
EasyChair Preprint
№ 4777

Proof of CollatzTheorem

Benyamin Khanzadeh Holasou

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 23, 2020



Proof of Collatz Theorem

Benyamin Khanzadeh H.*�

December 12, 2020

Abstract

In this article, we will show that Collatz is theorem and we proof it by
method that we made in section 2 and 3. In section 1, first we introduction
Collatz problem and idea of mathematician about this problem then we
change the function of this problem and we make a new definition of
Collatz set and generalize Collatz problem in the set theory. In section 2
we decrease all of natural numbers to Z10 and make a model with lemma
that we said. Then in section 3 we say 3 properties of numbers that are
in our models and then we make a new definition of coloring of graph
to complete our model and make a new model to explain Collatz system
with 3 numbers. Finally in section 4 we begin proof some part of first
model and we use properties that we proved in section 3, to proof our
model completely.

Keywords: Collatz, Number theory, conjecture, Proof of Collatz, Graph
theory.

1 Introduction

The Collatz conjecture is a conjecture in mathematics that concerns a sequence
defined as follows: start with any positive integer n. Then each term is obtained
from the previous term as follows: if the previous term is even, the next term
is one half of the previous term. If the previous term is odd, the next term is 3
times the previous term plus 1. The conjecture is that no matter what value of
n, the sequence will always reach 1.[1]

The conjecture is named after Lothar Collatz, who introduced the idea in
1937, two years after receiving his doctorate.[2] It is also known as the 3n + 1
problem, the 3n + 1 conjecture, the Ulam conjecture (after Stanis law Ulam),
Kakutani’s problem (after Shizuo Kakutani), the Thwaites conjecture (after
Sir Bryan Thwaites), Hasse’s algorithm (after Helmut Hasse), or the Syracuse
problem.[3][4]

Paul Erdős said about the Collatz conjecture: ”Mathematics may not be
ready for such problems.”[6] Jeffrey Lagarias stated in 2010 that the Collatz
conjecture ”is an extraordinarily difficult problem, completely out of reach of
present day mathematics.”[7]

*Benyamin Khanzadeh Holasou, E-mail address: benjaminkhanzade319@gmail.com
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So Collatz conjecture is a problem that no one has been able to solve com-
pletely for the past 80 years. This problem states that:

If, in a set of natural numbers, we multiply each odd number by three and
add it to a sum and divide each even number by two, it finally comes to one
after a certain number of steps. In other words:

∀x ∈ N1, fn(x) = 1 ⇐⇒ f(x) =

{
3x+ 1 ⇐⇒ x ∈ O
x
2 ⇐⇒ x ∈ E

In other words we can say it as: if f(x) =

{
3x+ 1 ⇐⇒ x ∈ O
x
2 ⇐⇒ x ∈ E

rule be

established, will any natural number reach 1 or we have a different value that
for it, function can’t reach 1?

By trying Collatz on several numbers, we find that: the number one has the
infinite period in the Collatz conjecture because: 1 → 4 → 2 → 1 → 4 → · · ·
and this period of rotation never ends.

The problem with this periodicity is that any number that reaches one ex-
periences an infinite periodicity.

To eliminate the periodicity, we extend the properties of Collatz as follows:

g(x) =


3x+ 1 ⇐⇒ x ∈ (O− {1})
x
2 ⇐⇒ x ∈ E
1 ⇐⇒ x = 1

If we want to generalize the definition of Collatz we can say:
Definition 1.2. If a number such as x reach 1 with g(x) function then we say
that it’s in set of truths or in other words:

x : reach 1 with g(x) function ⇒ x ∈ T

Or we can define T as: T = {x|x reach 1 with g(x) function}
And now set of false is a set numbers which are not in T , are in it, or in

other word: F = T ′ = {x|x /∈ T}
To proof Collatz with this definition, we must show that any natural number

is in T set.
In Section 2, we create a graph that reduces the infinite number of natural

numbers to 10 by several lemma and theorems. We must prove that no number
has an infinite period, which is possible in Section 4. (In Section 3, we reduce
10 to 3 to make proofs more straightforward and easier.)

