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SUBPREVARIETIES OF ALGEBRAIC SYSTEMS VERSUS
EXTENSIONS OF LOGICS:

APPLICATION TO SOME MANY-VALUED LOGICS

ALEXEJ P. PYNKO

Abstract. Here, we study applications of the factual interpretability of [equ-

ivalence between] the equality-free infinitary universal Horn theory (in partic-
ular, the sentential logic) of a class of algebraic systems (in particular, logical
matrices) [with equality uniformly definable by a set of atomic equality-free for-
mulas] in [and] the prevariety generated by the class, in which case the lattice

of extensions of the former is a Galois retract of [dual to] that of all subpreva-
rieties of the prevariety, the retraction [duality] retaining relative equality-free

infinitary universal Horn axiomatizations. As representative instances, we ex-
plore:

(1) the classical (viz., Boolean) expansion of Belnap’s four-valued logic that
is not equivalent to any class of pure algebras but is equivalent to the
quasivariety of filtered De Morgan Boolean algebras that are matrices

with underlying algebra being a De Morgan Boolean algebra, truth pred-
icate being a filter of it and equality being definable by a strong equiv-
alence connective, proving that prevarieties of such structures form an

eight-element non-chain distributive lattice, and so do extensions of the
expansion involved;

(2) Kleene’s three-valued logic that is neither interpretable in pure algebras

nor equivalent to a prevariety of algebraic systems, but is interpretable

into the quasivariety of resolutional filtered Kleene lattices that are ma-
trices with underlying algebra being a Kleene lattice and truth predicate

being a filter of it, satisfying the Resolution rule, proving that proper
extensions of the logic form a four-element diamond.

1. Introduction

Appearance of any logical system/calculus inevitably raises a number of meta-
logical issues such as its semantics, derivable/admissible rules as well as both its
[axiomatic] extensions and their semantics, (relative) axiomatizations etc. On the
other hand, the principal meaning of universal logical investigations consists in
developing generic tools of exploring such issues as for particular logics. In this
connection, the work [11] has suggested a general algebraic approach going back to
[9] as for axiomatic extensions, providing reduction of the problem involved to that
of finding subquasivarieties of the equivalent quasivariety of algebras (if any, at all)
of a given logical system. This advanced paradigm has been successfully applied to
many particular logical systems in both [11] and [9] themselves as well as in further
works [12], [13], [15], [16] and [19].

However, there are certain interesting logical systems having no equivalent qua-
sivariety of pure algebras. This concerns both sequential (viz., Gentzen-style) and
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2 A. P. PYNKO

sentential (viz., Hilbert-style) calculi studied in [11] and [12]. Nevertheless, these
instances do possess equivalent quasivarieties but of rather algebraic systems (in
the sense of [6]) than pure algebras. This paper is, first of all, devoted to the
primary task of factual extending [11] to such general quasivarieties in Mal’cev’s
sense. And what is more, like in [14], to cover not necessarily finitary logics (mainly,
potential infinitary extensions of normally finitary initial logics), we deal with the
framework of prevarieties (in the terminology of [20]), that is, infinitary universal
Horn model classes (more specifically, within infinitary logics of the form L∞κ,
where κ is a regular infinite cadinal, while [20] implicitly deals with L∞∞, in which
case universal Horn theories are, generally speaking, proper classes). In this con-
nection, we extend [14] beyond pure algebras. Finally, we exemplify our generic
elaboration by applying it to, perhaps, most representative instances of Hilbert-
style calculi — both Kleene’s three-valued logic [4] and the logic introduced in
[12] by supplementing Belnap’s four-valued logic [2] with classical (viz., Boolean)
negation.

The rest of the paper is as follows. The exposition of the material of the pa-
per is entirely self-contained (of course, modulo very basic issues concerning Set
Theory, Lattice Theory, Universal Algebra and Model Theory, not specified here
explicitly, to be found, e.g., in [1], [3], [6] and [7]). Section 2 is a concise summary
of basic issues underlying the paper, most of which have actually become a part
of logical and algebraic folklore. Section 3 is a self-contained summary of Chapter
1 of [11] extended within infinitary framework and supplemented with the issues
of semantics and prevarieties of algebraic systems, not involved therein explicitly.
Then, Section 4 is entirely devoted to the issue of equational systems going back
to [18].1 In its turn, Section 5 provides, in particular, an extension of [14] beyond
pure algebras, Finally, Section 6 (more specifically, Subsection 6.1/6.2) is a quite il-
lustrative application of the generic tools elaborated in Section 4/5 to the classical
expansion of Belnap’s four-valued logic/Kleene’s three-valued logic, respectively.
Finally, Section 7 is an outline of further related work.

