section-VIII.

II. REVIEW OF RELATED LITERATURE

In research literature on Associated Memories, many
researchers realized that Hopfield Associated Memory is
very restricted from the point of view of state space.
There were efforts to design other models of memory such
as Bi-Directional Associated Memories (BAM) [12]. Also
Auto/Hetero -Associative memories were conceived and im-
plemented. Aizenberg et al proposed multi-state neuron based
associative memories. In most of these efforts, the state of the
neural network (dynamical System) was a vector. In [8],the
author proposed the design of multi-dimensional associative
memories. In fact convergence theorem of multi-dimensional
Hopfield neural network was proved [3].

Two-dimensional as well as three-dimensional associative
memories find many applications to store images as well as
video data [2]. In this research paper, we attempt simple
models of 2-D or 3-D associative memories in the spirit of
Hopfield’s effort.

III. PARALLEL HOPFIELD NEURAL NETWORK

In this section, we propose a variation of Discrete time
Hopfield Neural Network. The architecture proposed in this
section is motivated by the concept of CEILING NEURON



proposed in [4]. In this model of neuron, there are multiple
thresholds at each neuron instead of a single one. We utilize
such an idea to arrive at the following nonlinear dynamical
system which acts as a two dimensional associative memory.

A. Architecture-1 :

Ṽ (n + 1) = Sign{W̄ Ṽ (n)− T̃} (1)

with , Ṽ(0) as the initial state matrix.In (1),
{Ṽ (n) : for n ≥0} is a {+1,-1} valued state matrix and T̃

is a matrix of thresholds ( motivated by the idea in [4], where
there are multiple thresholds at each neuron). It should be
noted that (1) corresponds to fully parallel mode of operation
of two dimensional associative memory. It readily follows
that serial mode of operation of such an associative memory
corresponds to updating just one component of Ṽ(n+1). We
ensure that the diagonal elements of weight matrix,W are all
non-negative. Based on the convergence theorem of ordinary
Hopfield Neural Network in the serial mode of operation, 2-
D associative memory converges to a STABLE STATE (a
matrix of +1’s and -1’s) and to a cycle of length at-most
2 in the fully parallel mode of operation . A more general
model of associative memory motivated by the idea in [6] is
the following one:

Ṽ (n + 1) = Sign{W̄ (n)Ṽ (n)− T̃ (n)} (2)

In the spirit of Parallel HAM in (1), we can use three/higher-
dimensional state tensors. Thus, we have the following general
multi-dimensional associative memory.

Ṽ (n + 1) = Sign{W̄ ~ Ṽ (n)− T̃}, (3)

where {Ṽ (n) : for n ≥0} are state tensors and ’~′ denotes
suitable inner product. Also T̃ is the tensor of thresholds.

Synthesis of Hopfield Associative memory with desired
stable states, when threshold vector is a zero vector was
documented in [1]. Also, in Rama et al [10],even when the
threshold vector is non-zero,synthesis of dimensional Hopfield
network with desired stable states was discussed. These results
naturally apply for architecture-1 above.

Note: The synthesis procedure discussed in [10] naturally
generalises to tensor based linear operators with eigen values
and eigen tensors.

IV. STACKING OF PARALLEL HOPFIELD ASSOCIATIVE
MEMORIES

In the two-dimensional associative memory proposed in the
above section,the synaptic weight matrix remains same for
updating the state vectors in parallel. An effort to relax this
assumption leads to the following architecture.

A. Architecture-2:

Consider ’M’ synaptic weight metrices. Using them, stack
’M’ HNN’s/HAM’s are in the following manner.
• Provide all of them with the same initial state vector.
• The threshold vectors at each of them is different so that

the stable states are different.

HAM-1

(W1)

HAM-2

(W2)

HAM-M

(WM )

S1

S2

initial state
vector {+1,-
1}

SM

Fig. 1. Block diagram of Architecture-2.

• The Fig.1 illustrates the architecture.
Note: The above architecture ”associates” an initial state

vector with a matrix whose columns are related stable states.