2 Making graph to describe the Collatz system

In order to draw a graph for the Collatz system, we have to use lemma and
draw this graph through them.

If we put an odd number in f , the result will be even:

x = 2k + 1⇒ 3x+ 1 = 6k + 4 = 2K

But if the number is even, the result can not be said, because:

1. N = {1, 2, 3, 4, ...}
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x = 2k ⇒ x
2 = k

Because it’s not possible to say k we will give two lemma to say what will happen
to k.
Lemma 2.1. Suppose that x =

∑n
i=1 ai

210i−1 is given number. As ai ∈ {x ∈
W3, 0 ≤ x ≤ 9} and x is odd then f(x) will become even if and just if f(a1)
become even, or in other words:

x =
∑n
i=1 ai10i−1, x = 2k + 1⇒ f(x) = 2K ⇐⇒ f(a1) = 2A1

Proof. To prove the given lemma, it is sufficient to place the rule in the Collatz
system, since x is an odd, then a1 will be an odd, so:

a1 = 2q + 1, 0 ≤ q ≤ 4⇒ f(
∑n
i=1 ai10i−1) = 3

∑n
i=1 ai10i−1 + 1

Now with extensive writing we will have to:

3
∑n
i=1 ai10i−1 + 1 = 3

∑n
i=2 ai10i−1 + 3a1 + 1 =

3
∑n
i=2 ai10i−1 + 3(2q + 1) + 1 = 3

∑n
i=2 ai10i−1 + 6q + 4

So 6q + 4 = 2A ≡ 2A1(mod10) is new unit that it’s even so lemma is true.�4

But we can not say about a number that is even, because we can not say
that k is even or odd. Following lemma provide something that tell what will
happen to k.
Lemma 2.2. Suppose that x =

∑n
i=1 ai10i−1 is given number. As ai ∈ {x ∈

W|0 ≤ x ≤ 9} then in f(x), new a1become in the form of a1
2 + 5 if and just if

old a2 is odd and new a1become in the form of a1
2 if and just if old a2 is even,

or in other words:

x
2 =

∑n
i=1 bi10i−1 ⇒

{
b1 = a1

2 ⇐⇒ a2 = 2k

b1 = a1
2 + 5 ⇐⇒ a2 = 2k + 1

Proof. In the first state we choose even a2:

x =
∑n
i=1 ai10i−1 =

∑n
i=3 ai10i−1 + 10a2 + a1 =

∑n
i=3 ai10i−1 + 20A2 + a1

x
2 = (

∑n
i=3 ai10i−1 + 20A2 + a1)/2 = (

∑n
i=3 ai10i−1)/2 + 10A2 + a1

2

∴ b1 = a1
2

So the first state is true. Now let choose odd a2:

x =
∑n
i=1 ai10i−1 =

∑n
i=3 ai10i−1 + 10a2 +a1 =

∑n
i=3 ai10i−1 + 20A2 + 10 +a1

x
2 = (

∑n
i=3 ai10i−1 + 20A2 + 10 + a1)/2 = (

∑n
i=3 ai10i−1)/2 + 10A2 + 5 + a1

2

∴ b1 = a1
2 + 5

So given lemma is true.�5

If we want to make a graph to describe the Collatz theorem, we must note
that the field of Z10 is a complete field for describing the Collatz system, because
in lemma 2.1 and 2.2 we saw that only by knowing the unit can the future of
Collatz be predicted and thus proved.(We do not need to know tens because we
know what the next numbers will be during lemma 2.2 .)

Now suppose the graph G is the same as the assumed graph, now we define
it as follows:

2. At all of this article ai is in 0 ≤ ∀ai ≤ 9,∀ai ∈W.
3. W = {0, 1, 2, 3, . . . }
4. Finished proof of Lemma 2.1
5. Finished proof of Lemma 2.2

3



G :

{
V (G) = {vi|i ∈W, 0 ≤ i ≤ 9}, vi = i

E(G) = {−−→vivj|i = x, j = y}

The reason for choosing the vertices is that we are looking at one, not the
other. (Because it depends on what happens to the unit [we proved this in
lemma 2.1 and lemma 2.2 .]).