2. Basic issues

Notations like img, dom, ker, hom and Con and related notions are supposed to
be clear.

2.1. Set-theoretical background. We follow the standard set-theoretical con-
vention, according to which natural numbers (including 0) are treated as finite
ordinals (viz., sets of lesser natural numbers), the ordinal of all them being denoted
by ω. The proper class of all ordinals is denoted by ∞. Likewise, functions are
viewed as binary relations. In addition, singletons are often identified with their
unique elements, unless any confusion is possible.

Given a class K, the class of all [finite] subsets of K is denoted by ℘[ω](K).
Let S be a set. Given any equivalence relation θ on S, as usual, by νθ we denote

the function with domain S defined by νθ(a) , [a]θ , θ[{a}], for all a ∈ S, in
which case ker νθ = θ, whereas we set (T/θ) , νθ[T ], for every T ⊆ S. Next,
S-tuples (viz., functions with domain S) are normally written in either sequence t̄
or vector ~t forms, its s-th component, where s ∈ S, being written as ts in that case.
Given two more sets A and B, any relation R ⊆ (A×B) (in particular, a mapping
R : A→ B) determines the equally-denoted relation R ⊆ (AS×BS) (resp. mapping
R : AS → BS) point-wise, that is, R , {〈ā, b̄〉 ∈ (AS × BS) | ∀s ∈ S : as R bs}.

1Though some general results presented in that section, concerning finitary logics, have more
immediate arguments with using certain universal results of [11] concerning extensions of equiv-

alent generalized logics, for the sake of self-containity, we have preferred to refrain from explicit

involving the conceptions of translation and equivalence introduced therein in this connection.
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Likewise, given, in addition, any f : S → A and any g : S → B, we have (f × g) :
S → (A × B), s 7→ 〈f(s), g(s)〉. Further, set ∆S , {〈a, a〉|a ∈ S}, such functions
being said to be diagonal/identity, and S+ ,

⋃
i∈(ω\1) S

i, elements of which being
identified with ordinary finite non-empty tuples of elements of S. Then, any binary
operation � on S determines the equally-denoted mapping � : S+ → S as follows:
by induction on the length l = dom ā ∈ (ω \ 1) of any ā ∈ S+, put:

�ā ,

{
a0 if l = 1,
(�(ā�(l − 1))) � al−1 otherwise.

Given any f : S → S, put f0 , ∆S and f1 , f . Finally, given any n ∈ (ω \ 1) and
any ~T ∈ ℘(S)n, we have χ~T : (

⋃
(img ~T )) → n, a 7→ min{i ∈ n | a ∈ Ti}. Then, for

any T ⊆ S, χT
S , χ〈S,T 〉 : S → 2 is the usual characteristic function of T in S.

Let A be a set. A U ⊆ ℘(A) is said to be upward-directed, provided, for every
S ∈ ℘ω(U), there is some T ∈ U such that (

⋃
S) ⊆ T . A closure operator over

A is any unary operation C on ℘(A) such that, for all D ⊆ B ⊆ A, it holds that
(C(C(B))∪B ∪C(D)) ⊆ C(B). This is said to be inductive/finitary, provided, for
every upward-directed U ⊆ ℘(A), it holds that O(

⋃
U) ⊆

⋃
O[U ].

A Galois retraction between posets 〈P,5〉 and 〈Q,.〉 is any couple 〈f, g〉 of anti-
monotonic mappings f : P → Q and g : Q → P such that (g ◦ f) = ∆P and (f ◦
g) ⊆ .. (Galois retractions are exactly Galois connections with injective/surjective
left/right component; cf. [14] and [19].)