B. Architecture -3

HAM-1

(W1)

HAM-2

(W2)

HAM-M

(WM )

V̄ 1(0) S1

V̄ 2(0) S2

V̄ M (0) SM

Fig. 2. Block diagram of Architecture-3.

Now, we propose another stacking based architecture where
the input of ’M’ HAMs/HANs is a matrix of {+1’s, -1’s} i.e.,
Let Ṽ(0) be a {+1,-1} component matrix.

Ṽ(0) =[V1(0) V2(0) ......... VM (0)]

Note: In this architecture, a two dimensional {+1,-1}
matrix is associated with a 2-Dimensional matrix of {+1,-1}s
whose columns correspond to the stable states of associative
memories.



C. Architecture-4

Now, we consider an architecture in which the initial
condition is a {+1,-1} matrix, which is fed to 2-dimensional
associative memories with different synaptic weight matrices
(at each level of the stack).

i.e., At each level of stack, we have a different 2-
Dimensional associative memory (which is exactly same as
in architecture-1).

HAM-1

(W1)

HAM-2

(W2)

HAM-M

(WM )

S̃1

S̃2

Ṽ(0)

S̃M

Fig. 3. Block diagram of Architecture-4.

Note: 2-Dimensional initial state matrix is ”associated”
with a stack of 2-Dimensional stable state matrices i.e., we
have a model of memory where two dimensional initial {+1,-
1} state matrix is associated with a 3-Dimensional state tensor.

Now, we propose another architecture.

D. Architecture-5

In this architecture of stack, at each level of stack, we have
a different 2-Dimensional associative memory with different
initial state matrix that converges to a different stable state
matrix.

Note: 3-Dimensional initial state tensor is associated with
a 3-Dimensional stable state tensor.

E. Architecture-6

In this architecture, consider ’M’ synaptic weight metrices
each of which is having same initial state vector and different
threshold vectors. Such Associative Memory produces differ-
ent stable states. These stable states are given as input to a
different associative memory which converges to a different
stable state matrix, at each level of stack.

Note: A 1-dimensional vector is associated with 2-
Dimensional stable state matrix.This 2-Dimensional stable
state is then associated with a 3-Dimensional stable state
tensor.

HAM-1

(W1)

HAM-2

(W2)

HAM-M

(WM )

Ṽ 1(0) S̃1

Ṽ 2(0) S̃2

Ṽ M (0) S̃M

Fig. 4. Block diagram of Architecture-5.

HAM-1

(W1)

HAM-1

(W1∗)

HAM-2

(W2)

HAM-2

(W2∗)

HAM-M

(WM )

HAM-M

(WM∗)

S̃1

S̃2

V̄(0)

S̃M

Fig. 5. Block diagram of Architecture-6.

The architectures proposed in the above example retrieve 1-
D/2-D/3-D data given the initial state as 1-D /2-D /3-D signal.
Specific applications are listed is Section-VI.

Infact, we proposed a parallel, stacked architecture in Fig(5).
Such an architecture could be utilized as ASSOCIATIVE
MEMORY based on multiple types of (1-D and/or 2-D and/or
3-D) initial state tensors.

Note: Using multi-state neurons (not just ±1 valued)
as proposed in [11] and the architectures proposed in this
research paper versatile associative memories can be readily
designed.

It is possible to conceive architectures in which a higher di-
mensional information is associated with a lower dimensional
information. We have following three cases:



• 2-Dimensional to 1-Dimensional
• 3-Dimensional to 2-Dimensional
• 3-Dimensional to 1-Dimensional
Such associative memories require higher dimensional sta-

ble states to be reduced to lower dimensional stable states.

CEILING NEURON - BASED ASSOCIATIVE
MEMORY : 2-D TO 1-D ASSOCIATIVE MEMORY

In Ceiling neuron model [4], every neuron has multiple
thresholds. Using multiple thresholds, the net contribution
(i.e.,

∑N
i=1 Wixi ) is thresholded and the resulting state of

the network is a matrix (i.e., two dimensional information).
In Section-5 of[4], we propose an associative memory where
the state is a vector. Thus, in such an associative memory,
two dimensional state information is associated with a
one-dimensional stable states. We, thus expect design of
Associative Memories where higher dimensional information
is associated with lower dimensional information.