Now we express the x and y in the edges. Since each edge is defined according
to the Collatz instruction, then vj is defined according to the Collatz rule, which
can be accurately defined by lemma 2.1 and 2.2.
Definition 2.1. Degree is the same definition as for a graph, but with a number
of differences, the output degree being denoted by deg+ and the output degree
denoted by deg−.
For example:

A B

C
In the graph G: deg+(A) = 1 means that the output

degree A is equal to 1.
In the graph G: deg+(B) =deg−(B) = 1, the input degree (def−) and the

degree degree (deg+) are equal.

Now, considering this issue, we state two theorems to create the given graph:
Theorem 2.1. If it is i ∈ O and we assume vi as the vertex then:

deg(vi)
± = 1

Proof. It is clear from one that an odd number will only go to an even number.
So according to lemma 2.1, the output degree is completely correct, and now we
prove the input degree of the given graph, we know from lemma 2.2 and lamme
2.1 that only even numbers make up an odd number now we show in lemma 2.3
that these numbers are unique and we finish our proof with respect to the input
vertex.
Lemma 2.3. For any even x there is only and just only one odd x1 in Z10.
Proof. Suppose this is not the case, then x and x0 will reach x1, so we measure
them relative to each other according to lemma 2.2 If we assume x

2 = x0

2 , the
result is correct (because it gives x = x0 when we multiply the sides by 2.)

So suppose the second case is x/2 = x0/2+5 and show that the two are also
equal:

x
2 = x0

2 + 5

Multiply the sides by 2. And we have:

x = x0 + 10

That in a given field:

4



x = x0

So given lemma is true and thus the theorem is proved, because only a single
vertex reaches the hypothetical vertex and the hypothetical vertex reaches a
unique vertex, the hypothetical is completely wrong.�6�7

Theorem 2.2. If it is i ∈ E and we assume vi as the vertex then:

deg(vi)
± = 2

Proof. It is clear from lemma 2.2 that the output degree is correct. So, con-
sidering lemma 2.2, half of the theorem is absolutely correct. Now to prove the
degree of input, we will deal with the fact that each odd number will go to an
even number, so we only have to prove one thing that any even number will
reach an even number, it is unique that when we put an even instead of an odd
in lemma 2.3, the problem is completely proven.(This means that according to
Lemma 2.2, one of a1/2 + 5 or a1/2 can be even. So this means that any even
number can reach another even number, so deg+(vi) =deg−(vi) = 2, i ∈ E is
correct (because according to Lemma 2.1 a person reaches an even number And
according to Lemma 2.2 a pair reaches a pair.))�8

Now according to the said theorems any vj is f(vi) that they are in Z10 field.
For example v3 with −−→v3v0 edges will reach to v0. So E(G) can be defined as
follows:

E(G) = {−−→vivj |f(vi) ≡ vj (mod 10)}

Now, according to the lemmas and theorems, the graph G can be drawn as
follows:

v0

v3 v6

v5

v8v9 v4

v2

v7

v1

f

f

f

f

f

f

f

f

f

f

f

f f

ff

Graph 2.1: Graph of Colltaz system in Z10

6. Finished proof of Lemma 2.3
7. Finished proof of Theorem 2.1
8. Finished proof of Theorem 2.2
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And as we know that vi = i so we can have this graph too:

0

3 6

5

89 4

2

7

1

f

f

f

f

f

f

f

f

f

f

f

f f

ff

Graph 2.2: Graph of Colltaz system in Z10

3 Coloring and numbers properties

Now here we will reduce 10 numbers ( that we reduced them to 10 in section 2
) to 3 numbers that have the same properties.

In sub-section 3.1, we will talk about numbers properties and we will prove
their propertirs.

Then in sub-section 3.2, we will make a new graph with a new definition of
coloring that we made there.