2.2. Algebraic background. Unless otherwise specified, abstract algebras are de-
noted by capital Fraktur letters (possibly, with indices), their carriers (viz., under-
lying sets) being denoted by corresponding Italic letters (with same indices, if any).
Likewise, unless otherwise specified, we deal with a fixed but arbitrary algebraic
(viz., functional) signature F constituted by function (viz., operation) symbols of
arity in a fixed regular infinite cardinal κ, treated as (propositional) connectives.
Then, algebraic systems (viz., first-order model structures) are denoted by Calli-
graphic letters (possibly, with indices), their underlying algebras (viz., F -reducts)
being denoted by corresponding Fraktur letters (with same indices, if any).

Given any S ∈ ℘(∞) put VS , {xβ |β ∈ S} and (∃S) , (∃VS). The absolutely-
free F -algebra TmF freely-generated by the set Vκ, elements of which being viewed
as (propositional) variables, is referred to as the term F -algebra, elements of its
carrier TmF (viz., F -terms) being treated as (propositional) F -formulas, its endo-
morphisms being referred to as F -substitutions.

Model L-structures (viz., algebraic systems of the signature L; cf. [6]) with
underlying algebra TmF are said to be Lindenbaum.

3. Generalized logics versus algebraic systems

Fix any first-order signature L = 〈F,R〉, where R is a relational signature, i.e.,
a set of predicate (viz., relation) symbols of arity in κ, disjoint with F , to be
identified with F alone, whenever R = ∅. Strict atomic equality-free formulas of
L with variables in Vκ are called L-formulas, the set of all them being denoted by
FmL. Given any Σ ⊆ (FmL ∪TmF ), the set of all variables actually occurring in
an element of Σ is denoted by Var(Σ). Then, subsets/elements of ℘[ω](FmL)×FmL

are referred to as [finitary] L-calculi/-rules. As usual, any L-rule 〈Γ,Φ〉 is normally
written as Γ → Φ and is identified with the infinitary Horn formula (

∧
Γ) → Φ,2

Φ/any element of Γ being referred to as the/a conclusion/premise of the rule. As

2In this way, [providing κ = ω, finitary] L-calculi are nothing but strict equality-free [first-order]
universal Horn theories of L∞κ[ωω].
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usual, L-rules without premises are called L-axioms and are identified with their
conclusions.

A (generalized) L-logic is any closure operator C over FmL that is structural in
the sense that σ[C(X)] ⊆ C(σ[X]), for all X ⊆ FmL and all σ ∈ hom(TmF ,TmF ).
It is said to be [in]consistent, if C(∅) 6= [=] FmL. This is said to satisfy an L-rule
Γ → Φ, provided Φ ∈ C(Γ), L-axioms satisfied in C being called theorems of C.
Next, C is uniquely determined by, and so naturally identified with the L-calculus
of all L-rules satisfied in C (in this way, logics become particular cases of calculi).
Further, a (proper) extension of an L-logic C is any L-logic C ′ ⊇ ())C, in which
case C is said to be a (proper) sublogic of C ′. Then, C ′ is said to be axiomatized by
an L-calculus C relatively to C, whenever C ′ is the least extension of C satisfying
each rule of C. Finally, an extension of an L-logic is said to be axiomatic, whenever
it is relatively axiomatized by a set of L-axioms.

Given any class M of model L-structures, we have the L-logic CnM, constituted
by all L-rules true in M and said to be defined by M or called the one of M.

Let A be an L-structure.
Elements of Con(A) , {θ ∈ Con(A)|∀r ∈ R : θ[rA] ⊆ rA} 3 ∆A are called

congruences of A.3 Then, A is said to be simple, whenever Con(A) = {∆A}. Given
any θ ∈ Con(A), we have the quotient Σ-structure A/θ with underlying algebra
A/θ and relations rA/θ , (rA/θ), where r ∈ R.

Next, A is said to be inconsistent, if, for every r ∈ R of arity α ∈ κ, it holds that
rA = Aα, and consistent, otherwise.

