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Abstract. Our primary objective in this article is to compare the spectral densities of numerous 

cyclostationary processes. By using the limiting distributions of the periodogram and the discrete Fourier 

transform, a novel approach is introduced to compare the spectral densities of independent cyclostationary 

processes. Also, the ability of the introduced approach is studied by employing simulated and real 

datasets. 
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1. Introduction 

Comparison of several processes is a main subject in economics, physics, chemistry, signal 

processing and materials. Really, the researchers try to compare the stochastic mechanism of 

some observed datasets from different time series. The classification, confrontation and 

clustering of two or numerous time series processes were investigated in different time-domain 

and frequency-domain methods by several scientists [see e.g. De Souza and Thomson [1], Coates 



and Diggle [2], Potscher and Reschenhofer [3], Diggle and Fisher [4], Dargahi- Noubary [5], 

Diggle and al Wasel [6], Kakizawa et al. [7], Timmer et al. [8], Maharaj [9, 10], Caiado et al. 

[11], Eichler [12], Fokianos and Savvides [13], Caiado et al. [14], Dette and Paparoditis [15], 

Dette et al. [16], Dette and Hildebrandt [17], Jentsch  [18], Jentsch and Pauly [19], Salcedo et al. 

[20], Jentsch and Pauly [21], Mahmoudi et al. [22], Triacca [23]. Nearly all these approaches can 

be utilized to the stationary processes or the non-stationary processes (which are transformable to 

stationary processes by using differencing). Nevertheless this approach will not apply to 

numerous processes. Maharaj [24, 25] investigated the problem for non-stationary time series 

that can be transformed to stationary processes. 

Cyclostationary (CS) processes that are presented by Gladyshev [26] are nicely applied to 

depict rhythmic processes. The CS processes (may be also called periodically correlated in 

statistics) are a big time series group with cyclic mean and auto-covariance functions. These 

periodicities can not be disconnected by transformation consist of differencing. These processes 

can be fitted on real datasets of sciences, like economics, physics, chemistry, signal processing 

and materials (Gardner et al. [27]). Hurd and Miamee [28], Napolitano [29] and Chaari et al. [30] 

are suitable references about the applications as well as theories of CS processes. Hurd and Gerr 

[31] considered the detection of periodicity by two graphical approaches and using the coherency 

and incoherency. Broszkiewicz-Suwaj [32] applied the bootstrap methodology and constructed a 

measure of fitness statistic (called MoF, in short) to detect the periodicity. Nematollahi et al. [33] 

used periodogram asymptotic distribution to establish a goodness of fit test for CS time series. 

Mahmoudi and Maleki [34] studied the detection of periodicity using the estimating of the 

spectral support of a given dataset. 

In present research, by using the limiting distributions of the periodogram and the discrete 

Fourier transform of CS processes, a new method is introduced to investigate the equality of 

several CS processes. Also, the ability of the introduced approach is studied by using simulation 

study and real dataset. The remainder of paper is structured as follows. Section 2 is devoted to 

the notations and preliminaries. The methodology to compare the CS models will be given in 

Section 3. Section 4 will report the results of simulation study and real world dataset to 

investigate the ability of the introduced approach. 

 



2. Preliminaries 

Definition 1: A time series {𝑋𝑡 , 𝑡 ∈ ℤ}, is CS with period T (CS-T), if 

 𝑚(𝑡) ≔ 𝐸(𝑋𝑡) = 𝑚(𝑡 + 𝑇),  

and 

𝑅(𝑠, 𝑡): = 𝐶𝑜𝑣(𝑋𝑠 , 𝑋𝑡) = 𝐸[(𝑋𝑠 − 𝑚(𝑠))(𝑋𝑡 − 𝑚(𝑡))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] = 𝑅(𝑠 + 𝑇, 𝑡 + 𝑇),  

for 𝑠, 𝑡 ∈ ℤ. 

