Subprevarieties of Algebraic Systems Versus Extensions of Logics: Application to Some Many-Valued Logics

Alexej Pynko

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

SUBPREVARIETIES OF ALGEBRAIC SYSTEMS VERSUS EXTENSIONS OF LOGICS: APPLICATION TO SOME MANY-VALUED LOGICS

Abstract

ALEXEJ P. PYNKO

Abstract. Here, we study applications of the factual interpretability of [equivalence between] the equality-free infinitary universal Horn theory (in particular, the sentential logic) of a class of algebraic systems (in particular, logical matrices) [with equality uniformly definable by a set of atomic equality-free formulas] in [and] the prevariety generated by the class, in which case the lattice of extensions of the former is a Galois retract of [dual to] that of all subprevarieties of the prevariety, the retraction [duality] retaining relative equality-free infinitary universal Horn axiomatizations. As representative instances, we explore: (1) the classical (viz., Boolean) expansion of Belnap's four-valued logic that is not equivalent to any class of pure algebras but is equivalent to the quasivariety of filtered De Morgan Boolean algebras that are matrices with underlying algebra being a De Morgan Boolean algebra, truth predicate being a filter of it and equality being definable by a strong equivalence connective, proving that prevarieties of such structures form an eight-element non-chain distributive lattice, and so do extensions of the expansion involved; (2) Kleene's three-valued logic that is neither interpretable in pure algebras nor equivalent to a prevariety of algebraic systems, but is interpretable into the quasivariety of resolutional filtered Kleene lattices that are matrices with underlying algebra being a Kleene lattice and truth predicate being a filter of it, satisfying the Resolution rule, proving that proper extensions of the logic form a four-element diamond.

1. Introduction

Appearance of any logical system/calculus inevitably raises a number of metalogical issues such as its semantics, derivable/admissible rules as well as both its [axiomatic] extensions and their semantics, (relative) axiomatizations etc. On the other hand, the principal meaning of universal logical investigations consists in developing generic tools of exploring such issues as for particular logics. In this connection, the work [11] has suggested a general algebraic approach going back to [9] as for axiomatic extensions, providing reduction of the problem involved to that of finding subquasivarieties of the equivalent quasivariety of algebras (if any, at all) of a given logical system. This advanced paradigm has been successfully applied to many particular logical systems in both [11] and [9] themselves as well as in further works [12], [13], [15], [16] and [19].

However, there are certain interesting logical systems having no equivalent quasivariety of pure algebras. This concerns both sequential (viz., Gentzen-style) and

[^0]sentential (viz., Hilbert-style) calculi studied in [11] and [12]. Nevertheless, these instances do possess equivalent quasivarieties but of rather algebraic systems (in the sense of [6]) than pure algebras. This paper is, first of all, devoted to the primary task of factual extending [11] to such general quasivarieties in MAL'CEV's sense. And what is more, like in [14], to cover not necessarily finitary logics (mainly, potential infinitary extensions of normally finitary initial logics), we deal with the framework of prevarieties (in the terminology of [20]), that is, infinitary universal Horn model classes (more specifically, within infinitary logics of the form $L_{\infty \kappa}$, where κ is a regular infinite cadinal, while [20] implicitly deals with $L_{\infty \infty}$, in which case universal Horn theories are, generally speaking, proper classes). In this connection, we extend [14] beyond pure algebras. Finally, we exemplify our generic elaboration by applying it to, perhaps, most representative instances of Hilbertstyle calculi - both Kleene's three-valued logic [4] and the logic introduced in [12] by supplementing Belnap's four-valued logic [2] with classical (viz., Boolean) negation.

The rest of the paper is as follows. The exposition of the material of the paper is entirely self-contained (of course, modulo very basic issues concerning Set Theory, Lattice Theory, Universal Algebra and Model Theory, not specified here explicitly, to be found, e.g., in [1], [3], [6] and [7]). Section 2 is a concise summary of basic issues underlying the paper, most of which have actually become a part of logical and algebraic folklore. Section 3 is a self-contained summary of Chapter 1 of [11] extended within infinitary framework and supplemented with the issues of semantics and prevarieties of algebraic systems, not involved therein explicitly. Then, Section 4 is entirely devoted to the issue of equational systems going back to [18]. ${ }^{1}$ In its turn, Section 5 provides, in particular, an extension of [14] beyond pure algebras, Finally, Section 6 (more specifically, Subsection $6.1 / 6.2$) is a quite illustrative application of the generic tools elaborated in Section $4 / 5$ to the classical expansion of Belnap's four-valued logic/Kleene's three-valued logic, respectively. Finally, Section 7 is an outline of further related work.

2. Basic issues

Notations like img, dom, ker, hom and Con and related notions are supposed to be clear.
2.1. Set-theoretical background. We follow the standard set-theoretical convention, according to which natural numbers (including 0) are treated as finite ordinals (viz., sets of lesser natural numbers), the ordinal of all them being denoted by ω. The proper class of all ordinals is denoted by ∞. Likewise, functions are viewed as binary relations. In addition, singletons are often identified with their unique elements, unless any confusion is possible.

Given a class K, the class of all [finite] subsets of K is denoted by $\wp_{[\omega]}(K)$.
Let S be a set. Given any equivalence relation θ on S, as usual, by ν_{θ} we denote the function with domain S defined by $\nu_{\theta}(a) \triangleq[a]_{\theta} \triangleq \theta[\{a\}]$, for all $a \in S$, in which case $\operatorname{ker} \nu_{\theta}=\theta$, whereas we set $(T / \theta) \triangleq \nu_{\theta}[T]$, for every $T \subseteq S$. Next, S-tuples (viz., functions with domain S) are normally written in either sequence \bar{t} or vector \vec{t} forms, its s-th component, where $s \in S$, being written as t_{s} in that case. Given two more sets A and B, any relation $R \subseteq(A \times B)$ (in particular, a mapping $R: A \rightarrow B$) determines the equally-denoted relation $R \subseteq\left(A^{S} \times B^{S}\right)$ (resp. mapping $\left.R: A^{S} \rightarrow B^{S}\right)$ point-wise, that is, $R \triangleq\left\{\langle\bar{a}, \bar{b}\rangle \in\left(A^{S} \times B^{S}\right) \mid \forall s \in S: a_{s} R b_{s}\right\}$.

[^1]Likewise, given, in addition, any $f: S \rightarrow A$ and any $g: S \rightarrow B$, we have $(f \times g)$: $S \rightarrow(A \times B), s \mapsto\langle f(s), g(s)\rangle$. Further, set $\Delta_{S} \triangleq\{\langle a, a\rangle \mid a \in S\}$, such functions being said to be diagonal/identity, and $S^{+} \triangleq \bigcup_{i \in(\omega \backslash 1)} S^{i}$, elements of which being identified with ordinary finite non-empty tuples of elements of S. Then, any binary operation \diamond on S determines the equally-denoted mapping $\diamond: S^{+} \rightarrow S$ as follows: by induction on the length $l=\operatorname{dom} \bar{a} \in(\omega \backslash 1)$ of any $\bar{a} \in S^{+}$, put:

$$
\diamond \bar{a} \triangleq \begin{cases}a_{0} & \text { if } l=1, \\ (\diamond(\bar{a} \upharpoonright(l-1))) \diamond a_{l-1} & \text { otherwise } .\end{cases}
$$

Given any $f: S \rightarrow S$, put $f^{0} \triangleq \Delta_{S}$ and $f^{1} \triangleq f$. Finally, given any $n \in(\omega \backslash 1)$ and any $\vec{T} \in \wp(S)^{n}$, we have $\chi^{\vec{T}}:(\bigcup(\operatorname{img} \vec{T})) \rightarrow n, a \mapsto \min \left\{i \in n \mid a \in T_{i}\right\}$. Then, for any $T \subseteq S, \chi_{S}^{T} \triangleq \chi^{\langle S, T\rangle}: S \rightarrow 2$ is the usual characteristic function of T in S.

Let A be a set. A $U \subseteq \wp(A)$ is said to be upward-directed, provided, for every $S \in \wp_{\omega}(U)$, there is some $T \in U$ such that $(\bigcup S) \subseteq T$. A closure operator over A is any unary operation C on $\wp(A)$ such that, for all $D \subseteq B \subseteq A$, it holds that $(C(C(B)) \cup B \cup C(D)) \subseteq C(B)$. This is said to be inductive/finitary, provided, for every upward-directed $U \subseteq \wp(A)$, it holds that $O(\bigcup U) \subseteq \bigcup O[U]$.

A Galois retraction between posets $\langle P, \leqq\rangle$ and $\langle Q, \lesssim\rangle$ is any couple $\langle f, g\rangle$ of antimonotonic mappings $f: P \rightarrow Q$ and $g: Q \rightarrow P$ such that $(g \circ f)=\Delta_{P}$ and $(f \circ$ $g) \subseteq \lesssim$. (Galois retractions are exactly Galois connections with injective/surjective left/right component; cf. [14] and [19].)
2.2. Algebraic background. Unless otherwise specified, abstract algebras are denoted by capital Fraktur letters (possibly, with indices), their carriers (viz., underlying sets) being denoted by corresponding Italic letters (with same indices, if any). Likewise, unless otherwise specified, we deal with a fixed but arbitrary algebraic (viz., functional) signature F constituted by function (viz., operation) symbols of arity in a fixed regular infinite cardinal κ, treated as (propositional) connectives. Then, algebraic systems (viz., first-order model structures) are denoted by Calligraphic letters (possibly, with indices), their underlying algebras (viz., F-reducts) being denoted by corresponding Fraktur letters (with same indices, if any).

Given any $S \in \wp(\infty)$ put $V_{S} \triangleq\left\{x_{\beta} \mid \beta \in S\right\}$ and $\left(\exists \exists_{S}\right) \triangleq\left(\exists V_{S}\right)$. The absolutelyfree F-algebra $\mathfrak{T m}_{F}$ freely-generated by the set V_{κ}, elements of which being viewed as (propositional) variables, is referred to as the term F-algebra, elements of its carrier Tm_{F} (viz., F-terms) being treated as (propositional) F-formulas, its endomorphisms being referred to as F-substitutions.

Model L-structures (viz., algebraic systems of the signature L; cf. [6]) with underlying algebra \mathfrak{T}_{F} are said to be Lindenbaum.

3. Generalized logics versus algebraic systems

Fix any first-order signature $L=\langle F, R\rangle$, where R is a relational signature, i.e., a set of predicate (viz., relation) symbols of arity in κ, disjoint with F, to be identified with F alone, whenever $R=\varnothing$. Strict atomic equality-free formulas of L with variables in V_{κ} are called L-formulas, the set of all them being denoted by Fm_{L}. Given any $\Sigma \subseteq\left(\mathrm{Fm}_{L} \cup \mathrm{Tm}_{F}\right)$, the set of all variables actually occurring in an element of Σ is denoted by $\operatorname{Var}(\Sigma)$. Then, subsets/elements of $\wp_{[\omega]}\left(\mathrm{Fm}_{L}\right) \times \mathrm{Fm}_{L}$ are referred to as [finitary] L-calculi/-rules. As usual, any L-rule $\langle\Gamma, \Phi\rangle$ is normally written as $\Gamma \rightarrow \Phi$ and is identified with the infinitary Horn formula $(\bigwedge \Gamma) \rightarrow \Phi,{ }^{2}$ $\Phi /$ any element of Γ being referred to as the/a conclusion/premise of the rule. As

[^2]usual, L-rules without premises are called L-axioms and are identified with their conclusions.

A (generalized) L-logic is any closure operator C over Fm_{L} that is structural in the sense that $\sigma[C(X)] \subseteq C(\sigma[X])$, for all $X \subseteq \mathrm{Fm}_{L}$ and all $\sigma \in \operatorname{hom}\left(\mathfrak{T}_{F}, \mathfrak{T}_{F}\right)$. It is said to be [in]consistent, if $C(\varnothing) \neq[=] \mathrm{Fm}_{L}$. This is said to satisfy an L-rule $\Gamma \rightarrow \Phi$, provided $\Phi \in C(\Gamma)$, L-axioms satisfied in C being called theorems of C. Next, C is uniquely determined by, and so naturally identified with the L-calculus of all L-rules satisfied in C (in this way, logics become particular cases of calculi). Further, a (proper) extension of an L-logic C is any L-logic $C^{\prime} \supseteq(\supsetneq) C$, in which case C is said to be a (proper) sublogic of C^{\prime}. Then, C^{\prime} is said to be axiomatized by an L-calculus \mathcal{C} relatively to C, whenever C^{\prime} is the least extension of C satisfying each rule of \mathcal{C}. Finally, an extension of an L-logic is said to be axiomatic, whenever it is relatively axiomatized by a set of L-axioms.

Given any class M of model L-structures, we have the L-logic Cn_{M}, constituted by all L-rules true in M and said to be defined by M or called the one of M .

Let \mathcal{A} be an L-structure.
Elements of $\operatorname{Con}(\mathcal{A}) \triangleq\left\{\theta \in \operatorname{Con}(\mathfrak{A}) \mid \forall r \in R: \theta\left[r^{\mathcal{A}}\right] \subseteq r^{\mathcal{A}}\right\} \ni \Delta_{A}$ are called congruences of $\mathcal{A} .{ }^{3}$ Then, \mathcal{A} is said to be simple, whenever $\operatorname{Con}(\mathcal{A})=\left\{\Delta_{A}\right\}$. Given any $\theta \in \operatorname{Con}(\mathfrak{A})$, we have the quotient Σ-structure \mathcal{A} / θ with underlying algebra \mathfrak{A} / θ and relations $r^{\mathcal{A} / \theta} \triangleq\left(r^{\mathcal{A}} / \theta\right)$, where $r \in R$.

Next, \mathcal{A} is said to be inconsistent, if, for every $r \in R$ of arity $\alpha \in \kappa$, it holds that $r^{\mathcal{A}}=A^{\alpha}$, and consistent, otherwise.