Finally, A is said to be finitely-generated/finite/one-element, whenever A is so.
Let A and B be two L-structures. A (strict) [surjective] homomorphism from A

[on]to B is any h ∈ hom(A,B) such that rA ⊆ (=)h−1[rB], for every r ∈ R[, while
h[A] = B], the set of all them being denoted by hom[S]

(S)(A,B), in which case (we

set (A ↑ h−1[B]) , A, while

(3.1) (kerh) ∈ Con(A ↑ h−1[B]),

whereas) we have hom(TmF ,B) ⊇ [=]{h ◦ g|g ∈ hom(TmF ,A)}, and so:

(hom[S]
S (A,B) 6= ∅) ⇒ (CnB ⊆ [=]CnA),(3.2)

(homS(A,B) 6= ∅) ⇒ (CnB(∅) ⊆ CnA(∅)).(3.3)

Then, A is said to be a substructure of B, whenever ∆A ∈ homS(A,B), in which
case we set (B�A) , A. Likewise, A � B means that ∆A ∈ hom(A,B). (In this
way, � is a partial ordering on the class of all L-structures.) Injective/bijective
strict homomorphisms from A to B are referred to as embeddings/isomorphisms
of/from A into/onto B, in case of existence of which A is said to be embed-
dable/isomorphic into/to B. (Note that, for any θ ∈ Con(A) [resp., θ ∈ Con(A)],
νθ ∈ homS

[S](A,A/θ).)
Let I be a set andA an I-tuple of L-structures. In case {Ai | i ∈ I} ⊆ {A}, where

A is an F -algebra, by A ↑ (
⋂

i∈I Ai) we denote the intersection of A over A, being
the L-structure with underlying algebra A and relations given by rA↑(

⋂
i∈I Ai) ,

(Aα ∩ (
⋂

i∈I r
Ai)), for every r ∈ R of arity α ∈ κ. In general, we then have the

direct product (
∏

i∈I Ai) , ((
∏

i∈I Ai) ↑ (
⋂

i∈I((
∏

i∈I Ai) ↑ π−1
i [Ai]))) of A, any

substructure B of it being called a subdirect product of A, whenever, for each i ∈ I,
πi[B] = Ai. (In case I = 2, as usual, A0 × A1 stands for the direct product
involved.)

3According to Example 6 of [18], in case of infinitary signatures (as opposed to that of finitary

ones), structures need not have the greatest congruence that excludes adaptation of “finitary”
methods to the general infinitary case.
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Given a class K of L-structures, the class of all L-structures being isomorphic/
[non-one-element] substructures to/of members of K is denoted by (I/S[>1])K, re-
spectively. Likewise, the class of all (sub)direct products of [finite] tuples consti-
tuted by {consistent} members of K is denoted by P(SD){∗}

[ω] K, respectively.
A [Lindenbaum] L-structure A is said to be a [Lindenbaum] model of an L-

calculus C, whenever every L-rule of C is satisfied in A, that is, in CnA, the class of
all them being denoted by Mod(C) (note that it is closed under intersections, and
so under I, S and P, in view of (3.2)) [resp., Lin(C)].

Given any Γ ⊆ FmL, we have the Lindenbaum L-structure Γ↑ with relations
rΓ↑ , {ϕ̄ ∈ Tmα

F | r(ϕ̄) ∈ Γ}, for every r ∈ R of arity α ∈ κ. Conversely, given any
Lindenbaum L-structure A, we have (A↓) , {r(ϕ̄) | r ∈ R, ϕ̄ ∈ rA} ⊆ FmL. This
provides an isomorphism between the poset ℘(FmL) ordered by inclusion and the
poset of all Lindenbaum L-structures ordered by �.

Given any L-logic C, taking its structurality and the diagonal F -substitution
into account, it is routine checking that:

(3.4) Lin(C) = {Γ↑ | Γ ∈ (imgC)}.

Theorem 3.1 (Completeness theorem). Any L-logic C is defined by Lin(C), and
so by Mod(C).