Note-1: When functions of human memory are understood,
it becomes evident that higher dimensional information is
”associated” with lower dimensional information (and vice-
versa) in an effortless manner. One of our goals in this research
paper is to arrive at models of Artificial Neural Networks
which can achieve these functions.

Note-2: Using Parallel, Stacked Hopfield neural network
architectures, 1-D/ 2-D/ 3-D information can be stored and
retrieved. Thus, a total of Nine architectures [3 x 3] are
possible. We only included five of them for brevity.

Note-3: With two stages of Stacked/ parallel architectures,
there are twenty seven (9 X 3) possible associative memories.
The effort is to model, biological associative memories.

V. NOVEL ASSOCIATIVE MEMORIES : DEEP LEARNING

In most of the applications one/two/three dimensional data
(vectors/matrices/3-D arrays) is corrupted by noise [5]. In
the case of one dimensional neural networks, the author
proposed the concept of ”HYBRID Neural Networks” [7]. In
that research paper, associative memory(e.g. Hopfield neural
network) is utilized to filter the noise. The input vectors
after filtering are fed to a Multi-Layer Perceptron, which
performs classification. Generalizing the idea, we employ 2-
D/3-D associative memory to filter noise from images,videos.
The filtered input is fed to a Deep Convolutional network for
performing classification.

The Block diagram representation of such a Deep neural
network is provided below.

The associative memories discussed above, reach stable
state given an input. In the figure(6), the stable states
constitute the input to a Convolutional Neural Network
(CNN).Specifically, the associative memory can be synthe-
sized with ’N’ desired stable states each belonging to a class in
the classification problem. The CNN can be trained to perform
the desired classification problem.

1-D/2-D/3-D
associative

memory

Deep
convolutional

Neural
Network

noise
corrupted
input
patterns
(1-D/2-D/3-
D)

Classified
Output

Fig. 6. Block diagram of novel associative memories.

Note: The stable states can be one/two/three dimensional
corresponding to audio/text, image, video related data.

We have experimented with the architecture in Fig.7 and
achieved good classification performance. The spurious stable
states are eliminated by properly training the CNN architec-
ture.

Note: The synthesis approach proposed in [10] for
programming desired stable states can easily be generalized
to 2-D/ 3-D associative memories.

In [7], the author also proposed an architecture in which the
noisy output patterns of a Multi-Layer Perceptron (MLP) are
filtered using an associative memory.

1-D /2-D/
3-D

associative
Memory

Output of
classifier
(e.g:MLP)

Filtered
Classifier
Output

Fig. 7. Block diagram of Filtered Classifier Output.

VI. APPLICATIONS

It is well known that the discrete time Hopfield neural
network (based on convergence theorem) was successfully
utilized to store one-dimensional patterns (which are specified
using +1’s, -1’s). Generalizing the idea, we innovated the
six architectures specified above. These architectures are an
effort to model the memory mechanisms in homo-Sapiens.
For instance, given the speech input of a person, the memory
can correlated with the face image of the person i.e., the
biological neural network stores the correspondence between
speech signal and the associated image.

In general, human brain is capable of retrieving 1-D/ 2-D/
3-D information, given the 1-D/ 2-D/ 3-D information/signal
as the input through the process of association. Hence, out of
Nine possible architectures, we provided five architectures in
the above sections.

Further, as we can expect, human brains can be expected
to have various associative memory units connected to
one another using certain ”Network Topology ”. Such,



interacting associative memories are potentially capable of
storing heterogeneous types (speech/image/video signals) of
information. The Architecture-6 proposed above illustrates
one such type of associative memory, where two associative
memories are connected in cascade architecture.

VII. RESULTS OF IMPLEMENTATION

We first discuss hardware-software implementations of
the above architectures. Multi-core machines, Graphical
Processing Units (GPUs), Field Programmable Gate Arrays
(FPGAs) are the computing units available for implementation.

• It should be realized that the parallel Hopfield neural
network is readily amenable for parallel implementation
on the computing units (e.g: Multi-core Machines).

• Even the Stacked architectures can naturally be imple-
mented in parallel using hardware accelerators.