Finally, \mathcal{A} is said to be finitely-generated/finite/one-element, whenever \mathfrak{A} is so.
Let \mathcal{A} and \mathcal{B} be two L-structures. A (strict) [surjective] homomorphism from \mathcal{A} [on]to \mathcal{B} is any $h \in \operatorname{hom}(\mathfrak{A}, \mathfrak{B})$ such that $r^{\mathcal{A}} \subseteq(=) h^{-1}\left[r^{\mathcal{B}}\right]$, for every $r \in R[$, while $h[A]=B]$, the set of all them being denoted by $\operatorname{hom}_{(\mathrm{S})}^{[S]}(\mathcal{A}, \mathcal{B})$, in which case (we set $\left(\mathfrak{A} \uparrow h^{-1}[\mathcal{B}]\right) \triangleq \mathcal{A}$, while

$$
\begin{equation*}
(\operatorname{ker} h) \in \operatorname{Con}\left(\mathfrak{A} \uparrow h^{-1}[\mathcal{B}]\right), \tag{3.1}
\end{equation*}
$$

whereas) we have $\operatorname{hom}\left(\mathfrak{T}_{F}, \mathfrak{B}\right) \supseteq[=]\left\{h \circ g \mid g \in \operatorname{hom}\left(\mathfrak{T m}_{F}, \mathfrak{A}\right)\right\}$, and so:

$$
\begin{align*}
\left(\operatorname{hom}_{\mathrm{S}}^{[\mathrm{S}]}(\mathcal{A}, \mathcal{B}) \neq \varnothing\right) \Rightarrow\left(\mathrm{Cn}_{\mathcal{B}} \subseteq[=] \mathrm{Cn}_{\mathcal{A}}\right) \tag{3.2}\\
\left(\operatorname{hom}^{\mathrm{S}}(\mathcal{A}, \mathcal{B}) \neq \varnothing\right) \Rightarrow\left(\operatorname{Cn}_{\mathcal{B}}(\varnothing) \subseteq \mathrm{Cn}_{\mathcal{A}}(\varnothing)\right) \tag{3.3}
\end{align*}
$$

Then, \mathcal{A} is said to be a substructure of \mathcal{B}, whenever $\Delta_{A} \in \operatorname{hom}_{S}(\mathcal{A}, \mathcal{B})$, in which case we set $(\mathcal{B} \upharpoonright A) \triangleq \mathcal{A}$. Likewise, $\mathcal{A} \preceq \mathcal{B}$ means that $\Delta_{A} \in \operatorname{hom}(\mathcal{A}, \mathcal{B})$. (In this way, \preceq is a partial ordering on the class of all L-structures.) Injective/bijective strict homomorphisms from \mathcal{A} to \mathcal{B} are referred to as embeddings/isomorphisms of $/$ from \mathcal{A} into/onto \mathcal{B}, in case of existence of which \mathcal{A} is said to be embeddable/isomorphic into/to \mathcal{B}. (Note that, for any $\theta \in \operatorname{Con}(\mathfrak{A})$ [resp., $\theta \in \operatorname{Con}(\mathcal{A})$], $\left.\nu_{\theta} \in \operatorname{hom}_{[\mathrm{S}]}^{\mathrm{S}}(\mathcal{A}, \mathcal{A} / \theta).\right)$

Let I be a set and $\overline{\mathcal{A}}$ an I-tuple of L-structures. In case $\left\{\mathfrak{A}_{i} \mid i \in I\right\} \subseteq\{\mathfrak{A}\}$, where \mathfrak{A} is an F-algebra, by $\mathfrak{A} \uparrow\left(\bigcap_{i \in I} \mathcal{A}_{i}\right)$ we denote the intersection of $\overline{\mathcal{A}}$ over \mathfrak{A}, being the L-structure with underlying algebra \mathfrak{A} and relations given by $r^{\mathfrak{A} \uparrow\left(\cap_{i \in I} \mathcal{A}_{i}\right)} \triangleq$ $\left(A^{\alpha} \cap\left(\bigcap_{i \in I} r^{\mathcal{A}_{i}}\right)\right.$), for every $r \in R$ of arity $\alpha \in \kappa$. In general, we then have the direct product $\left(\prod_{i \in I} \mathcal{A}_{i}\right) \triangleq\left(\left(\prod_{i \in I} \mathfrak{A}_{i}\right) \uparrow\left(\bigcap_{i \in I}\left(\left(\prod_{i \in I} \mathfrak{A}_{i}\right) \uparrow \pi_{i}^{-1}\left[\mathcal{A}_{i}\right]\right)\right)\right)$ of $\overline{\mathcal{A}}$, any substructure \mathcal{B} of it being called a subdirect product of $\overline{\mathcal{A}}$, whenever, for each $i \in I$, $\pi_{i}[B]=A_{i} . \quad$ (In case $I=2$, as usual, $\mathcal{A}_{0} \times \mathcal{A}_{1}$ stands for the direct product involved.)

[^3]Given a class K of L-structures, the class of all L-structures being isomorphic/ [non-one-element] substructures to/of members of K is denoted by $\left(\mathbf{I} / \mathbf{S}_{[>1]}\right) \mathrm{K}$, respectively. Likewise, the class of all (sub)direct products of [finite] tuples constituted by \{consistent $\}$ members of K is denoted by $\mathbf{P}_{[\omega]}^{(\mathrm{SD})\{*\}} \mathrm{K}$, respectively.

A [Lindenbaum] L-structure \mathcal{A} is said to be a [Lindenbaum] model of an L calculus \mathcal{C}, whenever every L-rule of \mathcal{C} is satisfied in \mathcal{A}, that is, in $\mathrm{Cn}_{\mathcal{A}}$, the class of all them being denoted by $\operatorname{Mod}(\mathcal{C})$ (note that it is closed under intersections, and so under \mathbf{I}, \mathbf{S} and \mathbf{P}, in view of (3.2)) [resp., $\operatorname{Lin}(\mathcal{C})]$.

Given any $\Gamma \subseteq \mathrm{Fm}_{L}$, we have the Lindenbaum L-structure $\Gamma \uparrow$ with relations $r^{\Gamma \uparrow} \triangleq\left\{\bar{\varphi} \in \operatorname{Tm}_{F}^{\alpha} \mid r(\bar{\varphi}) \in \Gamma\right\}$, for every $r \in R$ of arity $\alpha \in \kappa$. Conversely, given any Lindenbaum L-structure \mathcal{A}, we have $(\mathcal{A} \downarrow) \triangleq\left\{r(\bar{\varphi}) \mid r \in R, \bar{\varphi} \in r^{\mathcal{A}}\right\} \subseteq \mathrm{Fm}_{L}$. This provides an isomorphism between the poset $\wp\left(\mathrm{Fm}_{L}\right)$ ordered by inclusion and the poset of all Lindenbaum L-structures ordered by \preceq.

Given any L-logic C, taking its structurality and the diagonal F-substitution into account, it is routine checking that:

$$
\begin{equation*}
\operatorname{Lin}(C)=\{\Gamma \uparrow \mid \Gamma \in(\operatorname{img} C)\} \tag{3.4}
\end{equation*}
$$

Theorem 3.1 (Completeness theorem). Any L-logic C is defined by $\operatorname{Lin}(C)$, and so by $\operatorname{Mod}(C)$.

Proof. Consider any L-rule $\Gamma \rightarrow \Phi$ not satisfied in C, in which case $\Phi \notin C(\Gamma) \supseteq \Gamma$, and so, taking (3.4) into account, the rule is not true in $(C(\Gamma) \uparrow) \in \operatorname{Lin}(C) \subseteq$ $\operatorname{Mod}(C)$ under the diagonal F-substitution, as required.
3.1. Sentential logics and logical matrices. Let $R \triangleq\{D\}$, where D is unary (truth predicate). Then, any L-formula $D(\varphi)$ is identified with the F-term φ, unless any confusion is possible. In general, "(sentential) F-" means " L-". Then, sentential F-structures are traditionally called (logical) F-matrices (cf. [5]), any F matrix \mathcal{A} being identified with the couple $\left\langle\mathfrak{A}, D^{\mathcal{A}}\right\rangle$ with natural identifying elements of A^{1} with those of A. This is said to be n-valued/truth[-non]-empty, where $n \in \omega$, provided $|A|=n / D^{\mathcal{A}}=[\neq] \varnothing$, respectively. In that case, an F-logic is said to be [minimally] n-valued, whenever it is defined by a single n-valued F-matrix [but is defined by a single m-valued F-matrix, for no $m \in n]$. Furthermore, an F logic C is said to be non-pseudo-axiomatic (cf. [11] for the case $\kappa=\omega$), provided $\bigcap_{\beta \in \kappa} C\left(x_{\beta}\right) \subseteq C(\varnothing)$ (the converse inclusion always holds by the monotonicity of C).

Remark 3.2. Given an F-logic C, we have the F-logic $C_{+/-0}$, defined by $C_{+/-0}(X)$ $\triangleq C(X)$, for all non-empty $X \subseteq \mathrm{Fm}_{L}$, and $C_{+/-0}(\varnothing) \triangleq\left(\varnothing /\left(\bigcap_{\beta \in \kappa} C\left(x_{\beta}\right)\right)\right)$, being the greatest/least theorem-less/non-pseudo-axiomatic sublogic/extension of C, called the theorem-less/non-pseudo-axiomatic version of C. Then, the mappings

$$
\begin{array}{rlll}
C & \mapsto & C_{+0}, \\
C & \mapsto & C_{-0},
\end{array}
$$

are inverse to one another isomorphisms between the poset of all non-pseudoaxiomatic L-logics ordered by \subseteq and that of all theorem-less ones.

Remark 3.3. Since any rule with[out] premises is [not] satisfied in any truth-empty matrix, given any class M of F-matrices and any non-empty class S of truth-empty F-matrices, the logic of $\mathrm{S} \cup \mathrm{M}$ is the theorem-less version of the logic of M .

Proposition 3.4. The logic of any class M of truth-non-empty Σ-matrices is non-pseudo-axiomatic.

Proof. Consider any $\phi \in\left(\bigcap_{\beta \in \kappa} \operatorname{Cn}_{M}\left(x_{\beta}\right)\right)$, any $\mathcal{A} \in \mathrm{M}$ and any $h \in \operatorname{hom}\left(\mathfrak{T}_{F}, \mathfrak{A}\right)$. Then, in view of the infiniteness and the regularity of κ, by induction on construction of any $\psi \in \operatorname{Tm}_{F}$, it is routine checking that $|\operatorname{Var}(\psi)|<\kappa=\left|V_{\kappa}\right|$. In particular, $V \triangleq \operatorname{Var}(\phi) \neq V_{\kappa}$. Therefore, there is some $\beta \in \kappa$ such that $x_{\beta} \notin V$. Take any $a \in D^{\mathcal{A}} \neq \varnothing$. Let $g \in \operatorname{hom}\left(\mathfrak{T}_{F}, \mathfrak{A}\right)$ extend $(h \upharpoonright V) \cup\left(\left(V_{\kappa} \backslash V\right) \times\{a\}\right)$. Then, we have $g\left(x_{\beta}\right)=a \in D^{\mathcal{A}}$, and so, as $\phi \in \operatorname{Cn}_{\mathrm{M}}\left(x_{\beta}\right)$, we get $h(\phi)=g(\phi) \in D^{\mathcal{A}}$, as required.

In case F contains a unary connective \sim (weak negation), an F-matrix/-logic is said to be paraconsistent, provided it does not satisfy the Ex Contradictione Quodlibet rule:

$$
\begin{equation*}
\left\{D\left(x_{0}\right), D\left(\sim x_{0}\right)\right\} \rightarrow D\left(x_{1}\right) \tag{3.5}
\end{equation*}
$$

Then, in case F contains also a binary connective \vee (disjunction), an F-matrix/logic is said to be paracomplete, provided it does not satisfy the Excluded Middle law axiom:

$$
\begin{equation*}
D\left(x_{0} \vee \sim x_{0}\right), \tag{3.6}
\end{equation*}
$$

3.2. Prevarieties of algebraic systems. Let \approx be a binary equality symbol, without loss of generality, not belonging to $F \cup R$. Set $(R+\approx) \triangleq(R \cup\{\approx\})$ and $(L+\approx) \triangleq\langle F, R+\approx\rangle$. Then, $(L+\approx)$-rules are referred to as L-pre-identities, finitary $(L+\approx)$-axioms[rules] being, as usual (cf., e.g., [6]), referred to as L-[quasi-]identities. Next, any $(L+\approx)$-structure \mathcal{A} is identified with the couple $\left\langle\mathcal{A} \mid L, \approx^{\mathcal{A}}\right\rangle$. Further, given a class K of L-structures, put $(\mathrm{K}+\approx) \triangleq\left\{\left\langle\mathcal{A}, \Delta_{A}\right\rangle \mid \mathcal{A} \in \mathrm{K}\right\}$ and $\mathrm{Cn}_{\mathrm{K}} \approx \triangleq$ $\mathrm{Cn}_{\mathrm{K}+\approx}$, said to be equationally defined by K . Then, an L-pre-identity is said to be (equationally) true/valid/satisfied in K , whenever it is true in $\mathrm{K}+\approx$. Respectively, given a set of [(finitary) $(L+\approx)$-rules]-axioms \mathcal{C}, a(n) (equational) model of \mathcal{C} is any L-structure equationally satisfying every pre-identity in \mathcal{C}, the class of all them being denoted by $\operatorname{Mod} \approx(\mathcal{C})$ and called the L-[pre(quasi)]variety axiomatized by \mathcal{C} (since \mathbf{I}, \mathbf{S} and \mathbf{P} retain the diagonality of binary relations, prevarieties are closed under I, S and \mathbf{P}; cf. [6]). Likewise, the relative sub[pre(quasi)]variety $\operatorname{Mod} \approx(\mathcal{C}) \cap \mathrm{K}$ of K is said to be axiomatized by \mathcal{C} relatively to K , the reservation "relative" being omitted, whenever K is a [pre(quasi)]variety. Finally, the least L-[pre(quasi)]variety including K, being clearly axiomatized by the set of all L-[pre(quasi)-]identities true in K , is said to be generated by K and denoted by $[\mathbf{P}(\mathbf{Q})] \mathbf{V}(\mathrm{K})$.

By \mathcal{E}_{L} we denote the $(L+\approx)$-calculus constituted by the following L-pre-identities:

$$
\begin{align*}
& x_{0} \approx x_{0}, \tag{3.7}\\
&\left(x_{0} \approx x_{1}\right) \rightarrow\left(x_{1} \approx x_{0}\right), \tag{3.8}\\
&\left\{x_{0} \approx x_{1}, x_{1} \approx x_{2}\right\} \rightarrow\left(x_{0} \approx x_{2}\right), \tag{3.9}\\
&\left\{x_{i} \approx x_{\alpha+i} \mid i \in \alpha\right\} \rightarrow\left(f\left(x_{k}\right)_{k \in \alpha} \approx f\left(x_{\alpha+k}\right)_{k \in \alpha}\right), \tag{3.10}\\
&\left(\left\{x_{j} \approx x_{\beta+j} \mid j \in \beta\right\} \cup\left\{r\left(x_{l}\right)_{l \in \beta}\right\}\right) \rightarrow r\left(x_{\beta+l}\right)_{l \in \beta}, \tag{3.11}
\end{align*}
$$

for all $f \in F$ of arity $\alpha \in \kappa$ and all $r \in R$ of arity $\beta \in \kappa$.

4. Equational systems

An equational L-system (for a class M of L-structures) is any $\varepsilon \in \wp\left(\mathrm{Fm}_{L}\right)$ such that $\operatorname{Var}(\varepsilon) \subseteq V_{2}$ (and the L-pre-identities:

$$
\begin{align*}
\varepsilon \rightarrow & \left(x_{0} \approx x_{1}\right), \tag{4.1}\\
& \varepsilon\left[x_{1} / x_{0}\right] \tag{4.2}
\end{align*}
$$

are true in M, in which case it[, being finite,] is so for $\mathbf{P}[\mathbf{Q}] \mathbf{V}(M)$). In this way, we have the mapping $\tau_{\varepsilon}: \mathrm{Fm}_{L+} \approx \rightarrow \wp\left(\mathrm{Fm}_{L}\right)$, given by:

$$
\tau_{\varepsilon}(\Phi) \triangleq \begin{cases}\varepsilon\left[x_{0} / \phi, x_{1} / \psi\right] & \text { if } \Phi=(\phi \approx \psi), \phi, \psi \in \operatorname{Tm}_{F} \\ \{\Phi\} & \text { otherwise }\end{cases}
$$

Then, for any L-pre-identity $\Psi=(\Gamma \rightarrow \Phi)$, we have the L-calculus $\tau_{\varepsilon}(\Psi) \triangleq$ $\left\{\left(\bigcup \tau_{\varepsilon}[\Gamma]\right) \rightarrow \Upsilon \mid \Upsilon \in \tau_{\varepsilon}(\Phi)\right\}$.
Lemma 4.1. Let M be a class of L-structures, ε an equational L-system for it, $\mathcal{A} \in$ $\mathrm{M}, \Phi \in \mathrm{Fm}_{L+\approx}$ and $h \in \operatorname{hom}\left(\mathfrak{T m}_{F}, \mathfrak{A}\right)$. Then, $(\mathcal{A}+\approx) \models \Phi[h] \Leftrightarrow \mathcal{A} \models\left(\bigwedge \tau_{\varepsilon}(\Phi)\right)[h]$, in which case Cn_{M} and $\mathrm{Cn}_{\widetilde{\mathrm{M}}}=\mathrm{Cn}_{\mathbf{P}}^{\mathbf{P}} \mathbf{V}(\mathrm{M})$ are equivalent (in the sense of $[11]^{4}$) with the identity unary operation on Fm_{L} and τ_{ε}. In particular, an L-pre-identity Ψ is true in M iff each rule in $\tau_{\varepsilon}(\Psi)$ is so.