3.1 Numbers properties and sets

Theorem 3.1.1. According to lemma 2.1, we can make a set that it makes of
odd numbers. (Because according to Lem 2.1, all odd numbers have the same
property):

S1 = {1, 3, 5, 7, 9}

Proof. According to lemma 2.1, these numbers determine what will happen to
the numbers of the natural person of our choice. (∀x ∈ O ⇒ ∀f(x) ∈ E ⇐⇒
∀a1 ∈ O⇒ ∀f(a1) ∈ E)
Since each odd number reaches another even number, and this number is nec-
essarily different, the theorem is clear and correct.�9

Theorem 3.1.2. According to lemma 2.2, we can create two sets, each with
distinct properties:

S2 = {0, 4, 8}
S3 = {2, 6}

9. Finished proof of Theorem 3.1.1
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Proof. To prove the theorem, we examine and prove the properties one by one
in two distinct theorems.
Theorem 3.1.3. S2 has the following properties:

x =
∑n
i=2 ai10i−1 + a1, a1 ∈ S2 ⇒

{
(i) f(a1) ∈ E ⇐⇒ a2 ∈ E
(ii) f(a1) ∈ O ⇐⇒ a2 ∈ O

Proof. (i) According to lemma 2.2: f(a1) = a1/2
Definition 3.1.1. S2 can be defined as S2 = {x|x = 4k, 0 ≤ k ≤ 2,∀k ∈ W}.
Since a1 ∈ S2 then it can be concluded that:

a1 ∈ S2 ⇒ a1 = 4k
f(a1) = f(4k) = 4k

2 = 2k ⇒ a2, 2k ∈ E

According to the final result, the first part of the proposition was proved.
(ii) According to lemma 2.2: f(a1) = a1

2 + 5
According to definition 3.1.1, we will have:

a1 ∈ S2 ⇒ a1 = 4k
f(a1) = f(4k) = 4k

2 + 5 = 2k + 5 = 2(k + 2) + 1 = 2k′ + 1⇒ a2, 2k
′ + 1 ∈ O

According to the final result, the proposition was proved and by proving it, the
theorem was also proved.�10

Theorem 3.1.4. S3 has the following properties:

x =
∑n
i=2 ai10i−1 + a1, a1 ∈ S3 ⇒

{
(i) f(a1) ∈ O ⇐⇒ a2 ∈ E
(ii) f(a1) ∈ E ⇐⇒ a2 ∈ O

Proof. (i) According to lemma 2.2: f(a1) = a1/2
Definition 3.1.2. S3 can be defined as S3 = {x|x = 4k+2, 0 ≤ k ≤ 1,∀k ∈W}.
Since a1 ∈ S3 then it can be concluded that:

a1 ∈ S3 ⇒ a1 = 4k + 2
f(a1) = f(4k + 2) = 4k+2

2 = 2k + 1
∴ a2 ∈ E, f(a1) = 2k + 1 ∈ O

(ii) According to lemma 2.2: f(a1) = a1
2 + 5

According to definition 3.1.2, we will have:

a1 ∈ S3 ⇒ a1 = 4k + 2
f(a1) = f(4k + 2) = 4k+2

2 + 5 = 2k + 6 = 2(k + 3) = 2k′

∴ a2 ∈ O, f(a1) = 2k′ ∈ E

According to the results, Theorem 3.1.4 and Theorem 3.1.2 are proved and are
absolutely correct.�11�12

10. Finished proof of Theorem 3.1.3
11. Finished proof of Theorem 3.1.4
12. Finished proof of Theorem 3.1.2
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3.2 Binary arithmetic (binary system) and coloring

It is very interesting that the number of sets (S1, S2, S3) is exactly equal to the
maximum number of coloring G (χ(G)).

We can only coloring G with three colors. For this reason, we can not
calculate and consider all coloring schemes.

Now we place each graph number in its binary state. We will see that
GBinary is:

0000

0011 0110

0101

10001001 0100

0010

0111

0001

f

f

f

f

f

f

f

f

f

f

f

f f

ff

Graph 3.2.1: Graph of Colltaz system in binary arithmetic.