A time CS-T can be expressed as the following spectral representation on [0, 2𝜋),  

𝑋𝑡 =  ∫ 𝑒𝑖𝑡𝑥Ψ (𝑑𝑥),   𝑡 ∈ ℤ,

2𝜋

0

 

such that Ψ  is a random measure with following property on [0, 2𝜋): 

𝐸(Ψ (𝑑𝜆)Ψ (𝑑𝜆′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) = 0, 𝜆 − 𝜆′ ≠ 2𝜋𝑘, 𝑘 =  −𝑇 + 1, … , 𝑇 − 1, 𝑘 ≠ 0. 

We can define the spectral distribution of Ψ, by 

𝑭(𝑑𝜆) = [𝐹𝑘−𝑗 (𝑑𝜆 +
2𝜋𝑗

𝑇
)]

𝑗,𝑘=0,…,𝑇−1
     ,   𝜆 ∈ [0,

2𝜋

𝑇
), 

where 

𝐹𝑘(𝑑𝜆) = 𝐸 (Ψ (𝑑𝜆)Ψ (𝑑𝜆 +
2𝜋𝑘

𝑇
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
) = 𝐹 (𝑑𝜆, 𝑑𝜆 +

2𝜋𝑘

𝑇
) , 𝑘 =  −𝑇 + 1, … , 𝑇 − 1. 

Also the spectral density of Ψ, 𝒇 = [𝑓𝑗𝑘]
𝑗,𝑘=0,…,𝑇−1

, is defined by 

𝒇(𝜆) =
𝑑𝑭

𝑑𝜆
= [𝑓𝑘−𝑗 (𝜆 +

2𝜋𝑗

𝑇
)]

𝑗,𝑘=0,…,𝑇−1
     ,   𝜆 ∈ [0,

2𝜋

𝑇
), 

such that the density 𝑓𝑘 is corresponding to the 𝐹𝑘. 

3. Methodology 



 Let {𝑋𝑡
(1)

, 𝑡 = 1, … , 𝑛1},  {𝑋𝑡
(2)

, 𝑡 = 1, … , 𝑛2}, …, {𝑋𝑡
(𝑚)

, 𝑡 = 1, … , 𝑛𝑚}, are observations 

from m independent CS processes with period T. 

In many fields the researchers are interested to compare the spectral densities of the time series 

𝑋𝑡
(1)

, …, and 𝑋𝑡
(𝑚)

. In other words, they want to test following hypothesis: 

𝐻0: 𝒇1 = 𝒇2 = ⋯ = 𝒇𝑚, 

such that 𝒇1, … , and 𝒇𝑚 are respectively the spectral density matrices of the time series 𝑋𝑡
(1)

, …, 

and 𝑋𝑡
(𝑚)

.  

Under the rejection of 𝐻0, we conclude that at least two time series have different spectral 

densities, and if 𝐻0 is accepted, consequently there is not meaningful different between the 

spectral densities of the m processes and the stochastic mechanisms of m processes are the same. 

Assume 𝑋0, … , 𝑋𝑛−1 are the observations from 𝑋𝑡. The discrete Fourier transform of these 

observations is defined by 

𝑑𝑋(𝜆) = 𝑛−1 2⁄ ∑ 𝑋𝑡𝑒𝑖𝑡𝜆

𝑛−1

𝑡=0

 , 𝜆 ∈ [0,2𝜋). 

The periodogram of CS time series was defined by Soltani and Azimmohseni [35] as  

𝑰𝑋
𝑇 (𝜆) = 𝒅𝑋

𝑇 (𝜆)𝒅𝑋
𝑇 ∗

(𝜆), 

 where 

𝒅𝑋
𝑇 (𝜆) = (𝑑𝑋(𝑔1(𝜆)), 𝑑𝑋(𝑔2(𝜆)) … , 𝑑𝑋(𝑔𝑇(𝜆)))

′

 , 𝜆 ∈ [0,
2𝜋

𝑇
), 

such that  

𝑔𝑘(𝑥) = 𝑥 +  
2𝜋(𝑘 − 1)

𝑇
, 

for 𝑘 = 1, … , 𝑇. 