Proof. Consider any L-rule Γ → Φ not satisfied in C, in which case Φ 6∈ C(Γ) ⊇ Γ,
and so, taking (3.4) into account, the rule is not true in (C(Γ)↑) ∈ Lin(C) ⊆
Mod(C) under the diagonal F -substitution, as required. �

3.1. Sentential logics and logical matrices. Let R , {D}, where D is unary
(truth predicate). Then, any L-formula D(ϕ) is identified with the F -term ϕ,
unless any confusion is possible. In general, “(sentential) F -” means “L-”. Then,
sentential F -structures are traditionally called (logical) F -matrices (cf. [5]), any F -
matrix A being identified with the couple 〈A, DA〉 with natural identifying elements
of A1 with those of A. This is said to be n-valued/truth[-non]-empty, where n ∈ ω,
provided |A| = n/DA = [6=]∅, respectively. In that case, an F -logic is said to
be [minimally] n-valued, whenever it is defined by a single n-valued F -matrix [but
is defined by a single m-valued F -matrix, for no m ∈ n]. Furthermore, an F -
logic C is said to be non-pseudo-axiomatic (cf. [11] for the case κ = ω), provided⋂

β∈κ C(xβ) ⊆ C(∅) (the converse inclusion always holds by the monotonicity of
C).

Remark 3.2. Given an F -logic C, we have the F -logic C+/−0, defined by C+/−0(X)
, C(X), for all non-empty X ⊆ FmL, and C+/−0(∅) , (∅/(

⋂
β∈κ C(xβ))), be-

ing the greatest/least theorem-less/non-pseudo-axiomatic sublogic/extension of C,
called the theorem-less/non-pseudo-axiomatic version of C. Then, the mappings

C 7→ C+0,

C 7→ C−0,

are inverse to one another isomorphisms between the poset of all non-pseudo-
axiomatic L-logics ordered by ⊆ and that of all theorem-less ones. �

Remark 3.3. Since any rule with[out] premises is [not] satisfied in any truth-empty
matrix, given any class M of F -matrices and any non-empty class S of truth-empty
F -matrices, the logic of S ∪M is the theorem-less version of the logic of M. �

Proposition 3.4. The logic of any class M of truth-non-empty Σ-matrices is non-
pseudo-axiomatic.



6 A. P. PYNKO

Proof. Consider any φ ∈ (
⋂

β∈κ CnM(xβ)), any A ∈ M and any h ∈ hom(TmF ,A).
Then, in view of the infiniteness and the regularity of κ, by induction on construc-
tion of any ψ ∈ TmF , it is routine checking that |Var(ψ)| < κ = |Vκ|. In particular,
V , Var(φ) 6= Vκ. Therefore, there is some β ∈ κ such that xβ 6∈ V . Take any
a ∈ DA 6= ∅. Let g ∈ hom(TmF ,A) extend (h�V ) ∪ ((Vκ \ V ) × {a}). Then, we
have g(xβ) = a ∈ DA, and so, as φ ∈ CnM(xβ), we get h(φ) = g(φ) ∈ DA, as
required. �

In case F contains a unary connective ∼ (weak negation), an F -matrix/-logic
is said to be paraconsistent, provided it does not satisfy the Ex Contradictione
Quodlibet rule:

(3.5) {D(x0), D(∼x0)} → D(x1).

Then, in case F contains also a binary connective ∨ (disjunction), an F -matrix/-
logic is said to be paracomplete, provided it does not satisfy the Excluded Middle
law axiom:

(3.6) D(x0 ∨ ∼x0),

3.2. Prevarieties of algebraic systems. Let ≈ be a binary equality symbol,
without loss of generality, not belonging to F ∪ R. Set (R + ≈) , (R ∪ {≈}) and
(L+≈) , 〈F,R+≈〉. Then, (L+≈)-rules are referred to as L-pre-identities, finitary
(L+≈)-axioms[rules] being, as usual (cf., e.g., [6]), referred to as L-[quasi-]identities.
Next, any (L + ≈)-structure A is identified with the couple 〈A�L,≈A〉. Further,
given a class K of L-structures, put (K + ≈) , {〈A,∆A〉 | A ∈ K} and Cn≈K ,
CnK+≈, said to be equationally defined by K. Then, an L-pre-identity is said to be
(equationally) true/valid/satisfied in K, whenever it is true in K +≈. Respectively,
given a set of [(finitary) (L + ≈)-rules]-axioms C, a(n) (equational) model of C is
any L-structure equationally satisfying every pre-identity in C, the class of all them
being denoted by Mod≈(C) and called the L-[pre(quasi)]variety axiomatized by C

(since I, S and P retain the diagonality of binary relations, prevarieties are closed
under I, S and P; cf. [6]). Likewise, the relative sub[pre(quasi)]variety Mod≈(C)∩K
of K is said to be axiomatized by C relatively to K, the reservation ”relative” being
omitted, whenever K is a [pre(quasi)]variety. Finally, the least L-[pre(quasi)]variety
including K, being clearly axiomatized by the set of all L-[pre(quasi)-]identities true
in K, is said to be generated by K and denoted by [P(Q)]V(K).