We are currently investigating dedicated purpose hardware
to implement 1-D/ 2-D/ 3-D associative memories. These
memory units can potentially ”Speed up” retrieval of stored
1-D/ 2-D/ 3-D information.
• We now provide some numerical results on data.
• We also provide some results related to implementation

based on black and white images.
The results and implementation of all the architectures

mentioned in Section-III and Section-IV are provided below:

A. Architecture-1

We have taken 3x3 symmetric weight matrix, one state
matrix having elements of +1,-1’s and one threshold matrix
whose values are in the range of 0 to 1.

Here we have taken,

W =

 0 −3 −2
−3 0 −4
−2 −4 0


We implemented AM in parallel mode of operation. As a

result, it converges to a cycle of length 2 .

B. Architecture-2

We have taken two HAMs having two different symmetric
3x3 weight matrices and one 3x1 state vector,V̄(0).

We have taken,

W1 =

0 1 2
1 0 3
2 3 0


and

W2 =

0 5 4
5 0 6
4 6 0


It is shown that the associated AM converges in serial mode

and also converges with cycle of length 2 in parallel mode of
operation. Then, when we stack all the final states. We arrive
at a matrix.

C. Architecture-3

We have taken two HAMs having same or different
symmetric 3x3 weight matrices and a state matrix of two
different 3x3 state vectors which is provided in (4).

Ṽ (0) = [V̄ 1(0) V̄ 2(0)] (4)

We have taken,

W1 =

0 1 2
1 0 3
2 3 0


and

W2 =

0 4 5
4 0 6
5 6 0


Such an Associative Memory (AM) converged with cycle

of length 2 in parallel mode of operation. Then we stack all
the final state vectors, which leads to a matrix of 2-D.

D. Architecture-4

We have taken two HAMs having two different symmetric
3x3 weight matrices and one 3x1 state matrix,Ṽ(0).

We have taken,

W1 =

0 1 2
1 0 3
2 3 0


and

W2 =

0 4 5
4 0 6
5 6 0


Such AM converged with cycle of length 2 in parallel mode

of operation. Finally 2-D information is converted to 3-D by
stacking all the final stable states.

E. Architecture-5

We have taken two HAMs having same or different sym-
metric 3x3 weight matrices and a state matrix of two different
3x3 state vectors as Ṽ 1(0) and Ṽ 2(0)

We have taken,

W1 =

0 4 5
4 0 6
5 6 0


and

W2 =

0 1 2
1 0 3
2 3 0


Such AM converged with cycle of length 2 in parallel mode

of operation. Then we stack all the final state matrices, which
leads to 3-D. Finally it is shown that 3-D input converges to
3-D output.



Fig. 8. Block diagram of implementation on Black and White image

F. Architecture-6

We have taken two HAMs having same or different sym-
metric 3x3 weight matrices and a state vector of V̄ 1(0). Now
convert this 1-D information to 2-D array by running the HAM
in serial mode of operation. The stable states of first stage are
fed to second stage HAM, with the same weights. Thus 2-D
information is converted to 3-D.

We had taken,

W1 = W ∗1 =

0 4 5
4 0 6
5 6 0


and

W2 = W ∗2 =

0 1 2
1 0 3
2 3 0


This AM converged with cycle of length 2 in parallel mode

of operation. Then stack all the final state vectors. Thus 1-D
converted to 3-D.

G. Implementation on Black and White Images:

Here we have taken a black & white image having 5x5
dimension. Then we converted it into a 5x5 matrix of elements
{+1,-1}. Then it is given as input to HAM. It converges in
parallel mode with cycle of length 2. Then we fix the weights.

Now, add some noise to the input picture. Then apply this
to the HAM having fixed weights.Finally, the original picture
is reproduced .It is explained briefly in Fig.8.

VIII. CONCLUSIONS

In this research paper, the concepts of parallel,stacked
associative memories are discussed. Various novel architec-
tures of Associative Memories for storage/retrieval of1-D/2-
D/3-D information are discussed. Artificial Neural Network
architecture based on cascading of AM’s, CNN’s are proposed.
It is expected that these architectures will be of practical utility.
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