Proof. By the validity of (4.1) and (4.2) in \mathcal{A}.
Lemma 4.2. Let ε be an equational L-system and \mathcal{A} an L-structure. Suppose $\theta_{\varepsilon}^{\mathcal{A}} \triangleq\left\{\langle a, b\rangle \mid \mathcal{A} \vDash(\bigwedge \varepsilon)\left[x_{0} / a, x_{1} / b\right]\right\} \in \operatorname{Con}(\mathcal{A})$. Then, ε is an equational L system for $\mathcal{A} / \theta_{\varepsilon}^{\mathcal{A}}$.
Proof. Since $\theta \triangleq \theta_{\varepsilon}^{\mathcal{A}} \in \operatorname{Con}(\mathcal{A})$, we have $\nu_{\theta} \in \operatorname{hom}_{\mathrm{S}}^{\mathrm{S}}(\mathcal{A}, \mathcal{A} / \theta)$. Hence, for all $a, b \in A$, we get $\left((\mathcal{A} / \theta) \models(\bigwedge \varepsilon)\left[x_{0} / \nu_{\theta}(a), x_{1} / \nu_{\theta}(b)\right) \Leftrightarrow\left(\mathcal{A} \models(\bigwedge \varepsilon)\left[x_{0} / a, x_{1} / b\right) \Leftrightarrow(a \theta b) \Leftrightarrow\right.\right.$ $\left(\nu_{\theta}(a)=\nu_{\theta}(b)\right)$, that is, ε is an equational L-system for \mathcal{A} / θ, as required.
Theorem 4.3. Let ε be an equational L-system and C an L-logic. Then, the following are equivalent:
(i) $\left(\bigcup \tau_{\varepsilon}\left[\mathcal{E}_{L}\right]\right) \subseteq C$;
(ii) for every $\mathcal{A} \in \operatorname{Mod}(C), \theta_{\varepsilon}^{\mathcal{A}} \in \operatorname{Con}(\mathcal{A})$;
(iii) there is some class M of L-structures such that C is defined by M and ε is an equational L-system for M .
Proof. First, $(\mathrm{i}) \Rightarrow(\mathrm{ii})$ is immediate. Next, $(\mathrm{ii}) \Rightarrow$ (iii) is by (3.2), Theorem 3.1 and Lemma 4.2 , when taking $\mathrm{M} \triangleq\left\{\mathcal{A} / \theta_{\varepsilon}^{\mathcal{A}} \mid \mathcal{A} \in \operatorname{Mod}(C)\right\}$. Finally, (iii) \Rightarrow (i) is by Lemma 4.1 and the fact that all pre-identities of \mathcal{E}_{L} are true in every L-structure.

Corollary 4.4. Let $\mathrm{M} \cup\{\mathcal{A}\}$ be a class of L-structures and ε an equational Lsystem for M . Then, $\mathcal{A} \in \operatorname{Mod}\left(\mathrm{Cn}_{\mathrm{M}}\right)$ iff there is some $\theta \in \operatorname{Con}(\mathcal{A})$ such that $(\mathcal{A} / \theta) \in \mathbf{P V}(\mathrm{M})$.

Proof. First, assume there is some $\theta \in \operatorname{Con}(\mathcal{A})$ such that $(\mathcal{A} / \theta) \in \mathbf{P V}(\mathrm{M})$. Then, $(\mathcal{A} / \theta) \in \operatorname{Mod}_{\approx}\left(\mathrm{Cn}_{\mathrm{M}}\right) \subseteq \operatorname{Mod}\left(\mathrm{Cn}_{\mathrm{M}}\right)$. Moreover, $\nu_{\theta} \in \operatorname{hom}_{\mathrm{S}}(\mathcal{A}, \mathcal{A} / \theta)$. Hence, by (3.2), we get $\mathcal{A} \in \operatorname{Mod}\left(\mathrm{Cn}_{\mathrm{M}}\right)$. Conversely, assume $\mathcal{A} \in \operatorname{Mod}\left(\mathrm{Cn}_{\mathrm{M}}\right)$. Then, by Theorem 4.3(iii) \Rightarrow (ii), $\theta \triangleq \theta_{\varepsilon}^{\mathcal{A}} \in \operatorname{Con}(\mathcal{A})$, in which case $\nu_{\theta} \in \operatorname{hom}_{\mathrm{S}}^{\mathrm{S}}(\mathcal{A}, \mathcal{A} / \theta)$, and so, by $(3.2),(\mathcal{A} / \theta) \in \operatorname{Mod}\left(\mathrm{Cn}_{\mathrm{M}}\right)$, while, by Lemma $4.2, \varepsilon$ is an equational L-system for \mathcal{A} / θ. Let \mathcal{P} be the set of all L-pre-identities true in M . Then, by Lemma 4.1, the L-rules of $\bigcup \tau_{\varepsilon}[\mathcal{P}]$ are all true in M , and so in \mathcal{A} / θ. Therefore, by Lemma 4.1, we eventually conclude that the pre-identities of \mathcal{P} are all true in \mathcal{A} / θ, that is, $(\mathcal{A} / \theta) \in \mathbf{P V}(\mathrm{M})$, as required.

Since L-rules are L-pre-identities, combining (3.2), Theorem 3.1, Lemma 4.1 and Corollary 4.4 , we eventually get:

Theorem 4.5. Let M be a class of L-structures and ε an equational L-system for $i t$. Then, the following hold:

[^4](i) the mappings
\[

$$
\begin{aligned}
C & \mapsto(\mathbf{P V}(\mathrm{M}) \cap \operatorname{Mod}(C)), \\
\mathrm{S} & \mapsto \mathrm{Cn}_{\mathrm{S}}
\end{aligned}
$$
\]

are inverse to one another dual isomorphisms between the lattice of all extensions of Cn_{M} and that of all subprevarieties of $\mathbf{P V}(\mathrm{M})$;
(ii) for any L-calculus \mathcal{C}, the extension of Cn_{M} relatively axiomatized by \mathcal{C} corresponds to the subprevariety of $\mathbf{P V}(\mathrm{M})$ relatively axiomatized by \mathcal{C}, while, conversely, for any $(L+\approx)$-calculus \mathcal{P}, the subprevariety of $\mathbf{P V}(\mathrm{M})$ relatively axiomatized by \mathcal{P} corresponds to the extension of Cn_{M} relatively axiomatized by $\bigcup \tau_{\varepsilon}[\mathcal{P}]$, and so axiomatic extensions of Cn_{M} correspond exactly to relative subvarieties of $\mathbf{P V}(\mathrm{M})$;
(iii) the subprevariety of $\mathbf{P V}(\mathrm{M})$ generated by any $\mathrm{K} \subseteq \mathbf{P V}(\mathrm{M})$ corresponds to the extension of Cn_{M} defined by K .
Lemma 4.6. Let \mathcal{A} and \mathcal{B} be L-structures, $h \in \operatorname{hom}_{S}(\mathcal{A}, \mathcal{B})$ and ε an equational L-system for \mathcal{A}. Then, h is injective.

Proof. Then, by (3.3), the L-axioms (4.2) are true in $\mathcal{C} \triangleq(\mathcal{B} \upharpoonright(\operatorname{img} h))$, for $h \in$ $\operatorname{hom}^{\mathrm{S}}(\mathcal{A}, \mathcal{C})$. Consider any $a, b \in A$ such that $h(a)=h(b)$. Then, by (4.2), we have $\mathcal{C} \models(\bigwedge \varepsilon)\left[x_{0} / h(a), x_{1} / h(b)\right]$, in which case we get $\mathcal{A} \models(\bigwedge \varepsilon)\left[x_{0} / a, x_{1} / b\right]$, for $h \in \operatorname{hom}_{\mathrm{S}}(\mathcal{A}, \mathcal{C})$, and so, by (4.1), we eventually get $a=b$, as required.

As an immediate consequence of Lemma 4.6, we first have:
Corollary 4.7. Any L-structure with equational L-system is simple.
Since prevarieties are closed under \mathbf{I}, while any L-structure \mathcal{A} is isomorphic to \mathcal{A} / Δ_{A}, by Corollaries 4.4 and 4.7 , we eventually get:
Corollary 4.8. Let M be a class of L-structures and ε an equational L-system for it. Then, $\mathbf{P V}(\mathrm{M})$ is the class of all simple models of Cn_{M}.

5. Discrimination-REFUTATION

Let $\mathrm{K} \cup\{\mathcal{A}\}$ be a class of L-structures. First, put

$$
\operatorname{hom}_{(\mathrm{S})}^{[\mathrm{S}]}(\mathcal{A}, \mathrm{K}) \triangleq\left(\bigcup\left\{\operatorname{hom}_{(\mathrm{S})}^{[\mathrm{S}]}(\mathcal{A}, \mathcal{B}) \mid \mathcal{B} \in \mathrm{K}\right\}\right)
$$

Next, \mathcal{A} is said to be discriminated/refuted by K , whenever, for each $r \in R$ of arity $\alpha \in \kappa$ and every $\bar{a} \in\left(A^{\alpha} \backslash r^{\mathcal{A}}\right)$, there are some $\mathcal{B} \in \mathrm{K}$ and some $h \in \operatorname{hom}(\mathcal{A}, \mathcal{B})$ such that $\bar{a} \notin h^{-1}\left[r^{\mathcal{B}}\right]$, the class of all L-structures refuted by K being denoted by $\Re(\mathrm{K})$. The meaning of this notion is explained by the following two key observations:

Lemma 5.1. Suppose \mathcal{A} is discriminated by K[, while either both \mathcal{A} and R are finite or both \mathcal{A} is finitely-generated and both K and all members of it are finite].Then, $\operatorname{hom}_{\mathrm{S}}^{\mathrm{S}}\left(\mathcal{A}, \mathbf{P}_{[\omega]}^{\mathrm{SD} *} \mathbf{I S K}\right) \neq \varnothing$. In particular, $\mathcal{A} \in \operatorname{Mod}\left(\mathrm{Cn}_{\mathrm{K}}\right)$.
Proof. Let S be the set of all consistent L-structures with underlying algebra \mathfrak{A}. Then, $I \triangleq\{\langle\mathcal{C}, \theta\rangle \mid \mathcal{A} \preceq \mathcal{C} \in \mathrm{S}, \theta \in \operatorname{Con}(\mathcal{C}),(\mathcal{C} / \theta) \in \mathbf{I S K}\}$ is a set. For every $i=\langle\mathcal{C}, \theta\rangle \in I$, put $\mathcal{C}_{i} \triangleq \mathcal{C} \in \mathrm{~S}, \theta_{i} \triangleq \theta \in \operatorname{Con}\left(\mathcal{C}_{i}\right) \subseteq \operatorname{Con}(\mathfrak{A})$ and $\mathcal{B}_{i} \triangleq\left(\mathcal{C}_{i} / \theta_{i}\right) \in \mathbf{I S K}$, in which case $\mathcal{A} \preceq \mathcal{C}_{i}=\left(\mathfrak{A} \uparrow \nu_{\theta_{i}}^{-1}\left[\mathcal{B}_{i}\right]\right)$ and $\nu_{\theta_{i}} \in \operatorname{hom}_{\{\mathrm{S}\}}^{\mathrm{S}}\left(\mathcal{A}\left\{\mathcal{C}_{i}\right\}, \mathcal{B}_{i}\right)$, and so \mathcal{B}_{i} is consistent, for $\mathcal{C}_{i} \in \mathcal{S}$ is so. [In case both \mathcal{A} and R are finite, both S and $\operatorname{Con}(\mathfrak{A}) \subseteq \wp\left(A^{2}\right)$ are finite, and so is $I \subseteq(\mathrm{~S} \times \operatorname{Con}(\mathfrak{A}))$. Likewise, assume both \mathcal{A} is finitely-generated and both K and all members of it are finite, in which case both SK and all members of it are finite, and so $\mathcal{H} \triangleq\{\langle g, \mathcal{D}\rangle \mid \mathcal{D} \in \mathbf{S K}, g \in \operatorname{hom}(\mathcal{A}, \mathcal{D})\}$ is finite. Consider any $i \in I$. Then, by the Choice Axiom, there are some $\mathcal{D}_{i} \in \mathbf{S K}$ and some isomorphism e_{i} from \mathcal{B}_{i} onto \mathcal{D}_{i}, in which case $g_{i} \triangleq\left(e_{i} \circ \nu_{\theta_{i}}\right) \in \operatorname{hom}\left(\mathcal{A}, \mathcal{D}_{i}\right)$,
and so $\left\langle g_{i}, \mathcal{D}_{i}\right\rangle \in \mathcal{H}$. And what is more, $\left(\operatorname{ker} g_{i}\right)=\left(\operatorname{ker} \nu_{\theta_{i}}\right)=\theta_{i}$, for e_{i} is injective, while $\mathcal{C}_{i}=\left(\mathfrak{A} \uparrow \nu_{\theta_{i}}^{-1}\left[\mathcal{B}_{i}\right]\right)=\left(\mathfrak{A} \uparrow \nu_{\theta_{i}}^{-1}\left[\mathfrak{B}_{i} \uparrow e_{i}^{-1}\left[\mathcal{D}_{i}\right]\right]\right)=\left(\mathfrak{A} \uparrow g_{i}^{-1}\left[\mathcal{D}_{i}\right]\right)$. In this way, $\left\{\left\langle i,\left\langle g_{i}, \mathcal{D}_{i}\right\rangle\right\rangle \mid i \in I\right\}: I \rightarrow \mathcal{H}$ is injective, and so I is finite, for \mathcal{H} is so. Thus, anyway, I is finite.] Then, $h: A \rightarrow\left(\prod_{i \in I} B_{i}\right), a \mapsto\left\langle[a]_{\theta_{i}}\right\rangle_{i \in I}$, in which case $\left(\pi_{i} \circ h\right)=$ $\nu_{\theta_{i}}$, for each $i \in I$, is a homomorphism from \mathfrak{A} to $\mathfrak{D} \triangleq\left(\prod_{i \in I} \mathfrak{B}_{i}\right)$, and so is a surjective one onto $\mathfrak{E} \triangleq(\mathfrak{D} \upharpoonright(\operatorname{img} h))$, in which case $\pi_{i}[E]=\pi_{i}[h[A]]=\left(A / \theta_{i}\right)=B_{i}$, for each $i \in I$. Moreover, $\mathcal{A} \preceq\left(\mathfrak{A} \uparrow \bigcap_{i \in I} \mathcal{C}_{i}\right)$. Conversely, consider any $r \in R$ of arity $\alpha \in \kappa$ and any $\bar{a} \in\left(A^{\alpha} \backslash r^{\mathcal{A}}\right)$. Then, there are some $\mathcal{F} \in \mathrm{K}$ and some $g \in \operatorname{hom}(\mathcal{A}, \mathcal{F})$ such that $\bar{a} \notin g^{-1}\left[r^{\mathcal{F}}\right]$, in which case $\mathcal{A} \preceq \mathcal{G} \triangleq\left(\mathfrak{A} \uparrow g^{-1}[\mathcal{F}]\right)$, and so $\bar{a} \notin r^{\mathcal{G}}$, in which case \mathcal{G} is consistent, and so $\mathcal{G} \in \mathrm{S}$, while $\vartheta \triangleq(\operatorname{ker} g) \in \operatorname{Con}(\mathcal{G})$, in view of (3.1). Therefore, by the Homomorphism Theorem, $e \triangleq\left(g \circ \nu_{\vartheta}^{-1}\right) \in \operatorname{hom}_{\mathrm{S}}(\mathcal{G} / \theta, \mathcal{F})$ is injective, in which case $(\mathcal{G} / \vartheta) \in \mathbf{I S K}$, and so $i \triangleq\langle\mathcal{G}, \vartheta\rangle \in I$, in which case $\mathcal{G}=\mathcal{C}_{i}$, and so $\bar{a} \notin r^{\mathcal{C}_{i}}$. Thus, $\mathcal{A}=\left(\mathfrak{A} \uparrow \bigcap_{i \in I} \mathcal{C}_{i}\right)=\left(\mathfrak{A} \uparrow \bigcap_{i \in I}\left(\mathfrak{A} \uparrow\left(\pi_{i} \circ h\right)^{-1}\left[\mathcal{B}_{i}\right]\right)\right)=(\mathfrak{A} \uparrow$ $h^{-1}\left[\mathfrak{D} \uparrow\left(\bigcap_{i \in I}\left(\mathfrak{D} \uparrow \pi_{i}^{-1}\left[\mathcal{B}_{i}\right]\right)\right)\right]=\left(\mathfrak{A} \uparrow h^{-1}\left[\prod_{i \in I} \mathcal{B}_{i}\right]\right)=\left(\mathfrak{A} \uparrow h^{-1}\left[\left(\prod_{i \in I} \mathcal{B}_{i}\right) \upharpoonright E\right]\right)$, and so $h \in \operatorname{hom}_{\mathrm{S}}^{\mathrm{S}}\left(\mathcal{A},\left(\prod_{i \in I} \mathcal{B}_{i}\right) \upharpoonright E\right) \subseteq \operatorname{hom}_{\mathrm{S}}^{\mathrm{S}}\left(\mathcal{A}, \mathbf{P}_{[\omega]}^{\mathrm{SD} *} \mathbf{I S K}\right)$, as required. Finally, (3.2) completes the argument.