By EL we denote the (L+≈)-calculus constituted by the following L-pre-ident-
ities:

x0 ≈ x0,(3.7)

(x0 ≈ x1) →(x1 ≈ x0),(3.8)

{x0 ≈ x1, x1 ≈ x2} →(x0 ≈ x2),(3.9)

{xi ≈ xα+i | i ∈ α} →(f(xk)k∈α ≈ f(xα+k)k∈α),(3.10)

({xj ≈ xβ+j | j ∈ β} ∪ {r(xl)l∈β}) →r(xβ+l)l∈β ,(3.11)

for all f ∈ F of arity α ∈ κ and all r ∈ R of arity β ∈ κ.

4. Equational systems

An equational L-system (for a class M of L-structures) is any ε ∈ ℘(FmL) such
that Var(ε) ⊆ V2 (and the L-pre-identities:

ε → (x0 ≈ x1),(4.1)
ε[x1/x0](4.2)
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are true in M, in which case it[, being finite,] is so for P[Q]V(M)). In this way, we
have the mapping τε : FmL+≈ → ℘(FmL), given by:

τε(Φ) ,

{
ε[x0/φ, x1/ψ] if Φ = (φ ≈ ψ), φ, ψ ∈ TmF ,

{Φ} otherwise.

Then, for any L-pre-identity Ψ = (Γ → Φ), we have the L-calculus τε(Ψ) ,
{(

⋃
τε[Γ]) → Υ | Υ ∈ τε(Φ)}.

Lemma 4.1. Let M be a class of L-structures, ε an equational L-system for it, A ∈
M, Φ ∈ FmL+≈ and h ∈ hom(TmF ,A). Then, (A+≈) |= Φ[h] ⇔ A |= (

∧
τε(Φ))[h],

in which case CnM and Cn≈M = Cn≈PV(M) are equivalent (in the sense of [11]4) with
the identity unary operation on FmL and τε. In particular, an L-pre-identity Ψ is
true in M iff each rule in τε(Ψ) is so.

Proof. By the validity of (4.1) and (4.2) in A. �

Lemma 4.2. Let ε be an equational L-system and A an L-structure. Suppose
θAε , {〈a, b〉 | A |= (

∧
ε)[x0/a, x1/b]} ∈ Con(A). Then, ε is an equational L-

system for A/θAε .

Proof. Since θ , θAε ∈ Con(A), we have νθ ∈ homS
S(A,A/θ). Hence, for all a, b ∈ A,

we get ((A/θ) |= (
∧
ε)[x0/νθ(a), x1/νθ(b)) ⇔ (A |= (

∧
ε)[x0/a, x1/b) ⇔ (a θ b) ⇔

(νθ(a) = νθ(b)), that is, ε is an equational L-system for A/θ, as required. �

Theorem 4.3. Let ε be an equational L-system and C an L-logic. Then, the
following are equivalent:

(i) (
⋃
τε[EL]) ⊆ C;

(ii) for every A ∈ Mod(C), θAε ∈ Con(A);
(iii) there is some class M of L-structures such that C is defined by M and ε

is an equational L-system for M.

Proof. First, (i)⇒(ii) is immediate. Next, (ii)⇒(iii) is by (3.2), Theorem 3.1 and
Lemma 4.2, when taking M , {A/θAε | A ∈ Mod(C)}. Finally, (iii)⇒(i) is by
Lemma 4.1 and the fact that all pre-identities of EL are true in every L-structure.

�

Corollary 4.4. Let M ∪ {A} be a class of L-structures and ε an equational L-
system for M. Then, A ∈ Mod(CnM) iff there is some θ ∈ Con(A) such that
(A/θ) ∈ PV(M).