Lemma 3.1: (Soltani and Azimmohseni [35]) 



For a CS-T processes 𝑋𝑡, assume 𝒇(𝜆), 𝜆 ∈ [0,2𝜋) is continuous. If λ1 < ⋯ < λJ are frequencies 

in[0,
2𝜋

𝑇
), then  

(i) �̂�(𝜆): =
𝑰𝑋

𝑇 (𝜆)

2𝜋
 asymptotically estimated 𝒇(𝜆), 𝜆 ∈ [0,

2𝜋

𝑇
).  

(ii) 𝒅𝑋
𝑇 (λj), 𝑗 = 1, … , 𝐽, have asymptotical complex normal distributions 

 𝑁𝑇
𝑐 (0, 2𝜋𝒇(𝜆𝑗)).  

(iii) 𝒅𝑋
𝑇 (λj), 𝑗 = 1, … , 𝐽, are asymptotically independent. 

(iv) 𝑰𝑋
𝑇 (λj), 𝑗 = 1, … , 𝐽,  have asymptotical complex Wishart distributions 

𝑊𝑇
𝑐 (𝟏, 2𝜋𝒇(𝜆𝑗)). 

(v) 𝑰𝑋
𝑇 (λj), 𝑗 = 1, … , 𝐽, are asymptotically independent. 

 

For 𝑗 = 1, … , 𝐽, assume 

𝑌𝑗
(𝑘)

= 𝑅𝑒 (𝒅
𝑋(𝑘)
𝑇 (𝜆𝑗)) , 𝑘 = 1,2, … , 𝑚, 

and 

𝑍𝑗
(𝑘)

= 𝐼𝑚 (𝒅
𝑋(𝑘)
𝑇 (𝜆𝑗)), 𝑘 = 1,2, … , 𝑚, 

where  𝒅
𝑋(𝑘)
𝑇 (𝜆𝑗) is 𝒅𝑋

𝑇 (λj) for the population 𝑘𝑡ℎ.  

Corollary 3.1: Let 

𝑊𝑗
(𝑘)

= (𝑌𝑗
(𝑘)

, 𝑍𝑗
(𝑘)

)
′

, 𝑘 = 1,2, … , 𝑚, 𝑗 = 1, … , 𝐽. 

Then for 𝑗 = 1, … , 𝐽, 

(i) 𝑊𝑗
(𝑘)

, 𝑘 = 1,2, … , 𝑚,  are asymptotically independent. 

(ii) The asymptotic distribution of  𝑊𝑗
(𝑘)

, 𝑘 = 1,2, … , 𝑚,  is 𝑁2𝑇(0, 𝚺𝑗
(𝑘)

), where  



𝚺𝑗
(𝑘)

= [
𝑽𝑌𝑗𝑌𝑗

(𝑘)
𝑽𝑌𝑗𝑍𝑗

(𝑘)

𝑽𝑍𝑗𝑌𝑗

(𝑘)
𝑽𝑍𝑗𝑍𝑗

(𝑘)
], 𝑽𝐴𝐵 = 𝐶𝑂𝑉(𝐴, 𝐵). 

Proof: This is a straight result of previous lemma. 

Consequently,  

𝑈(𝑘) = ∑ 𝑊𝑗
(𝑘)

𝐽

𝑗=1

, 𝑘 = 1,2, … , 𝑚, 

is asymptotically 𝑁2𝑇(0, 𝚺(𝑘)), such that 

𝚺(𝑘) = 𝚺1
(𝑘)

+ ⋯ + 𝚺𝐽
(𝑘)

. 

3.1. Testing problem  

As discussed, in practice the researchers are interested to test  

𝐻0: 𝒇𝟏 = 𝒇𝟐 = ⋯ = 𝒇𝒎. 

This hypothesis is equivalent to 

𝐻0:  𝚺(1) = 𝚺(2) = ⋯ =  𝚺(𝑚), 

As a consequence, the asymptotic distribution of  

𝑈 = 𝑈(1) + 𝑈(2) + ⋯ + 𝑈(𝑚) 

is 𝑁2𝑇(0, 𝚺), where 

 𝚺 = 𝚺(1) + 𝚺(2) + ⋯ + 𝚺(𝑚). 