Conversely, we have:
Lemma 5.2. Let K be a class of L-structures and C the logic of it. Then, any $\mathcal{A} \in \operatorname{Lin}(C)$ is discriminated by K .
Proof. Consider any $r \in R$ of arity $\alpha \in \kappa$ and any $\bar{a} \in\left(A^{\alpha} \backslash r^{\mathcal{A}}\right)$, in which case $\Phi \triangleq r(\bar{a}) \in\left(\operatorname{Fm}_{L} \backslash(\mathcal{A} \downarrow)\right)$, and so, by (3.4), $\Phi \in\left(\operatorname{Fm}_{L} \backslash C(\mathcal{A} \downarrow)\right)$, that is, there are some $\mathcal{B} \in \mathrm{K}$ and some $h \in \operatorname{hom}(\mathcal{A}, \mathcal{B})$ such that $\mathcal{B} \models(\bigwedge(\mathcal{A} \downarrow))[h]$ but $\mathcal{B} \not \models \Phi[h]$, i.e., $h \in \operatorname{hom}(\mathcal{A}, \mathcal{B})$ but $\bar{a} \notin h^{-1}\left[r^{\mathcal{B}}\right]$.

First of all, combining (3.2) and Theorem 3.4 with Lemmas 5.1 and 5.2, we get the following relative generalization of Theorem 4.5 extending [14] beyond pure algebras:

Theorem 5.3. Let P be a class of L-structures and $\mathrm{M} \subseteq \mathrm{P}$. Suppose $\mathrm{P} \subseteq$ $\operatorname{Mod}\left(\mathrm{Cn}_{\mathrm{M}}\right)$ is closed under \mathbf{I}, \mathbf{S} and \mathbf{P} (in particular, $\mathrm{P} \subseteq \Re(\mathrm{M})$ is a prevariety). Then, the following hold:
(i) the mappings

$$
\begin{aligned}
C & \mapsto(\mathrm{P} \cap \operatorname{Mod}(C)), \\
\mathrm{S} & \mapsto \mathrm{Cns}_{\mathrm{S}}
\end{aligned}
$$

form a Galois retraction between the lattice of all extensions of Cn_{M} and that of all subprevarieties of P ;
(ii) for any L-calculus \mathcal{C}, the extension of Cn_{M} relatively axiomatized by \mathcal{C} is mapped to the subprevariety of P relatively axiomatized by \mathcal{C};
(iii) given any $\mathrm{K} \subseteq \mathrm{P}, \Re(\mathrm{K}) \cap \mathrm{P}$, being the subprevariety of P relatively axiomatized by an L-calculus \mathcal{C}, is mapped to the extension of Cn_{M} defined by K and relatively axiomatized by \mathcal{C}.

Next, combining Lemmas 4.6 and 5.1, we immediately get:
Proposition 5.4. Let ε be an equational L-system for $\mathrm{K} \cup\{\mathcal{A}\}$. Suppose \mathcal{A} is discriminated by $\mathrm{K}[$, while either both \mathcal{A} and R are finite or both \mathcal{A} is finitelygenerated and both K and all members of it are finite]. Then, $\mathcal{A} \in \mathbf{I P}_{[\omega]}^{\mathrm{SD*}} \mathbf{I S K} \subseteq$ PV(K).

Note that $x_{0} \approx x_{1}$ is an equational $(L+\approx)$-system for $(\mathrm{K} \cup\{\mathcal{A}\})+\approx$. Hence, as a particular case of Proposition 5.4 valuable within Universal Algebra, we have:

Corollary 5.5 (cf. Remark 1.2 of [19] for the purely-algebraic case). Suppose $\{R=\varnothing,\} \mathcal{A}+\approx$ is discriminated by $\mathrm{K}+\approx[$, while either both \mathcal{A} and R are finite or both \mathcal{A} is finitely-generated and both K and all members of it are finite]. Then, $\mathcal{A} \in \mathbf{I P}_{[\omega]}^{\mathrm{SD}} \mathbf{I} \mathbf{S}_{\{>1\}} \mathrm{K} \subseteq \mathbf{P V}(\mathrm{K})$.

It is the purely-algebraic particular case (with $R=\varnothing$) that justifies the term "discriminated" chosen here.

In addition, we also have:
Proposition 5.6. Let \mathcal{J} be a set of $(L[+\approx])$-axioms. Suppose $\mathcal{A} \in \operatorname{Mod}_{[\approx]}(\mathcal{J})$ is discriminated by K. Then, it is so by $\operatorname{Mod}_{[\approx]}(\mathcal{J}) \cap \mathbf{S K}$.
Proof. Consider any $r \in R$ of arity $\alpha \in \kappa$ and any $\bar{a} \in\left(A^{\alpha} \backslash r^{\mathcal{A}}\right)$. Then, there are some $\mathcal{B} \in \mathrm{K}$ and some $h \in \operatorname{hom}(\mathcal{A}, \mathcal{B})$ such that $\bar{a} \notin h^{-1}\left[r^{\mathcal{B}}\right]$, in which case $\mathcal{C} \triangleq(\mathcal{B} \upharpoonright(\operatorname{img} h)) \in \mathbf{S K}, \bar{a} \notin h^{-1}\left[r^{\mathcal{C}}\right]$ and $h \in \operatorname{hom}(\mathcal{A}[+\approx], \mathcal{C}[+\approx])$ is surjective, and so $\mathcal{C} \in \operatorname{Mod}_{[\approx]}(\mathcal{J})$, in view of (3.3), as required.

6. Applications and examples

[Bounded] lattices are supposed to be of the functional signature $F_{+[, 01]} \triangleq$ $\{\wedge, \vee[, \perp, \top]\}$ with binary \wedge (conjunction) and \vee (disjunction) [as well as nullary \perp and $\top]$. Let $F \supseteq F_{+}$be a functional signature. Given any $\phi, \psi \in \mathrm{Tm}_{F}$, the formal expression $\phi \lesssim \psi$ stands for the equation $(\phi \wedge \psi) \approx \phi$. Given any F-algebra \mathfrak{A} such that $\mathfrak{A} \upharpoonright F_{+}$is a lattice, the partial ordering/[prime] filters/ideals of the latter is/are denoted by $\leqslant^{\mathfrak{A}} /$ referred to as those of \mathfrak{A}.

Given any $n \in(\omega \backslash 1)$, by $\mathfrak{D}_{n[01]}$ we denote the [bounded] distributive lattice over the chain n ordered by the natural partial ordering.

During this section, we entirely follow Subsection 3.1.
6.1. Filtered De Morgan Boolean algebras versus the classical expansion of Belnap's four-valued logic. Boolean algebras are supposed to be of the classical signature $F_{-} \triangleq\left(F_{+} \cup\{\neg\}\right)$ with unary \neg (classical negation), the secondary binary "material" implication \supset and respective equivalence \leftrightarrow connectives being, as usual, defined by:

$$
\begin{aligned}
\left(x_{0} \supset x_{0}\right) & \triangleq\left(\neg x_{0} \vee x_{1}\right), \\
\left(x_{0} \leftrightarrow x_{1}\right) & \triangleq\left(\left(x_{0} \supset x_{1}\right) \wedge\left(x_{1} \supset x_{0}\right)\right) .
\end{aligned}
$$

The ordinary two-element Boolean algebra with carrier 2 is denoted by \mathfrak{B}_{2}. (More precisely, $\left(\mathfrak{B}_{2} \upharpoonright F_{+, 01}\right) \triangleq \mathfrak{D}_{2,01}^{2}$ and $\neg^{\mathfrak{B}_{2}} i \triangleq(1-i)$, for all $i \in 2$.)

During this subsection, we deal with the functional signature $F_{\simeq} \triangleq\left(F_{-} \cup\{\sim\}\right)$ with unary \sim (weak negation) and the secondary binary "strong equivalence" connective \equiv defined by $\left(x_{0} \equiv x_{1}\right) \triangleq\left(\left(x_{0} \leftrightarrow x_{1}\right) \wedge\left(\sim x_{0} \leftrightarrow \sim x_{1}\right)\right)$ and treated as an equational $\left\langle F_{\simeq},\{D\}\right\rangle$-system.

According to [12] (cf. [15]), a De Morgan Boolean algebra is any $F \simeq$-algebra \mathfrak{A} such that $\mathfrak{A} \upharpoonright F_{-}$is a Boolean algebra, and the following De Morgan identities are true in \mathfrak{A} :

$$
\begin{align*}
\sim \sim x_{0} & \approx x_{0}, \tag{6.1}\\
\sim\left(x_{0} \vee x_{1}\right) & \approx \sim x_{0} \wedge \sim x_{1}, \tag{6.2}
\end{align*}
$$

the variety of all them being denoted by DMBA. De Morgan Boolean algebras also satisfy the following identities to be used tacitly throughout the rest of this subsection:

$$
\begin{align*}
\sim\left(x_{0} \wedge x_{1}\right) & \approx \sim x_{0} \vee \sim x_{1} \tag{6.3}\\
\sim \perp & \approx \mathrm{~T} \tag{6.4}
\end{align*}
$$

$$
\begin{align*}
\sim \top & \approx \perp, \tag{6.5}\\
\sim \neg x & \approx \neg \sim x . \tag{6.6}
\end{align*}
$$

A filtered De Morgan Boolean algebra is any F_{\simeq}-matrix with underlying algebra being a De Morgan Boolean algebra and satisfying the following quasi-identities:

$$
\begin{align*}
D\left(x_{0} \equiv x_{1}\right) & \rightarrow\left(x_{0} \approx x_{1}\right) \tag{6.7}\\
\left\{D\left(x_{0}\right), D\left(x_{1}\right)\right\} & \rightarrow D\left(x_{0} \wedge x_{1}\right) \tag{6.8}\\
D\left(x_{0} \wedge x_{1}\right) & \rightarrow D\left(x_{0}\right) \tag{6.9}\\
& D(\top), \tag{6.10}
\end{align*}
$$

the quasivariety of all them being denoted by FDMBA. The identity $\left(x_{0} \leftrightarrow x_{0}\right) \approx \top$ is well known to be true in Boolean algebras, in which case the identity $\left(x_{0} \equiv x_{0}\right) \approx$ \top is true in De Morgan Boolean algebras, and so, by (6.7) and (6.10), $x_{0} \equiv x_{1}$ is an equational $(F \simeq \cup\{D\})$-system for FDMBA (this fact is used tacitly throughout the rest of the paper).

By $\mathfrak{D M B}_{4}$ we denote the Boolean De Morgan algebra defined as follows: put
 we use the following standard abbreviations going back to [2]:

$$
\begin{aligned}
\mathrm{t} & \triangleq\langle 1,1\rangle, \\
\mathrm{f} & \triangleq\langle 0,0\rangle, \\
\mathrm{b} & \triangleq\langle 1,0\rangle, \\
\mathrm{n} & \triangleq\langle 0,1\rangle .
\end{aligned}
$$

Since $\{\mathrm{b}, \mathrm{t}\}$ is a prime filter of \mathfrak{B}_{2}^{2}, we have $((a \in\{\mathrm{~b}, \mathrm{t}\}) \Leftrightarrow(b \in\{\mathrm{~b}, \mathrm{t}\})) \Leftrightarrow$ $\left(\left(a \leftrightarrow \mathfrak{B}_{2}^{2} b\right) \in\{\mathrm{b}, \mathrm{t}\}\right)$, for all $a, b \in 2^{2}$. And what is more, $a=b$ iff, for each $i \in 2,\left(\left(\sim^{\mathfrak{D} \mathfrak{M B}_{4}}\right)^{i} a \in\{\mathrm{~b}, \mathrm{t}\}\right) \Leftrightarrow\left(\left(\sim^{\mathfrak{D M} \mathfrak{B}_{4}}\right)^{i} b \in\{\mathrm{~b}, \mathrm{t}\}\right)$, for all $a, b \in 2^{2}$. Hence, $x_{0} \equiv x_{1}$ is an equational L-system for $\mathcal{D M B}_{4} \triangleq\left\langle\mathcal{D M B}_{4},\{\mathrm{~b}, \mathrm{t}\}\right\rangle$ defining the classical expansion $C B_{4}$ of Belnap's logic $D B_{4}$ [12], and so $\mathcal{D} \mathcal{M B}_{4} \in$ FDMBA. In particular, Theorem 4.5 is well-applicable to $C B_{4}$. In this way, in view of the following primary result, to find its extensions is to find subprevarieties of FDMBA:
Proposition 6.1. Every filtered De Morgan Boolean algebra is discriminated by $\mathcal{D M B}_{4}$. In particular, $\mathrm{FDMBA}=\mathbf{P V}\left(\mathcal{D M B}_{4}\right)$.

Proof. Consider any $\mathcal{A} \in$ FDMBA and any $a \in\left(A \backslash D^{\mathcal{A}}\right)$. Then, as $D^{\mathcal{A}}$ is a filter of the Boolean algebra $\mathfrak{A} \dagger F_{-}$, by the Prime Ideal Theorem, there is some prime filter X of $\mathfrak{A} \mid F_{-}$such that $D^{\mathcal{A}} \subseteq X \not \supset a$. Then, by the following claim, $h \triangleq h_{X}^{\mathcal{A}} \in$ $\operatorname{hom}_{\mathrm{S}}\left(\langle\mathfrak{A}, X\rangle, \mathcal{D M B}_{4}\right)$, in which case $h \in \operatorname{hom}\left(\mathcal{A}, \mathcal{D M B}_{4}\right)$, while $a \notin h^{-1}\left[D^{\mathcal{D M B}_{4}}\right]$, and so \mathcal{A} is discriminated by $\mathcal{D M B}_{4}$:
Claim 6.2. Let $\mathfrak{A} \in \mathrm{DMBA}, X$ a prime filter of $\mathfrak{A} \upharpoonright F_{-}$and $Y \triangleq\left(\sim^{\mathfrak{A}}\right)^{-1}[A \backslash X]$. Then, $h_{X}^{\mathfrak{A}} \triangleq\left(\chi_{A}^{X} \times \chi_{A}^{Y}\right) \in \operatorname{hom}\left(\mathfrak{A}, \mathfrak{D M B}_{4}\right)$.
Proof. First, by (6.2), (6.3), (6.4) and (6.5), Y is a prime filter of $\mathfrak{A} \mid F_{-}$. Moreover, given a prime filter Z of a Boolean algebra $\mathfrak{B}, \chi_{B}^{Z} \in \operatorname{hom}\left(\mathfrak{B}, \mathfrak{B}_{2}\right)$. Therefore, $h \triangleq h_{X}^{\mathfrak{A}} \in \operatorname{hom}\left(\mathfrak{A}\left\lceil F_{-}, \mathfrak{B}_{2}^{2}\right)\right.$. Finally, using (6.1), it is routine checking that $h\left(\sim^{\mathfrak{A}} b\right)=$ $\sim^{\mathfrak{D M} \mathfrak{B}_{4}} h(b)$, for all $b \in A$, as required.