Proof. First, assume there is some θ ∈ Con(A) such that (A/θ) ∈ PV(M). Then,
(A/θ) ∈ Mod≈(Cn≈M) ⊆ Mod(CnM). Moreover, νθ ∈ homS(A,A/θ). Hence, by
(3.2), we get A ∈ Mod(CnM). Conversely, assume A ∈ Mod(CnM). Then, by
Theorem 4.3(iii)⇒(ii), θ , θAε ∈ Con(A), in which case νθ ∈ homS

S(A,A/θ), and
so, by (3.2), (A/θ) ∈ Mod(CnM), while, by Lemma 4.2, ε is an equational L-system
for A/θ. Let P be the set of all L-pre-identities true in M. Then, by Lemma 4.1,
the L-rules of

⋃
τε[P] are all true in M, and so in A/θ. Therefore, by Lemma 4.1,

we eventually conclude that the pre-identities of P are all true in A/θ, that is,
(A/θ) ∈ PV(M), as required. �

Since L-rules are L-pre-identities, combining (3.2), Theorem 3.1, Lemma 4.1 and
Corollary 4.4, we eventually get:

Theorem 4.5. Let M be a class of L-structures and ε an equational L-system for
it. Then, the following hold:

4More precisely, in a sense immediately extending that adopted therein to infinitary logics and
translations as well as to non-countable κ.
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(i) the mappings

C 7→ (PV(M) ∩Mod(C)),
S 7→ CnS

are inverse to one another dual isomorphisms between the lattice of all
extensions of CnM and that of all subprevarieties of PV(M);

(ii) for any L-calculus C, the extension of CnM relatively axiomatized by C

corresponds to the subprevariety of PV(M) relatively axiomatized by C,
while, conversely, for any (L+≈)-calculus P, the subprevariety of PV(M)
relatively axiomatized by P corresponds to the extension of CnM relatively
axiomatized by

⋃
τε[P], and so axiomatic extensions of CnM correspond

exactly to relative subvarieties of PV(M);
(iii) the subprevariety of PV(M) generated by any K ⊆ PV(M) corresponds to

the extension of CnM defined by K.

Lemma 4.6. Let A and B be L-structures, h ∈ homS(A,B) and ε an equational
L-system for A. Then, h is injective.

Proof. Then, by (3.3), the L-axioms (4.2) are true in C , (B�(img h)), for h ∈
homS(A, C). Consider any a, b ∈ A such that h(a) = h(b). Then, by (4.2), we
have C |= (

∧
ε)[x0/h(a), x1/h(b)], in which case we get A |= (

∧
ε)[x0/a, x1/b], for

h ∈ homS(A, C), and so, by (4.1), we eventually get a = b, as required. �

As an immediate consequence of Lemma 4.6, we first have:

Corollary 4.7. Any L-structure with equational L-system is simple.

Since prevarieties are closed under I, while any L-structure A is isomorphic to
A/∆A, by Corollaries 4.4 and 4.7, we eventually get:

Corollary 4.8. Let M be a class of L-structures and ε an equational L-system for
it. Then, PV(M) is the class of all simple models of CnM.

5. Discrimination-refutation

Let K ∪ {A} be a class of L-structures. First, put

hom[S]
(S)(A,K) , (

⋃
{hom[S]

(S)(A,B) | B ∈ K}).

Next, A is said to be discriminated/refuted by K, whenever, for each r ∈ R of arity
α ∈ κ and every ā ∈ (Aα \rA), there are some B ∈ K and some h ∈ hom(A,B) such
that ā 6∈ h−1[rB], the class of all L-structures refuted by K being denoted by <(K).
The meaning of this notion is explained by the following two key observations:

Lemma 5.1. Suppose A is discriminated by K[, while either both A and R are finite
or both A is finitely-generated and both K and all members of it are finite].Then,
homS

S(A,PSD∗
[ω] ISK) 6= ∅. In particular, A ∈ Mod(CnK).