Therefore the asymptotic distribution of the statistic 

𝜒2 = (𝑈)′(𝚺)−1(𝑈),               

is 𝜒2(2𝑇) . 

Therefore, the asymptotic distribution is applied to establish test of hypothesis about 𝐻0.  



The statistic 𝜒2 is related to unknown parameter 𝚺. Therefore first this parameter should be 

estimate. Let  

𝑺 =
(𝑁1 − 1)𝐒(1) + (𝑁2 − 1)𝐒(2) + ⋯ + (𝑁𝑚 − 1)𝐒(𝑚)

𝑁1 + 𝑁2 + ⋯ + 𝑁𝑚 − 𝑚
, 

as the sample pooled covariance matrix, where 

𝐒(𝑘) = 𝐒1
(𝑘)

+ ⋯ + 𝐒𝐽
(𝑘)

,  𝐒𝑗
(𝑘)

= [
�̂�𝑌𝑗𝑌𝑗

(𝑘)
�̂�𝑌𝑗𝑍𝑗

(𝑘)

�̂�𝑍𝑗𝑌𝑗

(𝑘)
�̂�𝑍𝑗𝑍𝑗

(𝑘)
], and  �̂�𝐴𝐵 = 𝐶𝑂�̂�(𝐴, 𝐵). 

If 𝐻0:  𝚺(1) = 𝚺(2) = ⋯ =  𝚺(𝑚), be true, then  𝑺 can be consistently estimated 𝚺, and 

consequently as a result of  Weak Law of Large Numbers, the asymptotic distribution of  

𝜒2∗
= (𝑈)′(𝐒)−1(𝑈), 

is 𝜒2(2𝑇). Therefore the hypothesis 𝐻0 is rejected if 𝜒2∗
> 𝜒1−𝛼

2 (2𝑇), where 𝛼 is size of test. 

Remark 1: In real problem, we need more samples from 𝒅
𝑋(𝑘)
𝑇  (𝑁𝑘 samples for population 

𝑘𝑡ℎ, 𝑘 = 1,2, … , 𝑚). The bootstrap estimation methods can be applied to reach this aim.  

In this work, the moving block bootstrap methodology (MBB, in short) [36] will be used. 

4. Simulation Study 

This section is devoted to study the ability of introduced technique for simulated datasets. 

The steps of simulation procedure are as following:  

(i) For the first, the second and the third time series, respectively, simulate a sample of size  𝑛1, 

𝑛2 and 𝑛3. 

(ii) Calculate 𝒅𝑋
𝑇 (𝜆𝑗), 𝑗 = 1, … , 𝐽, separately, for simulated samples. 

(iii) Previous steps are repeated 1000 times to provide 1000 samples for 𝒅𝑋
𝑇 (𝜆𝑗), 𝑗 = 1, … , 𝐽. 

(iv) Calculate the value of 𝜒2∗
 and then compare it with 𝜒1−𝛼

2 (2𝑇).  



(v) Previous steps are repeated one thousand times to estimate the level and the power of the test 

that can be respectively computed by 

�̂� =
The number of runs for which the value of 𝜒2∗

 is more than 𝜒1−𝛼
2 (2𝑇), under H1

1000
, 

�̂� =
The number of runs for which the value of 𝜒2∗

 is more than 𝜒1−𝛼
2 (2𝑇), under H1

1000
. 

Example 1:  Suppose the time series 

𝑋𝑡
(𝑖)

= 𝜙𝑡
(𝑖)

𝑋𝑡−1
(𝑖)

+ 𝑍𝑡
(𝑖)

, {𝑍𝑡
(𝑖)

}~𝐼𝐼𝐷𝑁(0,1),   𝑖 = 1,2,3, 

such that 

𝜙𝑡
(𝑖)

= 0.6 + 𝜙(𝑖) cos (
2𝜋𝑡

𝑇
) , 𝜙(1) = 0.5, 𝜙(2) = 0.1, 0.5 and 𝜙(3) = 0.5,0.7. 