We create an easy rule with a binary arithmetic for coloring graphs and that
rule is:

ci, i ∈ E⇒ j ∈ GBinary, j ∈ O
ci, i ∈ O⇒ j ∈ GBinary, j ∈ E

According to the law, a graph can be colored similar to the graph below:
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c1

c2 c1

c2

c3c2 c1

c3

c2

c2

f

f

f

f

f

f

f

f

f

f

f

f f

ff

Graph 3.2.2: Coloring system of Collatz graph

Of course, this is one of the forms of coloring according to those two rules.
With a little attention to the graph and its comparison with the theorems

that proved the properties of even numbers, we will have:

Due to Graph 3.2.2 ⇒ (i) v6 = c1, v2 = c3
Due to subsection 3.1 ⇒ (ii) v6 and v2 have common properties
Due to our rule ⇒ (iii) c1 and c2 heve not common properties
((i) < (ii), (iii)) ⇒ ∴ The assumed graph coloring is incorrect

So we have to coloring the graph in a different way and according to the rule we
said, but since −−→v2v6 are next to each other, the type of coloring will always be
different, and this creates a paradox that can not be used to continue coloring.

Because of these events, violations, and problems, we need to create a new
definition of coloring.

We know that our definition of coloring is as follows:
Definition 3.2.1. (Normal type coloring (C)). We say that C is the coloring
of the graph G if and just if the two vertices that are connected to each other
in G by an edges have different colors.
The above definition is the simplest definition of graph coloring.

Now we create a new type of coloring by breaking some of the rules of
coloring.
Definition 3.2.2. (Collatz type coloring (CCollatz)). We say that the graph of
G is coloring as CCollatz if and only if CCollatz is coloring based on the properties
of G and must be coloring with the minimum (χ(G)) allowable amount of G
coloring, and each member G define a directional graph, and in its coloring, two
vertices connected by an edge do not necessarily have to have distinct colors.

By generalizing definition 2, we will have:
Definition 3.2.3. (Beta type coloring (Cβ). If CCollatz is for graphs that have
no direction, Cβ is defined.
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One of the properties that we find according to the definition of CCollatz and
Cβ is that: it is not necessary to coloring the two vertices that are next to each
other, and this coloring should only be based on the properties and sets and no
more than χ(G)
If we want to coloring the graph based on CCollatz or Cβ , we will have:

c3

c2 c1

c2

c3c2 c3

c1

c2

c2

f

f

f

f

f

f

f

f

f

f

f

f f

ff

Graph 3.2.3: CCollatz (Cβ) Coloring system of Collatz graph

And the result of this graph is as follows:

∀c2 ∈ S1,∀c3 ∈ S2,∀c1 ∈ S3

4 Proof of Collatz theorem

In this section, we first prove part of the Collatz conjecture by the graph we
created in section 2, and then we prove the Collatz by the graph we created in
section 3 and the question variations we created in section 1 in the definition of
Collatz conjecture.

4.1 Proof of Collatz conjecture with graph 2.1

Theorem 4.1.1. If G0 is defined as G0 :

{
V (G0) = {v0}
E(G0) = E(G[V (G0)])

then G0

is true in Collatz (it is in the set of truths), or in other words:

G0 :
0

f

⇒ G0 ⊂ T
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Proof. For proof given theorem assume the number n is in v0. During the defini-
tions of the assumed graph in 2, n is defined in the form of n =

∑k
i=2 ai10i−1+10.

Or the definition of n can be generalized to n = 2a · 5b · (2k + 1). (The third
number that is multiplied must be odd because if it is not odd then it can be
multiplied by increasing the power of 2.) In Collatz function, n, after a steps,
finally will reach to: 5b(2k+ 1). Now we put new number in our field (Z10 field)
and:

5b(2k + 1) ≡ 10 · 5b−1k + 5b ≡ 5b ≡ 5 (mod 10)

So it reach to 5 and theorem proof. So G0 ⊂ T .�13

Theorem 4.1.2. If G1 is defined as G1 :

{
V (G1) = {v1, v2, v4}
E(G1) = E(G[V (G1)])

then G1

is true in Collatz (it is in the set of truths), or in other words:

v2

v4

v1f

f ⇒ G1 ⊂ TG1 : f

Proof. First assume that G1 is in F for a distinct value.(∃x ∈ G1 ⇒ x ∈ F )
Now we will show that this distinct value will not be except 1 and negative
numbers and we will err in the proposition and thus we will conclude that the
theorem is true.
We begin with a number that it is in x = σ+ 1 =