In this way, Proposition 5.4 completes the argument.
The relative subvariety IFDMBA of FDMBA, constituted by all its inconsistent members, is relatively axiomatized by the axiom $D\left(x_{0}\right)$ and corresponds to the inconsistent extension of $C B_{4}$. In view of (6.7) and (6.10), a filtered De Morgan Boolean algebra is inconsistent iff it is one-element.

The relative subvariety of FDMBA, constituted by all its non-paracomplete members, is denoted by NPCFDMBA and corresponds to the least non-paracomplete extension of $C B_{4}$.

Note that $\mathfrak{D M B}_{2} \triangleq\left(\mathfrak{D M B}_{4} \upharpoonright\{\mathrm{f}, \mathrm{t}\}\right)$ is the only proper subalgebra of $\mathfrak{D M} \mathfrak{B}_{4}$, and so $\mathcal{D M B}_{2} \triangleq\left\langle\mathcal{D M B}_{2},\{\mathrm{t}\}\right\rangle=\left(\mathcal{D} \mathcal{M B}_{4} \backslash\{\mathrm{f}, \mathrm{t}\}\right)$ is the only proper submatrix of $\mathcal{D M B}_{4}$. Moreover, both (3.6) and the identity:

$$
\begin{equation*}
\sim x_{0} \approx \neg x_{0} \tag{6.11}
\end{equation*}
$$

are true in $\mathfrak{D M B}_{2}$, while neither (3.6) nor (6.11) is true in $\mathcal{D M B}_{4}$ under $\left[x_{0} / \mathrm{n}\right]$. In this way, as $\mathcal{D M B}_{2}$, being non-one-element, is consistent, by Propositions 5.4, 5.6 and 6.1 , we immediately get:

Corollary 6.3. Relative subvarieties of FDMBA form the three-element chain:

$$
[\mathbf{Q}] \mathbf{V}(\varnothing)=\mathrm{IFDMBA} \subsetneq \mathrm{NPCFDMBA}=\mathbf{P V}\left(\mathcal{D M} \mathcal{B}_{2}\right) \subsetneq \mathrm{FDMBA},
$$

NPCFDMBA being relatively axiomatized by (6.11).
Thus, the logic of $\mathcal{D} \mathcal{M} \mathcal{B}_{2}$, being the definitional expansion of the classical logic $P C$ of $\left\langle\mathfrak{B}_{2},\{1\}\right\rangle$ given by (6.11), is the only proper consistent axiomatic extension of $C B_{4}$. The rest of this section is devoted to finding all non-axiomatic ones.

A filtered De Morgan Boolean algebra is said to be truth-singular if it satisfies the following quasi-identity:

$$
\begin{equation*}
D\left(x_{0}\right) \rightarrow\left(x_{0} \approx \top\right) \tag{6.12}
\end{equation*}
$$

the quasivariety of all them being denoted by TSFDMBA.
Remark 6.4. It is routine checking that the rule $D\left(x_{0}\right) \rightarrow D\left(\sim x_{0} \vee\left(x_{0} \equiv \top\right)\right)$ is true in FDMBA. In this way, TSFDMBA is the subquasivariety of FDMBA relatively axiomatized by the Modus Ponens rule for the one more "material" implication $\sim x_{0} \vee x_{1}$:

$$
\begin{equation*}
\left\{D\left(x_{0}\right), D\left(\sim x_{0} \vee x_{1}\right)\right\} \rightarrow D\left(x_{1}\right) \tag{6.13}
\end{equation*}
$$

and so the extension of $C B_{4}$ corresponding to TSFDMBA is relatively axiomatized by (6.13) as well.

Recall that the quasi-identity $\left(\left(x_{0} \leftrightarrow x_{1}\right) \approx \top\right) \rightarrow\left(x_{0} \approx x_{1}\right)$ is true in Boolean algebras, and so in DMBA. Therefore, for any $K \subseteq D M B A$, we have $(K+T) \triangleq$ $\left\{\left\langle\mathfrak{A},\left\{T^{\mathfrak{A}}\right\}\right\rangle \mid \mathfrak{A} \in \mathrm{K}\right\} \subseteq$ TSFDMBA. In particular, by (6.10), we get:

$$
\begin{equation*}
\text { TSFDMBA }=(\mathrm{DMBA}+\mathrm{T}) . \tag{6.14}
\end{equation*}
$$

First, we have:
Proposition 6.5. Every truth-singular filtered De Morgan Boolean algebra is discriminated by $\mathfrak{D M} \mathfrak{B}_{4}+\mathrm{T}$. In particular, TSFDMBA $=\mathbf{P V}\left(\mathfrak{D M B}_{4}+\perp\right)$.

Proof. Consider any $\mathcal{A} \in$ TSFDMBA and any $a \in\left(A \backslash D^{\mathcal{A}}\right)$. Then, as $D^{\mathcal{A}}$ is a filter of the Boolean algebra $\mathfrak{A}\left\lceil F_{-}\right.$, by the Prime Ideal Theorem, there is some prime filter X of $\mathfrak{A} \dagger F_{-}$such that $D^{\mathcal{A}} \subseteq X \not \supset a$. Then, by Claim $6.2, h \triangleq h_{X}^{\mathfrak{A}} \in$ $\operatorname{hom}_{\mathrm{S}}\left(\langle\mathfrak{A}, X\rangle, \mathcal{D} \mathcal{M B}_{4}\right)$, in which case, by $(6.14), h \in \operatorname{hom}\left(\mathcal{A}, \mathfrak{D M} \mathfrak{B}_{4}+\top\right)$, while $a \notin h^{-1}\left[D^{\mathcal{D M B}_{4}}\right] \supseteq h^{-1}\left[D^{\mathfrak{D M B}_{4}+\top}\right]$, and so \mathcal{A} is discriminated by $\mathfrak{D M B}_{4}+T$. In this way, Proposition 5.4 completes the argument.

A filtered De Morgan Boolean algebra is said to be non-idempotent, provided it satisfies the following quasi-identity:

$$
\begin{equation*}
\left(\sim x_{0} \approx x_{0}\right) \rightarrow\left(x_{0} \approx x_{1}\right) \tag{6.15}
\end{equation*}
$$

The quasivariety of all [truth-singular] non-idempotent filtered De Morgan Boolean algebras is denoted by [TS]NIFDMBA.

Lemma 6.6. Let $\mathcal{A} \in \operatorname{NIFDMBA}$. Suppose $|A|>1$. Then, $\operatorname{hom}\left(\mathcal{A}, \mathcal{D} \mathcal{M B}_{2}\right) \neq \varnothing$.
Proof. Given any $n \in \omega$, by induction on any $i \in(n+1)$, define:

$$
\varphi_{i}^{n} \triangleq \begin{cases}x_{0} \vee \sim x_{0} & \text { if } i=0 \\ \left(\left(x_{i} \vee \sim x_{i}\right) \vee \sim \varphi_{i-1}^{n}\right) \wedge \varphi_{i-1}^{n} & \text { otherwise }\end{cases}
$$

in which case the identity $\sim \varphi_{i}^{n} \lesssim \varphi_{i}^{n}$ is true in $\mathcal{D M B}_{4}$. Then, by induction on any $j \in((n+1) \backslash i)$, it is routine checking that the quasi-identity:

$$
\begin{equation*}
\left(\sim x_{i} \approx x_{i}\right) \rightarrow\left(\sim \phi_{j}^{n} \approx \phi_{j}^{n}\right) \tag{6.16}
\end{equation*}
$$

is true in $\mathcal{D} \mathcal{M B}_{4}$. Further, given any $k \in \omega$ and any $l \in(\omega \backslash 1)$, it is routine checking that the first-order clause

$$
\begin{aligned}
& \left(\bigwedge \left(\left\{\sim x_{i+1} \lesssim x_{i+1} \mid i \in k\right\} \cup\left\{D\left(x_{0}\right)\right\} \cup\right.\right. \\
& \left\{\begin{array}{l}
\left\{x_{j+1} \lesssim \sim x_{j+1} \mid j \in((k+l) \backslash k)\right\} \cup \\
\left.\left.\left\{\left(\wedge\left\langle\left\langle x_{i+1}\right\rangle_{i \in k}, x_{0}\right\rangle\right) \lesssim\left(\vee\left\langle x_{j+1}\right\rangle_{j \in((k+l) \backslash k)}\right)\right\}\right)\right) \rightarrow \\
\\
\quad\left(\bigvee\left\{\sim x_{m+1} \approx x_{m+1} \mid m \in(k+l)\right\}\right)
\end{array}\right.
\end{aligned}
$$

is true in $\mathcal{D M B}_{4}$. Therefore, taking (6.16) with $j=n=(k+l)$ into account, we see that the quasi-identity

$$
\begin{align*}
& \left(\left\{\sim x_{i+1} \lesssim x_{i+1} \mid i \in k\right\} \cup\left\{D\left(x_{0}\right)\right\} \cup\right. \tag{6.17}\\
& \quad\left\{x_{j+1} \lesssim \sim x_{j+1} \mid j \in((k+l) \backslash k)\right\} \\
& \left.\cup\left\{\left(\wedge\left\langle\left\langle x_{i+1}\right\rangle_{i \in k}, x_{0}\right\rangle\right) \lesssim\left(\vee\left\langle x_{j+1}\right\rangle_{j \in((k+l) \backslash k)}\right)\right\}\right) \rightarrow\left(\sim \varphi_{k+l}^{k+l} \approx \varphi_{k+l}^{k+l}\right)
\end{align*}
$$

is true in $\mathcal{D \mathcal { M }} \mathcal{B}_{4}$, and so in \mathcal{A}, in view of Proposition 6.1. In this way, as \mathcal{A} is both non-idempotent and non-one-element, combining (6.15) and (6.17), we conclude that the filter $\mathcal{F} \triangleq\left\{a \in A \mid\left(\wedge^{\mathfrak{A}}\left\langle\left\langle b_{i} \vee^{\mathfrak{A}} \sim^{\mathfrak{A}} b_{i}\right\rangle_{i \in k}, c\right\rangle\right) \leqslant^{\mathfrak{A}} a, \bar{b} \in A^{k}, k \in \omega, c \in\right.$ $\left.D^{\mathcal{A}}\right\} \supseteq D^{\mathcal{A}}$ of $\mathfrak{A} \upharpoonright F_{-}$is disjoint with its ideal $\mathcal{J} \triangleq\left\{a \in A \mid a \leqslant^{\mathfrak{A}}\left(\vee^{\mathfrak{A}}\left\langle d_{j} \wedge^{\mathfrak{A}}\right.\right.\right.$ $\left.\left.\left.\sim^{\mathfrak{A}} d_{j}\right\rangle_{j \in l}\right), \bar{d} \in A^{l}, l \in(\omega \backslash 1)\right\}$, in which case, by the Prime Ideal Theorem, there is a prime filter $\mathcal{G} \supseteq \mathcal{F}$ of $\mathfrak{A} \mid F_{-}$disjoint with \mathcal{J}, and so $(a \in \mathcal{G}) \Leftrightarrow\left(\sim^{\mathfrak{A}} a \notin \mathcal{G}\right)$, for all $a \in A$. Then, by Claim 6.2, $h_{\mathcal{G}}^{\mathfrak{A}} \in \operatorname{hom}\left(\mathcal{A}, \mathcal{D} \mathcal{M B}_{2}\right)$, as required.

Corollary 6.7. Any $\mathcal{A} \in[\mathrm{TS}]$ NIFDMBA is discriminated by $\mathcal{D M B}_{4}\left[\left(\mathfrak{D M B}_{4}+\right.\right.$ $\mathrm{T})] \times \mathcal{D M B}_{2}$.

Proof. Consider any $a \notin D^{\mathcal{A}}$, in which case \mathcal{A} is consistent, and so not one-element. Then, first, by Proposition 6.1[6.5], there is some $f \in \operatorname{hom}\left(\mathcal{A}, \mathcal{D} \mathcal{M B}_{4}\left[\mathfrak{D M B}_{4}+\top\right]\right)$ such that $\left.f(a) \notin D^{\mathcal{D M B}_{4}[\mathfrak{D M B}}{ }_{4}+\boldsymbol{\top}\right]$. Moreover, by Lemma 6.6, there is some $g \in$ $\operatorname{hom}\left(\mathcal{A}, \mathcal{D M B}_{2}\right) \neq \varnothing$. In this way, $h \triangleq(f \times g) \in \operatorname{hom}\left(\mathcal{A}, \mathcal{D} \mathcal{M B}_{4}\left[\left(\mathcal{D} \mathcal{M B}_{4}+\right.\right.\right.$ $\mathrm{T})] \times \mathcal{D} \mathcal{M B}_{2}$), while we have $\pi_{0}(h(a))=f(a) \notin D^{\mathcal{D M B}_{4}\left[\mathfrak{D M} \mathfrak{B}_{4}+\mathrm{T}\right]}$, and so we get $h(a) \notin D^{\mathcal{D M B}_{4}\left[\left(\mathfrak{D M B}_{4}+\mathrm{T}\right)\right] \times \mathcal{D M B}_{2}}$, as required.

Clearly, [for any $\mathcal{A} \in \mathrm{FDMBA}$,] $\left([\mathcal{A} \times] \mathcal{D} \mathcal{M B}_{2}\right) \in \mathrm{NIFDMBA}$, for $\mathfrak{D M B}_{2} \not \vDash$ $\left(\left(\exists_{1}\right)\left(\sim x_{0} \approx x_{0}\right)\right)[$, and so:

$$
\begin{equation*}
\left(\mathfrak{A} \times \mathfrak{D M B}_{2}\right) \not \vDash\left(\left(\exists_{1}\right)\left(\sim x_{0} \approx x_{0}\right)\right) \tag{6.18}
\end{equation*}
$$

for $\pi_{1} \in \operatorname{hom}\left(\mathfrak{A} \times \mathfrak{D M B}_{2}, \mathfrak{D M B}_{2}\right)$ is surjective]. In this way, [as $\mathcal{D M} \mathcal{B}_{2}=$ $\left(\mathfrak{D M B}_{2}+\mathrm{T}\right)$, by $[(6.14)$,] Proposition 5.4, Corollaries 6.3 and 6.7 , we eventually get:

Proposition 6.8. NPCFDMBA $\subseteq[\mathrm{TS}]$ NIFDMBA $=\mathbf{P V}\left(\left(\mathcal{D M B}_{4}\left[\left(\mathfrak{D M B}_{4}+\mathrm{T}\right)\right]\right) \times\right.$ $\mathcal{D M B}_{2}$).