Example 2: Suppose the time series 

𝑋𝑡 = 𝑍𝑡
(𝑖)

+ 𝜃𝑡
(𝑖)

𝑍𝑡−1
(𝑖)

, {𝑍𝑡
(𝑖)

}~𝐼𝐼𝐷𝑁(0,1),   𝑖 = 1,2,3, 

such that 

𝜃𝑡
(𝑖)

= 1 + 𝜃(𝑖) cos (
2𝜋𝑡

𝑇
) , 𝜃(1) = 0.5, 𝜃(2) = 0.3, 0.5  and 𝜃(3) = 0.5,0.9. 

Example 3: Suppose the time series 

𝑋𝑡
(𝑖)

− 𝜙𝑡
(𝑖)

𝑋𝑡−1
(𝑖)

= 𝑍𝑡
(𝑖)

+ 𝜃𝑡
(𝑖)

𝑍𝑡−1
(𝑖)

, {𝑍𝑡
(𝑖)

}~𝐼𝐼𝐷𝑁(0,1),   𝑖 = 1,2,3, 

such that 

𝜙𝑡
(𝑖)

= 0.6 + 𝜙(𝑖)cos (2𝜋𝑡/𝑇), 𝜃𝑡
(𝑖)

= 1 + 𝜃(𝑖) cos (
2𝜋𝑡

𝑇
) , 𝜙(1) = 0.2, 𝜃(1) = −0.5, 𝜙(2) = 0.2, 

𝜃(2) = −0.1, , −0.5, 𝜙(3) = 0.2,0.4 and 𝜃(3) = −0.5. 

Example 4: Suppose the time series 

𝑋𝑡
(𝑖)

= (1 + 𝑚(𝑖)cos (2𝜋𝑡/𝑇))𝑍𝑡
(𝑖)

, {𝑍𝑡
(𝑖)

}~𝐼𝐼𝐷𝑁(0,1),   𝑖 = 1,2,3, 



where  

 𝑚(1) = 0.5, 𝑚(2) = 0.1, 0.5 and 𝑚(3) = 0.5,0.7. 

 

The estimated �̂� with T=2, 3, 4, and 5, for Examples 1-4, respectively, are summarized in 

third rows of Tables 1 to 4, respectively. Since these values are very adjacent to the 𝛼 = 0.05, 

particularly when (n1, n2, n3) grows, then the proposed approach controlled the type I error (𝛼 =

0.05). Other rows of Tables 1 to 4 are correspond to the values of �̂�. These values verify the 

excellent ability of the introduced technique to discriminate between H0 and H1.  Also the Q–Q 

plots for the values of the test statistic 𝜒2∗
 against the 𝜒2(2𝑇) distribution have been presented in 

Figure 1. As can be seen the points are close to strain line and consequently the test statistic 𝜒2∗
 

is asymptotically 𝜒2(2𝑇). Therefore presented approach performs well in simulation. 

5. Real Data 

 

This section is devoted to study the proposed approach in real world problem. The 

considered real dataset is the logarithms of the Real Gross Domestic Product in Germany [37]. 

We divide whole dataset in four separate sections; section one: from spring 1960 to winter 1967, 

section two: from spring 1968 to winter 1975, section three: from spring 1976 to winter 1984, 

and section four: from spring 1985 to winter 1990. Figure 2 is the CSS plots [34] of these 

sections. These plots, determine a CS-4 time series for all sections that verify the time series 

given by [37]. Therefore all of sections follow from a CS-4 model. Now the given approach will 

be used to test the hypothesis  𝐻0: 𝚺(1) = 𝚺(2) = 𝚺(3) = 𝚺(4) (or equivalently, 𝐻0: 𝒇𝟏 = 𝒇𝟐 =

𝒇𝟑 = 𝒇𝟒). Table 5 summarized the results. Since the p-value is more than 0.05 (p=0.363), 

consequently we accept all of sections have similar spectral densities. For future studies 

investigation of further application domains, e.g., [38-59] using the proposed method is 

suggested.  