∑n
i=2 ai10i−1 + 1 form. After

3 steps with calculating, it will become in 3σ
4 + 1 form:

f(
∑n
i=2 ai10i−1 + 1)→ f(3

∑n
i=2 ai10i−1 + 4)→ f(

3
∑n

i=2 ai10
i−1

2 + 2)→
3
∑n

i=2 ai10
i−1

4 + 1 = 3σ
4 + 1

We know that ∀x ∈ O : 3x+1
4 ≤ x, 3x+1

4 = x⇒ x = 1:

3x+1
4 = x

⇒ 3x+ 1 = 4x
⇒ 1 = 4x− 3x = x

And if 3x+1
4 > x⇒ x < 1:

3x+1
4 > x

⇒ 3x+ 1 > 4x
⇒ 1 > 4x− 3x = x

And as we told before, 1 x (because it makes an infinity ring). And negative
integers can’t too.(because our numbers is in N.) So equal and bigger part it
not true:

13. Finished proof of Theorem 4.1.1
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3x
4 + 1

4 < x,∀x ∈ O \ {1}

This inequality shows that: numbers will become lesser than, untill it becomes
equal 1 (because we can say if it is false so it becomes infinity ring) and due
to g(x) function, we will see that 1 will reach 1 so this graph is true for any N
number or we can say: x ∈ N, x ∈ G1 ⇒ x ∈ T . So G1 ⊂ T .�14

4.2 Prove Collatz’s conjecture by coloring the graph (graph
3.2.3)

In theorem 4.1.2 and theorem 4.1.1, we proved that G0, G1 ⊂ T and due to logic
of propositions, we will have:

∀x ∈ G0, G1 ⇒ x ∈ T or: −−→c3c3,−−→c2c3,−−→c1c2,−−→c2c1, c1, c2, c3 ∈ T

Because G0, G1 is based of E(G0), E(G1), V (G0), V (G1), we can say all of their
(E, V ) members are in T . (G0 = E(G0) ∪ V (G0), G1 = E(G1) ∪ V (G1) ∴
G0, G1 ⊂ T ⇐⇒ E(G0), E(G1), V (G0), V (G1) ⊂ T )
Now according this, we can say any sub-graph is true because edges of sub-
graphs must have c1 or c2 or c3 and because of that, we proved all of them.
For making sure, we will make a theorem and then we will proof it.
Theorem 4.2.1. Any given sub-graph of graph G is true in Collatz.
Proof . Hypothesis that theorem is not true and we have an unique sub-graph
that is not in truths set and we call it Gk.

Gk is defined as Gk :

{
V (Gk) = {vi|ihave some properties}
E(Gk = E(G[V (Gk)])

And if Gk is in F so we will see that:

E(Gk), V (Gk) ⊂ F

And due to we proved that any c1, c2, c3 is in T , second part (V (Gk) ⊂ F ) is
wrong and if we see graph we will in any sub-graph edges, we have −−→v3v3 or −−→v1v2
or −−→v2v1or −−→v2v3 and we proved that these edges are in T , so first part (V (Gk)) is
wrong too.

So we can understand that this hypothesis is not true, so we will see that:

E(Gk), V (Gk) ⊂ F ≡ F ∼ Gk * F ∼ Gk ⊂ F ′ = T

So our theorem is true.�15

Due to this theorem we will see:
⋃k
i=1Gi = G ⊂ T

Now we propose the last theorem:
Theorem 4.2.2. (Collatz theorem). Any N number will reach 1 with g(x) =

3x+ 1 ⇐⇒ x ∈ O \ {1}
x
2 ⇐⇒ x ∈ E
1 ⇐⇒ x = 1

function after some steps.

Proof. Hypothesis that the theorem is incorrect and does not reach one for a
distinct value of x, and that one enters an infinite periodicity in which one is
not.

14. Finished proof of Theorem 4.1.2
15. Finished proof of Theorem 4.2.1
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This x must be part of natural numbers, so its unit must be variable from 0
to 9, and since we have already proved that any natural number whose unit is
between 0 and 9 does not form an infinite loop and is true. So x must necessarily
be true and not create an infinite loop, thus proving.�16
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