Proposition 6.9. NIFDMBA $\cup T S F D M B A=\mathbf{P V}\left(\left\{\mathcal{D M B}_{4} \times \mathcal{D M B}_{2}, \mathfrak{D M B}_{4}+\top\right\}\right)$ is the subquasivariety of FDMBA relatively axiomatized by the quasi-identity:

$$
\begin{equation*}
\left\{\sim x_{0} \approx x_{0}, D\left(x_{1}\right)\right\} \rightarrow\left(x_{1} \approx \top\right) \tag{6.19}
\end{equation*}
$$

Proof. First, consider any filtered De Morgan Boolean algebra \mathcal{A} satisfying (6.19). Assume $\mathcal{A} \notin$ NIFDMBA. Then, there is some $a \in A$ such that $\sim^{\mathfrak{A}} a=a$. Consider any $b \in D^{\mathcal{A}}$. Then, by $(6.19)\left[x_{0} / a, x_{1} / b\right]$, we get $b=\top^{\mathfrak{A}}$, so \mathcal{A} is truthsingular. Thus, $\mathcal{A} \in($ NIFDMBA \cup TSFDMBA $)$. Next, by Propositions 6.5 and 6.8 , $($ NIFDMBA $\cup T S F D M B A) \subseteq \mathbf{P V}\left(\left\{\mathcal{D} \mathcal{M B}_{4} \times \mathcal{D} \mathcal{M B}_{2}, \mathfrak{D M B}_{4}+\top\right\}\right)$, Finally, (6.19) is true in both $\mathcal{D M B}_{4} \times \mathcal{D M B}_{2}$, in view of (6.18), and $\mathfrak{D M B} \mathfrak{B}_{4}+T$, in view of (6.14).

The quasivariety of all non-paraconsistent filtered De Morgan Boolean algebras is denoted by NPFDMBA. It corresponds to the least non-paraconsistent extension of $C B_{4}$.

Lemma 6.10. Let \mathcal{A} be a consistent non-paraconsistent filtered De Morgan Boolean algebra. Then, $\operatorname{hom}\left(\mathcal{A}, \mathfrak{D M B}_{4}+\top\right) \neq \varnothing$.
Proof. First, $\mathcal{F} \triangleq D^{\mathcal{A}}$ is a filter of $\mathfrak{A}\left\lceil F_{-}\right.$. Then, in view of (6.1), (6.2) and (6.3), $\mathcal{J} \triangleq$ $\sim^{\mathfrak{A}}\left[D^{\mathcal{A}}\right]$ is an ideal of $\mathfrak{A}\left\lceil F_{-}\right.$. Moreover, since \mathcal{A} is consistent but not paraconsistent, in view of $(6.1),(\mathcal{F} \cap \mathcal{J})=\varnothing$. Hence, by the Prime Ideal Theorem, there is a prime filter $\mathcal{G} \supseteq \mathcal{F}$ of $\mathfrak{A} \backslash F_{-}$disjoint with \mathcal{J}, in which case $\mathcal{F} \subseteq \mathcal{H} \triangleq\left(\sim^{\mathcal{A}}\right)^{-1}[A \backslash \mathcal{G}]$, and so, by Claim 6.2, $h_{\mathcal{G}}^{\mathfrak{A}} \in \operatorname{hom}\left(\mathcal{A}, \mathfrak{D M B}_{4}+\top\right)$, as required.

Corollary 6.11. Any $\mathcal{A} \in$ NPFDMBA is discriminated by $\mathcal{D M B}_{4} \times\left(\mathfrak{D M B}_{4}+\top\right)$.
Proof. Consider any $a \notin D^{\mathcal{A}}$, in which case \mathcal{A} is consistent. Then, first, by Proposition 6.1, there is some $f \in \operatorname{hom}\left(\mathcal{A}, \mathcal{D} \mathcal{M B}_{4}\right)$ such that $f(a) \notin D^{\mathcal{D M B}_{4}}$. Moreover, by Lemma 6.10, there is some $g \in \operatorname{hom}\left(\mathcal{A}, \mathfrak{D M B}_{4}+\top\right) \neq \varnothing$. In this way, $h \triangleq(f \times g) \in \operatorname{hom}\left(\mathcal{A}, \mathcal{D M B}_{4} \times\left(\mathfrak{D M B}_{4}+\top\right)\right)$, while $\pi_{0}(h(a))=f(a) \notin D^{\mathcal{D M B}_{4}}$, and so $h(a) \notin D^{\mathcal{D M B}_{4} \times\left(\mathfrak{D M B}_{4}+\mathrm{T}\right)}$, as required.

Clearly, $\left(\mathcal{D M B}_{4} \times\left(\mathfrak{D M B}_{4}+T\right)\right) \in$ NPFDMBA, for $\left(\mathfrak{D M B}_{4}+T\right) \not \vDash\left(\left(\exists_{1}\right)\left(D\left(\sim x_{0}\right)\right.\right.$ $\left.\wedge D\left(x_{0}\right)\right)$), and so $\left(\mathcal{D M B} \mathcal{B}_{4} \times\left(\mathfrak{D M B}_{4}+\top\right)\right) \not \vDash\left(\left(\exists_{1}\right)\left(D\left(\sim x_{0}\right) \wedge D\left(x_{0}\right)\right)\right)$, for $\pi_{1} \in$ $\operatorname{hom}\left(\mathcal{D M B} \mathcal{M}_{4} \times\left(\mathfrak{D M B}_{4}+\top\right), \mathfrak{D M B}_{4}+\top\right)$ is surjective. In this way, by Proposition 5.4 and Corollary 6.11 , we eventually get:

Proposition 6.12. NPFDMBA $=\mathbf{P V}\left(\mathcal{D M B}_{4} \times\left(\mathfrak{D M B}_{4}+\top\right)\right)$.
Theorem 6.13. Prevarieties of filtered De Morgan Boolean algebras form the eightelement non-chain distributive lattice depicted at Figure 1.

Proof. We use Corollary 6.3 tacitly.
First, note that (3.5) is not true in $\mathcal{D M B}_{4}$ under the assignment $\left[x_{0} / \mathrm{b}, x_{1} / \mathrm{f}\right]$, so NPFDMBA \subsetneq FDMBA. Next, any filtered De Morgan Boolean algebra satisfying the identity $T \approx \perp$ is one-element, and so inconsistent, in view of (6.10), so, by (6.1) and (6.5), TSFBDMA \subseteq NPFBDMA. Moreover, by (6.1), (6.7), (6.8) and (6.9), the following quasi-identity is true in FDMBA:

$$
\begin{equation*}
\left\{D\left(x_{0}\right), D\left(\sim x_{0}\right)\right\} \rightarrow\left(x_{0} \approx \sim x_{0}\right) \tag{6.20}
\end{equation*}
$$

so NIFDMBA \subseteq NPFDMBA, for any one-element filtered De Morgan Boolean algebra is inconsistent, in view of (6.10). Further, (6.19) is not true in $\mathcal{D M B} \mathcal{B}_{4} \times$ $\left(\mathfrak{D M B}_{4}+\top\right)$ under $\left[x_{0} /\langle\mathbf{b}, \mathbf{b}\rangle, x_{1} /\langle\mathbf{b}, \mathbf{t}\rangle\right]$. Thus, by Propositions 6.9 and 6.12 , $($ NIFDMBA $\cup T S F D M B A) \subsetneq$ NPFDMBA. Furthermore, $\mathcal{D M B}_{4} \times \mathcal{D M B}_{2}$ is not truth-singular, while $\mathfrak{D M B}_{4}+\top$ is not non-idempotent. Hence, by Propositions 6.5 and 6.8 , NIFDMBA \nsubseteq TSFDMBA, while TSFDMBA \nsubseteq NIFDMBA. Finally, (3.6)

Figure 1. The lattice of prevarieties of filtered De Morgan Boolean algebras.
is not true in $\mathfrak{B D M} \boldsymbol{M}_{4}+\top$ under $\left[x_{0} / \mathrm{b}\right]$, and so, by (3.3), in $\left(\mathfrak{B D M}_{4}+\top\right) \times \mathcal{D M B}_{2}$, for π_{0} is a surjective homomorphism from the latter onto the former, in which case, by Proposition 6.8, we get NPCFDMBA \subsetneq TSNIFDMBA. In this way, the eight quasivarieties of filtered De Morgan Boolean algebras involved do form the lattice depicted at Figure 1. It only remains to argue that there is no more prevariety of filtered De Morgan Boolean algebras. For take any prevariety P of filtered De Morgan Boolean algebras. Consider the following eight exhaustive cases:
(1) $\mathrm{P} \subseteq$ IFDMBA.

Then, $P=$ IFDMBA.
(2) $\mathrm{P} \subseteq$ NPCFDMBA but $\mathrm{P} \nsubseteq$ IFDMBA.

Take any consistent $\mathcal{A} \in \mathrm{P}$, in which case it is not one-element, and so, by (6.14) and Proposition 6.8, $\left\{\left\langle 0, \perp^{\mathfrak{A}}\right\rangle,\left\langle 1, \top^{\mathfrak{A}}\right\rangle\right\}$ is an embedding of $\mathcal{D} \mathcal{M} \mathcal{B}_{2}$ into \mathcal{A}. Then, $\mathrm{P}=$ NPCFDMBA.
(3) $\mathrm{P} \subseteq$ TSNIFDMBA but $\mathrm{P} \nsubseteq$ NPCFDMBA.

We use (6.14) tacitly. Take any paracomplete $\mathcal{A} \in \mathrm{P}$, in which case there is some $a \in A$ such that $b \triangleq\left(a \vee^{\mathfrak{A}} \sim^{\mathfrak{A}} a\right) \neq \top^{\mathfrak{A}}$. If $c \triangleq\left(\sim^{\mathfrak{A}} b \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} b\right)$ was equal to $T^{\mathfrak{A}}$, then b would be equal to $\sim^{\mathfrak{A}} b$, so it would be equal to $T^{\mathfrak{A}}$, in view of (6.15). Likewise, if $d \triangleq \neg^{\mathfrak{A}} \sim^{\mathfrak{A}} b$ was equal to $\top^{\mathfrak{A}}$, then $\sim^{\mathfrak{A}} b$ would be equal to $\perp^{\mathfrak{A}}$, so b would be equal to $T^{\mathfrak{A}}$, in view of (6.1) and (6.4). In this way, the mapping $e:\left(2^{2} \times \Delta_{2}\right) \rightarrow A$, given by:

$$
\begin{aligned}
e(\langle\mathrm{t}, \mathrm{t}\rangle) & \triangleq \mathrm{T}^{\mathfrak{A}}, \\
e(\langle\mathrm{~b}, \mathrm{t}\rangle) & \triangleq b, \\
e(\langle\mathrm{n}, \mathrm{t}\rangle) & \triangleq d, \\
e(\langle\mathrm{f}, \mathrm{t}\rangle) & \triangleq \sim^{\mathfrak{A}} c, \\
e(\langle\mathrm{f}, \mathrm{f}\rangle) & \triangleq \perp^{\mathfrak{A}}, \\
e(\langle\mathrm{~b}, \mathrm{f}\rangle) & \triangleq \sim^{\mathfrak{A}} b, \\
e(\langle\mathrm{n}, \mathrm{f}\rangle) & \triangleq \sim^{\mathfrak{A}} d, \\
e(\langle\mathrm{t}, \mathrm{f}\rangle) & \triangleq c,
\end{aligned}
$$

is a strict homomorphism from $\left(\mathfrak{B D M} \boldsymbol{D}_{4}+\top\right) \times \mathcal{D M B}_{2}$ to \mathcal{A}, in which case it is injective, in view of Lemma 4.6, and so, by Proposition 6.8, $\mathrm{P}=$ TSNIFDMBA.
(4) $\mathrm{P} \subseteq$ TSFDMBA but $\mathrm{P} \nsubseteq$ NIFDMBA.

We use (6.14) tacitly. Then, \mathcal{A} is not one-element, in which case $\perp^{\mathfrak{A}} \neq T^{\mathfrak{A}}$, while there is some $a \in A$ such that $\sim^{\mathfrak{A}} a=a$, in which case, by (6.6), $\sim^{\mathfrak{A}} \neg^{\mathfrak{A}} a=\neg^{\mathfrak{A}} a$, while, by (6.4) and (6.5), $a \neq \top^{\mathfrak{A}} \neq \neg^{\mathfrak{A}} a$. In this way, the mapping $e: 2^{2} \rightarrow A$, given by:

$$
\begin{aligned}
\text { eb } & \triangleq a, \\
\text { en } & \triangleq \neg^{\mathfrak{A}} a, \\
\text { et } & \triangleq \quad \top^{\mathfrak{A}}, \\
\text { ef } & \triangleq \quad \perp^{\mathfrak{A}},
\end{aligned}
$$

is a strict homomorphism from $\mathfrak{D M B}_{4}+\top$ to \mathcal{A}, in which case it is injective, in view of Lemma 4.6, and so, by Proposition 6.5, we eventually get $\mathrm{P}=$ TSFBDMBA.
(5) $\mathrm{P} \nsubseteq$ NPFDMBA.

Then, there is a paraconsistent filtered De Morgan Boolean algebra $\mathcal{A} \in \mathrm{P}$, in which case, by the following claim, $\mathcal{D M B}_{4} \in \mathrm{P}$:

Claim 6.14. Let \mathcal{A} be a paraconsistent filtered De Morgan Boolean algebra. Then, $\mathcal{D M B}_{4}$ is embeddable into \mathcal{A}.

Proof. In that case, \mathcal{A} is consistent, and so non-one-element, while there is some $a \in A$ such that $\left\{a, \sim^{\mathfrak{A}} a\right\} \subseteq D^{\mathcal{A}}$, in which case, by (6.20), $a=\sim^{\mathfrak{A}} a$, and so, by (6.6), $\neg^{\mathfrak{A}} a=\sim^{\mathfrak{A}} \neg^{\mathfrak{A}} a$. Therefore, the mapping $e: 2^{2} \rightarrow A$, given by:

$$
\begin{aligned}
e \mathrm{~b} & \triangleq a, \\
\text { en } & \triangleq \neg^{\mathfrak{A}} a, \\
\text { et } & \triangleq \top^{\mathfrak{A}}, \\
\text { ef } & \triangleq \perp^{\mathfrak{A}},
\end{aligned}
$$

is a strict homomorphism from $\mathcal{D M B}_{4}$ to \mathcal{A}, in which case it is injective, in view of Lemma 4.6, as required.

Thus, by Proposition 6.1, $\mathrm{P}=\mathrm{FDMBA}$.
(6) $\mathrm{P} \subseteq$ NPFDMBA but $\mathrm{P} \nsubseteq($ NIFDMBA \cup TSFDMBA).