 

 

6. Conclusion 



Comparison of several time series is a main subject in economics, physics, chemistry, 

signal processing and materials. Really, the researchers try to compare the stochastic mechanism 

of some observed time series. The classification, confrontation and clustering of two or 

numerous time series processes were investigated in different time-domain and frequency-

domain methods by several scientists. Nearly all these approaches can be utilized to the 

stationary processes or the non-stationary processes (which are transformable to stationary 

processes by using differencing). Nevertheless this approach will not apply to numerous 

processes. This paper was devoted to compare the spectral densities of numerous uncorrelated 

cyclostationary processes. By using the limiting distributions of the periodogram and the discrete 

Fourier transform, a novel approach was introduced to compare the spectral densities of 

independent cyclostationary processes. Also, the ability of the introduced approach was studied 

by using simulation and real examples. The presented technique performed well in simulation. 

This proposed method is also controlled the type I error and verified the excellent ability to 

discriminate between H0 and H1.   
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Table 1: The level and power of the proposed technique for the first example  

 (n1, n2, n3) 

𝝓(𝟐) 𝝓(𝟑) (100, 50,75) (150, 75,100) (200, 150,100) (500, 250,300) 

0.1 0.5 0.832 0.912 0.995 0.999 

0.1 0.7 0.864 0.964 0.997 1.000 

0.5 0.5 0.051 0.050 0.049 0.049 

0.5 0.7 0.812 0.952 0.997 1.000 

 

Table 2: The level and power of the proposed technique for the second example  

 (n1, n2, n3) 

𝜽(𝟐) 𝜽(𝟑) (100, 50,75) (150, 75,100) (200, 150,100) (500, 250,300) 

0.3 0.5 0.802 0.943 0.995 1.000 

0.3 0.9 0.865 0.965 0.997 1.000 

0.5 0.5 0.051 0.050 0.050 0.050 

0.5 0.9 0.843 0.925 0.998 1.000 



 

Table 3: The level and power of the proposed technique for the third example  

 (n1, n2, n3) 

𝜽(𝟐) 𝝓(𝟑) (100, 50,75) (150, 75,100) (200, 150,100) (500, 250,300) 

-0.1 0.2 0.811 0.923 0.992 1.000 

-0.1 0.4 0.821 0.941 0.989 1.000 

-0.5 0.2 0.051 0.050 0.050 0.049 

-0.5 0.4 0.834 0.954 0.991 0.999 

 

Table 4: The level and power of the proposed technique for the fourth example  

 (n1, n2, n3) 

𝒎(𝟐) 𝒎(𝟑) (100, 50,75) (150, 75,100) (200, 150,100) (500, 250,300) 

0.1 0.5 0.843 0.934 0.999 1.000 

0.1 0.7 0.876 0.965 0.998 1.000 

0.5 0.5 0.050 0.050 0.049 0.049 

0.5 0.7 0.843 0.954 0.998 1.000 

 

Table 5: The results of the proposed approach to compare the different sections of  the logarithms of the Real Gross Domestic 

Product in Germany 

Test Statistic P-Value 

𝜒2∗
=8.759 

 

0.363 

 



 

Figure 1: Q–Q plots for the values of the test statistic 𝜒2∗
 against the 𝜒2(2𝑇) distribution 

First row, First column is corresponded to Example 1 with sample sizes  (𝑛1, 𝑛2, 𝑛3) = (100,50,75). 

First row, Second column is corresponded to Example 2 with sample sizes  (𝑛1, 𝑛2, 𝑛3) = (150,75,100).  

Second row, First column is corresponded to Example 3 with sample sizes  (𝑛1, 𝑛2, 𝑛3) = (200,150,100).  

Second row, Second column is corresponded to Example 4 with sample sizes  (𝑛1, 𝑛2, 𝑛3) = (5002,50,300). 

 

 

 



 

Figure 2: CSS plot for different sections (Above: Left: Section 1, Right: Section 2; Below: Left: Section 3, Right: 

Section 4) 
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