Then, by Proposition 6.9, there are some $\mathcal{A} \in \mathrm{P}, c \in A$ and $b \in D^{\mathcal{A}}$ such that $\sim^{\mathfrak{A}} c=c$, while $b \neq \top^{\mathfrak{A}}$, in which case \mathcal{A} is not one-element. Put:

$$
a \triangleq \begin{cases}c & \text { if }\left(c \vee^{\mathfrak{A}} b\right) \neq \top^{\mathfrak{A}} \\ \neg^{\mathfrak{A}} c & \text { otherwise } .\end{cases}
$$

Then, in view of (6.6), both $\sim^{\mathfrak{A}} a=a$ and $\sim^{\mathfrak{A}} \neg^{\mathfrak{A}} a=\neg^{\mathfrak{A}} a$, while $a \vee^{\mathfrak{A}} b \neq$ $\top^{\mathfrak{A}}$, for $b \neq \top^{\mathfrak{A}}$, whereas $\left(a \vee^{\mathfrak{A}} b\right) \in D^{\mathcal{A}}$, in view of (6.9), for $b \in D^{\mathcal{A}}$. Moreover, since \mathcal{A} is not one-element, and so consistent, by (3.5) and (6.8), we have $\left(\left\{a, \neg^{\mathfrak{A}} a, a \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} b\right\} \cap D^{\mathcal{A}}\right)=\varnothing$. Moreover, by (6.7), (6.8) and (6.10), the following quasi-identity:

$$
\left\{D\left(\neg \sim x_{0}\right), D\left(x_{0}\right)\right\} \rightarrow\left(x_{0} \approx \top\right)
$$

is true in FDMBA, and so in \mathcal{A}. Therefore, $\left(\neg^{\mathfrak{A}} a \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} \sim^{\mathfrak{A}} b\right) \notin D^{\mathcal{A}}$, for $\top^{\mathfrak{A}} \neq\left(a \vee^{\mathfrak{A}} b\right) \in D^{\mathcal{A}}$. And what is more, the quasi-identity:

$$
\left\{x_{0} \approx \sim x_{0}, D\left(x_{1}\right), D\left(\neg x_{0} \vee \sim x_{1}\right)\right\} \rightarrow(\perp \approx \top)
$$

is true in $\mathcal{D M B}_{4} \times\left(\mathfrak{D M B}_{4}+\mathrm{T}\right)$, and so in \mathcal{A}, in view of Proposition 6.12. Therefore, $\left(\neg^{\mathfrak{A}} a \vee^{\mathfrak{A}} \sim^{\mathfrak{A}} b\right) \notin D^{\mathcal{A}}$. In this way, by (6.9) and (6.10), we have
the strict homomorphism h from $\mathcal{D M B}_{4} \times\left(\mathfrak{D M B}_{4}+\top\right)$ to \mathcal{A} defined by:

$$
\begin{aligned}
h\langle\mathrm{f}, \mathrm{f}\rangle & \triangleq \perp^{\mathfrak{A}}, \\
h\langle\mathrm{t}, \mathrm{t}\rangle & \triangleq \mathrm{T}^{\mathfrak{A}}, \\
h\langle\mathrm{~b}, \mathrm{~b}\rangle & \triangleq a, \\
h\langle\mathrm{n}, \mathrm{n}\rangle & \triangleq \neg^{\mathfrak{A}} a, \\
h\langle\mathrm{~b}, \mathrm{t}\rangle & \triangleq a \vee^{\mathfrak{A}} b, \\
h\langle\mathrm{~b}, \mathrm{f}\rangle & \triangleq a \wedge^{\mathfrak{A}} \sim^{\mathfrak{A}} b, \\
h\langle\mathrm{n}, \mathrm{f}\rangle & \triangleq\left(\neg^{\mathfrak{A}} a \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} b\right), \\
h\langle\mathrm{n}, \mathrm{t}\rangle & \triangleq\left(\neg^{\mathfrak{A}} a \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} \sim^{\mathfrak{A}} b\right), \\
h\langle\mathrm{f}, \mathrm{n}\rangle & \triangleq \neg^{\mathfrak{A}} a \wedge^{\mathfrak{A}} b, \\
h\langle\mathrm{t}, \mathrm{n}\rangle & \triangleq\left(\neg^{\mathfrak{A}} a \vee^{\mathfrak{A}} \sim^{\mathfrak{A}} b\right), \\
h\langle\mathrm{f}, \mathrm{~b}\rangle & \triangleq\left(a \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \sim^{\mathfrak{A}} b\right), \\
h\langle\mathrm{t}, \mathrm{~b}\rangle & \triangleq\left(a \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} b\right), \\
h\langle\mathrm{t}, \mathrm{f}\rangle & \triangleq\left(\left(a \wedge^{\mathfrak{A}} \sim^{\mathfrak{A}} b\right) \vee^{\mathfrak{A}}\left(\neg^{\mathfrak{A}} a \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} b\right)\right), \\
h\langle\mathrm{f}, \mathrm{t}\rangle & \triangleq\left(\left(a \vee^{\mathfrak{A}} b\right) \wedge^{\mathfrak{A}}\left(\neg^{\mathfrak{A}} a \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} \sim^{\mathfrak{A}} b\right)\right), \\
h\langle\mathrm{~b}, \mathrm{n}\rangle & \triangleq\left(\left(a \vee^{\mathfrak{A}} b\right) \wedge^{\mathfrak{A}}\left(\neg^{\mathfrak{A}} a \vee^{\mathfrak{A}} \sim^{\mathfrak{A}} b\right)\right), \\
h\langle\mathrm{n}, \mathrm{~b}\rangle & \triangleq\left(\left(\neg^{\mathfrak{A}} a \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} b\right) \vee^{\mathfrak{A}}\left(a \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \sim^{\mathfrak{A}} b\right)\right) .
\end{aligned}
$$

Then, by Lemma 4.6, h is injective. Hence, $\left(\mathcal{D M B}_{4} \times\left(\mathfrak{D M B}_{4}+T\right)\right) \in \mathrm{P}$, so, by Proposition 6.12, $\mathrm{P}=$ NPFDMBA.
(7) $\mathrm{P} \subseteq$ NIFBDMA but $\mathrm{P} \nsubseteq$ TSFBDMA.

Take any non-truth-singular $\mathcal{A} \in \mathrm{P}$. Then, there is some $a \in D^{\mathcal{A}}$ such that $a \neq \top^{\mathfrak{A}}$, in which case \mathcal{A} is not one-element. Put $b \triangleq\left(a \vee^{\mathfrak{A}} \sim^{\mathfrak{A}} a\right)$, in which case $b \in D^{\mathcal{A}}$, in view of (6.9), while $\sim^{\mathfrak{A}} b \leqslant^{\mathfrak{A}} b$, whereas $b \neq \top^{\mathfrak{A}}$, for, otherwise, we would have $\sim^{\mathfrak{A}} a=\neg^{\mathfrak{A}} a$, in which case, by (6.21), we would get $a=\top^{\mathfrak{A}}$. Moreover, as \mathcal{A} is both non-idempotent and non-oneelement, $\sim^{\mathfrak{A}} b \neq b$. Therefore, by (6.20), $\sim^{\mathfrak{A}} b \notin D^{\mathcal{A}}$, in which case, by (6.8), $\left(\sim^{\mathfrak{A}} b \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} b\right) \notin D^{\mathcal{A}}$, while, by (6.21), $\neg^{\mathfrak{A}} \sim^{\mathfrak{A}} b \notin D^{\mathcal{A}}$. Moreover, since \mathcal{A} is non-one-element, and so consistent, by (6.9), $\perp^{\mathfrak{A}} \notin D^{\mathcal{A}}$, so, by (6.8), $\neg^{\mathfrak{A}} b \notin D^{\mathcal{A}}$. In this way, by (6.9) and (6.10), we have the strict homomorphism h from $\mathcal{D M B}_{4} \times \mathcal{D} \mathcal{M B}_{2}$ to \mathcal{A} defined by:

$$
\begin{aligned}
h\langle\mathrm{f}, \mathrm{f}\rangle & \triangleq \perp^{\mathfrak{A}}, \\
h\langle\mathrm{t}, \mathrm{t}\rangle & \triangleq \mathrm{T}^{\mathfrak{A}}, \\
h\langle\mathrm{~b}, \mathrm{t}\rangle & \triangleq b, \\
h\langle\mathrm{~b}, \mathrm{f}\rangle & \triangleq \sim^{\mathfrak{A}} b, \\
h\langle\mathrm{n}, \mathrm{f}\rangle & \triangleq \neg^{\mathfrak{A}} b, \\
h\langle\mathrm{n}, \mathrm{t}\rangle & \triangleq \neg^{\mathfrak{A}} \sim^{\mathfrak{A}} b, \\
h\langle\mathrm{t}, \mathrm{f}\rangle & \triangleq\left(\sim^{\mathfrak{A}} b \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} b\right), \\
h\langle\mathrm{f}, \mathrm{t}\rangle & \triangleq\left(b \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \sim^{\mathfrak{A}} b\right) .
\end{aligned}
$$

Then, by Lemma 4.6, h is injective. Therefore, $\left(\mathcal{D M B}_{4} \times \mathcal{D M B}_{2}\right) \in \mathrm{P}$, so, by Proposition 6.8, $\mathrm{P}=$ NIFDMBA.
(8) $\mathrm{P} \subseteq($ TSFDMBA \cup NIFDMBA) but $P \nsubseteq$ NIFDMBA.

Then, $(P \cap$ NIFDMBA $) \subseteq$ NIFDMBA but $(P \cap$ NIFDMBA $) \nsubseteq$ TSFDMBA, in which case, by Case (7), ($\mathrm{P} \cap$ NIFDMBA $)=$ NIFDMBA. Likewise, $(\mathrm{P} \cap \mathrm{TSFDMBA}) \subseteq$ TSFDMBA but $(\mathrm{P} \cap$ TSFDMBA $) \nsubseteq$ NITSFDMBA, in
which case, by Case (4), ($\mathrm{P} \cap$ TSFDMBA $)=$ TSFBDMA. In this way, $P=(T S F D M B A \cup$ NIFDMBA $)$.
This completes the argument.
First of all, as, according to Theorem 6.13, NPFDMBA is the greatest proper subprevariety of FDMBA, we have:

Corollary 6.15. $C B_{4}$ is a maximal paraconsistent logic in the sense that it is paraconsistent and has no proper paraconsistent extension.

Such a maximal paraconsistency has been proved for certain three-valued paraconsistent logics in [10] and [16]. In this way, $C B_{4}$ becomes a first non-artificial instance of a four-valued maximal paraconsistent logic. On the other hand, the logic of paradox $L P$ [8], being initially defined by the three-valued matrix $\mathcal{K}_{3} \triangleq\left\langle\mathfrak{K}_{3}, 3 \backslash 1\right\rangle$ (cf. [10]), where, for every $n \in(\omega \backslash 2), \mathfrak{K}_{n}$ is the chain Kleene lattice over n, in view of (3.2), is equally defined by the n-valued matrix $\mathcal{K}_{n} \triangleq\left\langle\mathfrak{K}_{n}, n \backslash 1\right\rangle$, where $n \in(\omega \backslash 4)$, for $(\{\langle 0,0\rangle,\langle n-1,2\rangle\} \cup((n \backslash\{0, n-1\}) \times\{1\})) \in \operatorname{hom}_{\mathrm{S}}^{\mathrm{S}}\left(\mathcal{K}_{n}, \mathcal{K}_{3}\right)$. Thus, for every $n \in(\omega \backslash 4)$ (in particular, $n=4), L P$ is a maximal paraconsistent n-valued logic as well but is not minimally so, as opposed to $C B_{4}$, in view of the following corollary:

Corollary 6.16. Let $\mathcal{A} \in \operatorname{Mod}\left(C B_{4}\right)$ be paraconsistent. Then, $4 \leqslant|A|$. In particular, any class M of F-matrices defining $C B_{4}$ contains a member \mathcal{B} such that $4 \leqslant|B|$, and so $C B_{4}$ is minimally 4-valued.

Proof. Then, by (3.2), Corollary 4.4 and Proposition 6.1, there is some $\theta \in \operatorname{Con}(\mathcal{A})$ such that $(\mathcal{A} / \theta) \in \mathrm{FDMBA}$ is paraconsistent. Hence, by Claim $6.14, \mathcal{D M B}_{4}$ is embeddable into \mathcal{A}. In this way, we eventually get $4=\left|D M B_{4}\right| \leqslant|A / \theta| \leqslant|A|$, as required.

To justify the non-purely-algebraic framework involved here, we finally prove:
Corollary 6.17. There is no quasivariety Q of F-algebras such that $C B_{4}$ and $\mathrm{Cn}_{\mathbb{Q}} \approx$ are equivalent in the sense of [11].

Proof. Clearly, $\Delta_{2^{2}} \in \operatorname{hom}^{\mathrm{S}}\left(\mathfrak{D M B}_{4}+\top, \mathcal{D M B}_{4}\right)$, Hence, in view of (3.3), (6.14), Proposition 6.5 and Theorem 6.13 , the logic C of $\mathfrak{D M B}_{4}+T$ is a proper extension of $C B_{4}$ satisfying same axioms and being equivalent to the variety DMBA (more precisely, to $\mathrm{Cn}_{\mathrm{D} M B A}$) in the sense of [11]. In this way, Theorem 3.16 of [11] completes the argument.
6.2. Resolutional filtered Kleene lattices versus Kleene's three-valued logic. During this subsection, we deal with the functional signature $F_{\sim} \triangleq\left(F_{+} \cup\right.$ $\{\sim\}$) with unary \sim (weak negation).

Recall that a De Morgan lattice (cf. [12], [13]) is any F_{\sim}-algebra, whose $F_{+}-$ reduct is a distributive lattice and that satisfies the identities (6.1) and (6.2), and so (6.3). Then, a Kleene lattice (cf. [13], [14]) is any De Morgan lattice satisfying the identity:

$$
\begin{equation*}
\left(x_{0} \wedge \sim x_{0}\right) \lesssim\left(x_{1} \vee \sim x_{1}\right) \tag{6.22}
\end{equation*}
$$

Given any $n \in(\omega \backslash 1)$, by \mathfrak{K}_{n} we denote the Kleene lattice such that $\left(\mathfrak{K}_{n} \upharpoonright F_{+}\right) \triangleq$ \mathfrak{D}_{n} and $\sim^{\mathfrak{K}_{n}} i \triangleq(n-1-i)$, for all $i \in n$. Then, set $\mathcal{K}_{n} \triangleq\left\langle\mathfrak{K}_{n},\{n-1\} \backslash 1\right\rangle$. In this way, $\mathcal{K}_{3 / 2}$ defines Kleene's three-valued logic $K_{3}[4] /$ the classical logic $P C$, respectively.

A filtered Kleene lattice is any F_{\sim}-matrix, whose underlying algebra is a Kleene lattice and that satisfies the quasi-identities (6.8) and (6.9). This is said to be
resolutional, whenever it satisfies the following notorious Resolution rule:

$$
\begin{equation*}
\left\{D\left(x_{0} \vee x_{1}\right), D\left(\sim x_{0} \vee x_{1}\right)\right\} \rightarrow D\left(x_{1}\right) \tag{6.23}
\end{equation*}
$$

in which case it is non-paraconsistent. The quasivariety of all resolutional filtered Kleene lattices is denoted by RFKL. In view of Theorem 5.3 (used tacitly throughout the rest of this subsection) and the following preliminary result, to find extensions of K_{3} is to find subprevarieties of RFKL relatively axiomatized without equality.

Proposition 6.18. Any resolutional filtered Kleene lattice is discriminated by $\mathcal{K}_{3} \in$ RFKL.

Proof. Clearly, $\mathcal{K}_{3} \in$ RFKL. Conversely, consider any $\mathcal{A} \in \operatorname{RFKL}$, any $a \in\left(A \backslash D^{\mathcal{A}}\right)$ and the following complementary cases:
(1) $D^{\mathcal{A}}=\varnothing$.

Then, since $\{\langle 0,1\rangle\}$ is an embedding of \mathcal{K}_{1} into \mathcal{K}_{3}, the following claim completes the argument:
Claim 6.19. Any truth-empty $\mathcal{A} \in \operatorname{RFKL}$ is discriminated by \mathcal{K}_{1}.
Proof. Consider any $a \in A=\left(A \backslash D^{\mathcal{A}}\right)$. Then, $h \triangleq(A \times\{0\}) \in \operatorname{hom}\left(\mathcal{A}, \mathcal{K}_{1}\right)$ and $a \notin \varnothing=h^{-1}[\varnothing]=h^{-1}\left[D^{\mathcal{K}_{1}}\right]$, as required.
(2) $D^{\mathcal{A}} \neq \varnothing$,
in which case $D^{\mathcal{A}}$ is a filter of the Kleene lattice \mathfrak{A}. Moreover, as it is well-known, in view of (6.22), $\mathcal{J}^{\prime} \triangleq\left\{b \in A \mid b \leqslant^{\mathfrak{A}} \sim^{\mathfrak{A}} b\right\}$ is an ideal of \mathfrak{A}, in which case, by (6.23), $\mathcal{J} \triangleq\left\{b \in A \mid b \leqslant^{\mathfrak{A}}\left(a \vee^{\mathfrak{A}} c\right), c \in \mathcal{J}^{\prime}\right\}$ is an ideal of \mathfrak{A} disjoint with $D^{\mathcal{A}}$. Hence, by the Prime Ideal Theorem, there is a prime filter $\mathcal{F} \supseteq D^{\mathcal{A}}$ of \mathfrak{A} disjoint with \mathcal{J}, and so with $\mathcal{J}^{\prime} \subseteq \mathcal{J}$. Then, by (6.1), (6.2) and (6.3), $\mathcal{F}^{\prime} \triangleq\left(\sim^{\mathfrak{A}}\right)^{-1}[A \backslash \mathcal{F}]$ is a prime filter of \mathfrak{A}. Moreover, as \mathcal{F} is disjoint with \mathcal{J}^{\prime}, we have $\mathcal{F} \subseteq \mathcal{F}^{\prime}$. Therefore, $h \triangleq \chi^{\left\langle A, \mathcal{F}^{\prime}, \mathcal{F}\right\rangle} \in \operatorname{hom}\left(\mathfrak{A} \upharpoonright F_{+}, \mathfrak{D}_{3}\right)$, in which case $D^{\mathcal{A}} \subseteq \mathcal{F}=h^{-1}[\{2\}] \not \supset a$, for \mathcal{F} is disjoint with $\mathcal{J} \ni a$. And what is more, using (6.1), it is routine checking that $h\left(\sim^{\mathfrak{A}} b\right)=(2-h(b))$, for all $b \in A$. Thus, $h \in \operatorname{hom}\left(\mathcal{A}, \mathcal{K}_{3}\right)$, as required.
Note that (3.6) is satisfied in \mathcal{K}_{2} but is not satisfied in \mathcal{K}_{3} under $\left[x_{0} / 1\right]$. Moreover, $\{1\}$ and $\{0,2\}$ are the only subsets of 3 forming subalgebras of $\mathfrak{K}_{3}, \mathcal{K}_{3} \upharpoonright\{0,2\}$ being isomorphic to \mathcal{K}_{2}, while $\mathcal{K}_{3} \upharpoonright\{1\}$ being truth-empty, and so satisfying no axiom. In this way, combining (3.2) and Lemma 5.1 with Propositions 5.6 and 6.18 , we first get:
Corollary 6.20. A resolutional filtered Kleene lattice is non-paracomplete iff it is discriminated by \mathcal{K}_{2}. In particular, PC is the only proper consistent axiomatic extension of K_{3} and is relatively axiomatized by (3.6).

Next, we have:
Corollary 6.21. A resolutional filtered Kleene lattice satisfies the rule:

$$
\begin{equation*}
D\left(x_{0}\right) \rightarrow D\left(x_{1} \vee \sim x_{1}\right) \tag{6.24}
\end{equation*}
$$

iff it is discriminated by $\left\{\mathcal{K}_{2}, \mathcal{K}_{1}\right\}$. In particular, PC C_{+0}, being defined by $\left\{\mathcal{K}_{2}, \mathcal{K}_{1}\right\}$, is the extension of K_{3} relatively axiomatized by (6.24).

Proof. With using Remark 3.3. Clearly, both \mathcal{K}_{2}, being non-paracomplete, and \mathcal{K}_{1}, being truth-empty, satisfy (6.24). Then, the "if" part is by Lemma 5.1. Conversely, consider any $\mathcal{A} \in \operatorname{RFKL}$ satisfying (6.24) and the following complementary cases:
(1) $D^{\mathcal{A}}=\varnothing$.

Then, Claim 6.19 completes the argument.

Figure 2. Proper [non-seudo-axiomatic] extensions of K_{3} [with solely solid circles].
(2) $D^{\mathcal{A}} \neq \varnothing$.

Then, \mathcal{A} is not paracomplete, and so Corollary 6.20 completes the argument.

By $I C$ we denote the inconsistent F_{\sim}-logic that is defined by \varnothing and is the axiomatic extension of K_{3} relatively axiomatized by $D\left(x_{0}\right)$.

Proposition 6.22. Any $\mathcal{A} \in \operatorname{RFKL}$ satisfies the rule:

$$
\begin{equation*}
D\left(x_{0}\right) \rightarrow D\left(x_{1}\right) \tag{6.25}
\end{equation*}
$$

iff it is discriminated by \mathcal{K}_{1}. In particular, $I C_{+0}$, being defined by \mathcal{K}_{1}, is the extension of K_{3} relatively axiomatized by (6.25).
Proof. With using Remark 3.3. Clearly, \mathcal{K}_{1}, being truth-empty, satisfies (6.25). Then, the "if" part is by Lemma 5.1. Conversely, consider any $a \in\left(A \backslash D^{\mathcal{A}}\right)$, in which case, by (6.25), \mathcal{A} is truth-empty, and so Claim 6.19 completes the argument.

Theorem 6.23. Proper [non-pseudo-axiomatic] extensions of K_{3} form the four [two]-element diamond[chain] depicted at Figure 2.
Proof. We use Remark 3.2, Propositions 3.4, 6.18, 6.22 and Corollaries 6.20 and 6.21 tacitly. First, (6.24) is not satisfied in \mathcal{K}_{3} under $\left[x_{0} / 2, x_{1} / 1\right]$. Next, \mathcal{K}_{1}, being truth-empty, does not satisfy any axiom, and so is paracomplete. Further, (6.25) is not satisfied in \mathcal{K}_{2} under $\left[x_{0} / 1, x_{1} / 0\right]$. Finally, $\mathcal{K}_{1 / 2}$ are both consistent, while any logic satisfying both (6.25) and any axiom (in particular, (3.6)) is inconsistent. Thus, the four logics $P C_{[+0]}$ and $I C_{[+0]}$ are proper extensions of K_{3} and form the diamond depicted at Figure 2. After all, consider any extension C^{\prime} of K_{3}, in which case it is defined by $S \triangleq\left(\operatorname{Mod}\left(C^{\prime}\right) \cap\right.$ RFKL $)$, and the following five exhaustive cases:
(1) $I C \subseteq C^{\prime}$.

Then, $C^{\prime}=I C$.
(2) $P C \nsubseteq C^{\prime}$ but $I C_{+0} \subseteq C^{\prime}$,
in which case $I C \nsubseteq C^{\prime}$, and so, by the following claim, C^{\prime} is theorem-less:
Claim 6.24. Let $C^{\prime \prime}$ and $C^{\prime \prime \prime}$ be F-logics. Suppose $C^{\prime \prime} \nsubseteq C^{\prime \prime \prime}$ is non-pseudo-axiomatic and $C_{+0}^{\prime \prime} \subseteq C^{\prime \prime \prime}$. Then, $C^{\prime \prime \prime}$ has no theorem.

Proof. By contradiction and with using Remark 3.2 tacitly. For suppose $C^{\prime \prime \prime}$ has a theorem, in which case it is non-pseudo-axiomatic, and so $C_{-0}^{\prime \prime \prime}=C^{\prime \prime \prime}$. In this way, we get $C^{\prime \prime}=\left(C_{+0}^{\prime \prime}\right)_{-0} \subseteq C_{-0}^{\prime \prime \prime}=C^{\prime \prime \prime}$. This contradiction completes the argument.

Therefore, as $C_{-0}^{\prime} \subseteq I C$, we have $C^{\prime}=\left(C_{-0}^{\prime}\right)_{+0} \subseteq I C_{+0}$, and so we get $C^{\prime}=I C_{+0}$.
(3) $I C_{+0} \nsubseteq C^{\prime}$ but $P C \subseteq C^{\prime}$,
in which case $I C \nsubseteq C^{\prime}$, and so there is some consistent non-paracomplete $\mathcal{A} \in \mathrm{S}$. Then, there is some $a \in A$ such that $b \triangleq\left(a \vee^{\mathfrak{A}} \sim^{\mathfrak{A}} a\right) \in D^{\mathcal{A}}$, in which case $b \geqslant^{\mathfrak{A}} \sim^{\mathfrak{A}} b \notin D^{\mathcal{A}}$, for \mathcal{A}, being resolutional, is not paraconsistent but is consistent, and so $\left\{\left\langle 0, \sim^{\mathfrak{A}} b\right\rangle,\langle 1, b\rangle\right\}$ is an embedding of \mathcal{K}_{2} into \mathcal{A}. Hence, by (3.2), $\mathcal{K}_{2} \in \mathrm{~S}$, in which case $C^{\prime} \subseteq P C$, and so $C^{\prime}=P C$.
(4) $P C_{+0} \subseteq C^{\prime}$ but both $P C \nsubseteq C^{\prime}$ and $I C_{+0} \nsubseteq C^{\prime}$.

Then, by Claim 6.24, C^{\prime} has no theorem. Moreover, (6.24), being satisfied in $P C_{+0}$, is so in C^{\prime}, in which case, by the structurality of $C^{\prime},\left(x_{0} \vee \sim x_{0}\right) \in$ $\left(\bigcap_{\beta \in \kappa} C^{\prime}\left(x_{\beta}\right)\right)=C_{-0}^{\prime}(\varnothing)$, and so $P C \subseteq C_{-0}^{\prime}$. On the other hand, $I C=$ $\left(I C_{+0}\right)_{-0} \nsubseteq C_{-0}^{\prime}$, so $I C_{+0} \nsubseteq C_{-0}^{\prime}$. Hence, by Case (3), $C_{-0}^{\prime}=P C$. In this way, $C^{\prime}=\left(C_{-0}^{\prime}\right)_{+0}=P C_{+0}$.
(5) $P C_{+0} \nsubseteq C^{\prime}$.

Then, there is some $\mathcal{A} \in \mathrm{S}$ not satisfying (6.24), in which case there are some $a \in D^{\mathcal{A}}$ and some $b \in A$ such that $c \triangleq\left(b \vee^{\mathfrak{A}} \sim^{\mathfrak{A}} b\right) \notin D^{\mathcal{A}}$, and so $c \neq d \triangleq\left(a \vee^{\mathfrak{A}} c\right) \in D^{\mathcal{A}}$. Clearly, $B \triangleq\left\{\sim^{\mathfrak{A}} d, \sim^{\mathfrak{A}} c, c, d\right\}$, forming a chain sublattice of $\mathfrak{A} \uparrow F_{+}$, forms a subalgebra of \mathfrak{A}, by (6.1), while $\left(\left\{\left\langle\sim^{\mathfrak{A}}\right)^{i} d, 2\right.\right.$. $\left.(1-i)\rangle \mid i \in 2\} \cup\left\{\left\langle\left(\sim^{\mathfrak{A}}\right)^{i} c, 1\right\rangle \mid i \in 2\right\}\right)$ is a strict surjective homomorphism from $(\mathcal{A} \mid B)=\langle\mathfrak{A} \mid B,\{d\}\rangle$ onto \mathcal{K}_{3}, in which case $\mathcal{K}_{3} \in \mathrm{~S}$, by (3.2), and so $C^{\prime}=K_{3}$.

It is remarkable that K_{3} is not covered by Section 4, for, otherwise, by Theorem 4.3 , ε would be empty for K_{3} to satisfy $\tau_{\varepsilon}(3.7)$, since K_{3} has no theorem, in which case $\tau_{\varepsilon}(3.11)$ would be equal to (6.25) that is not satisfied in \mathcal{K}_{3} under [$\left.x_{0} / 2, x_{1} / 0\right]$. Likewise, since $1 \notin\{2\}=D^{\mathcal{K}_{3}}$ forms a subalgebra of $\mathfrak{K}_{3}, \mathcal{K}_{3}$ is not covered by the purely-algebraic approach of [14]. Thus, meanwhile, Section 5 remains a unique generic approach applicable to K_{3} that highlights its value.

7. Conclusions

As a matter of fact, in view of Theorem $4.3(\mathrm{ii}) \Leftrightarrow($ iii $)$, the general approach developed here is equally applicable to to arbitrary equivalential equality-free universal Horn theories in the sense of [18] (in particular, to all sequent calculi constructed in [17]; cf. Proposition 10 of [18]). However, this issue deserves a particular emphasis and, for this reason, is going to be eventually presented elsewhere.

References

1. R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri Press, Columbia (Missouri), 1974.
2. N. D. Belnap, Jr, A useful four-valued logic, Modern uses of multiple-valued logic (J. M. Dunn and G. Epstein, eds.), D. Reidel Publishing Company, Dordrecht, 1977, pp. 8-37.
3. G. Grätzer, Universal Algebra, 2nd ed., Springer-Verlag, Berlin, 1979.
4. S. C. Kleene, Introduction to metamathematics, D. Van Nostrand Company, New York, 1952.
5. J. Loś and R. Suszko, Remarks on sentential logics, Indagationes Mathematicae 20 (1958), 177-183.
6. A. I. Mal'cev, Algebraic systems, Springer Verlag, New York, 1965.
7. E. Mendelson, Introduction to mathematical logic, 2nd ed., D. Van Nostrand Company, New York, 1979.
8. G. Priest, The logic of paradox, Journal of Philosophical Logic 8 (1979), 219-241.
9. A. P. Pynko, Algebraic study of Sette's maximal paraconsistent logic, Studia Logica 54 (1995), no. 1, 89-128.
10. On Priest's logic of paradox, Journal of Applied Non-Classical Logics 5 (1995), no. 2, 219-225.
11. , Definitional equivalence and algebraizability of generalized logical systems, Annals of Pure and Applied Logic 98 (1999), 1-68.
12. \qquad , Functional completeness and axiomatizability within Belnap's four-valued logic and its expansions, Journal of Applied Non-Classical Logics 9 (1999), no. 1/2, 61-105, Special Issue on Multi-Valued Logics.
13.

181.

14. \qquad , Subprevarieties versus extensions. Application to the logic of paradox, Journal of Symbolic Logic 65 (2000), no. 2, 756-766.
15. \qquad Implicational classes of De Morgan Boolean algebras, Discrete mathematics 232 (2001), 59-66.
16. \qquad , Extensions of Hatkowska-Zajac's three-valued paraconsistent logic, Archive for Mathematical Logic 41 (2002), 299-307.
17. \qquad , Sequential calculi for many-valued logics with equality determinant, Bulletin of the Section of Logic 33 (2004), no. 1, 23-32.
18. \qquad , A relative interpolation theorem for infinitary universal Horn logic and its applications, Archive for Mathematical Logic 45 (2006), 267-305.
19. Subquasivarieties of implicative locally-finite quasivarieties, Mathematical Logic Quarterly 56 (2010), no. 6, 643-658.
20. L. A. Skornyakov (ed.), General algebra, vol. 2, Nauka, Moscow, 1991, In Russian.
V.M. Glushkov Institute of Cybernetics, Glushkov prosp. 40, Kiev, 03680, Ukraine Email address: pynko@i.ua

[^0]: 2020 Mathematics Subject Classification. Primary: 03B22, 03C05, 03C07, 08A05, 08C15; Secondary: 03B50, 03G10, 06A15, 06D30, 06E05, 06E25.

 Key words and phrases. generalized/sentential logic, algebra, algebraic system, congruence, [strict] homomorphism, [(in)consistent/truth〈-non〉-empty/para\{complete|consistent\}] matrix, [the classical expansion of] Belnap's four-valued logic, [(truth-singular/non-idempotent) filtered] De Morgan Boolean algebra, [quasi/pre]variety.

[^1]: ${ }^{1}$ Though some general results presented in that section, concerning finitary logics, have more immediate arguments with using certain universal results of [11] concerning extensions of equivalent generalized logics, for the sake of self-containity, we have preferred to refrain from explicit involving the conceptions of translation and equivalence introduced therein in this connection.

[^2]: ${ }^{2}$ In this way, [providing $\kappa=\omega$, finitary] L-calculi are nothing but strict equality-free [first-order] universal Horn theories of $L_{\infty \kappa[\omega \omega]}$.

[^3]: ${ }^{3}$ According to Example 6 of [18], in case of infinitary signatures (as opposed to that of finitary ones), structures need not have the greatest congruence that excludes adaptation of "finitary" methods to the general infinitary case.

[^4]: ${ }^{4}$ More precisely, in a sense immediately extending that adopted therein to infinitary logics and translations as well as to non-countable κ.