Proof. Let S be the set of all consistent L-structures with underlying algebra A.
Then, I , {〈C, θ〉 | A � C ∈ S, θ ∈ Con(C), (C/θ) ∈ ISK} is a set. For every
i = 〈C, θ〉 ∈ I, put Ci , C ∈ S, θi , θ ∈ Con(Ci) ⊆ Con(A) and Bi , (Ci/θi) ∈ ISK,
in which case A � Ci = (A ↑ ν−1

θi
[Bi]) and νθi ∈ homS

{S}(A{Ci},Bi), and so Bi

is consistent, for Ci ∈ S is so. [In case both A and R are finite, both S and
Con(A) ⊆ ℘(A2) are finite, and so is I ⊆ (S×Con(A)). Likewise, assume both A is
finitely-generated and both K and all members of it are finite, in which case both
SK and all members of it are finite, and so H , {〈g,D〉 | D ∈ SK, g ∈ hom(A,D)} is
finite. Consider any i ∈ I. Then, by the Choice Axiom, there are some Di ∈ SK and
some isomorphism ei from Bi onto Di, in which case gi , (ei ◦ νθi) ∈ hom(A,Di),
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and so 〈gi,Di〉 ∈ H. And what is more, (ker gi) = (ker νθi
) = θi, for ei is injective,

while Ci = (A ↑ ν−1
θi

[Bi]) = (A ↑ ν−1
θi

[Bi ↑ e−1
i [Di]]) = (A ↑ g−1

i [Di]). In this way,
{〈i, 〈gi,Di〉〉 | i ∈ I} : I → H is injective, and so I is finite, for H is so. Thus,
anyway, I is finite.] Then, h : A→ (

∏
i∈I Bi), a 7→ 〈[a]θi

〉i∈I , in which case (πi◦h) =
νθi

, for each i ∈ I, is a homomorphism from A to D , (
∏

i∈I Bi), and so is a
surjective one onto E , (D�(img h)), in which case πi[E] = πi[h[A]] = (A/θi) = Bi,
for each i ∈ I. Moreover, A � (A ↑

⋂
i∈I Ci). Conversely, consider any r ∈ R of arity

α ∈ κ and any ā ∈ (Aα\rA). Then, there are some F ∈ K and some g ∈ hom(A,F)
such that ā 6∈ g−1[rF ], in which case A � G , (A ↑ g−1[F ]), and so ā 6∈ rG , in
which case G is consistent, and so G ∈ S, while ϑ , (ker g) ∈ Con(G), in view of
(3.1). Therefore, by the Homomorphism Theorem, e , (g ◦ ν−1

ϑ ) ∈ homS(G/θ,F)
is injective, in which case (G/ϑ) ∈ ISK, and so i , 〈G, ϑ〉 ∈ I, in which case G = Ci,
and so ā 6∈ rCi . Thus, A = (A ↑

⋂
i∈I Ci) = (A ↑

⋂
i∈I(A ↑ (πi ◦ h)−1[Bi])) = (A ↑

h−1[D ↑ (
⋂

i∈I(D ↑ π−1
i [Bi]))] = (A ↑ h−1[

∏
i∈I Bi]) = (A ↑ h−1[(

∏
i∈I Bi)�E]), and

so h ∈ homS
S(A, (

∏
i∈I Bi)�E) ⊆ homS

S(A,PSD∗
[ω] ISK), as required. Finally, (3.2)

completes the argument. �

Conversely, we have:

Lemma 5.2. Let K be a class of L-structures and C the logic of it. Then, any
A ∈ Lin(C) is discriminated by K.

Proof. Consider any r ∈ R of arity α ∈ κ and any ā ∈ (Aα \ rA), in which case
Φ , r(ā) ∈ (FmL \(A↓)), and so, by (3.4), Φ ∈ (FmL \C(A↓)), that is, there are
some B ∈ K and some h ∈ hom(A,B) such that B |= (

∧
(A↓))[h] but B 6|= Φ[h], i.e.,

h ∈ hom(A,B) but ā 6∈ h−1[rB]. �

First of all, combining (3.2) and Theorem 3.4 with Lemmas 5.1 and 5.2, we
get the following relative generalization of Theorem 4.5 extending [14] beyond pure
algebras:

Theorem 5.3. Let P be a class of L-structures and M ⊆ P. Suppose P ⊆
Mod(CnM) is closed under I, S and P (in particular, P ⊆ <(M) is a prevariety).
Then, the following hold:

(i) the mappings

C 7→ (P ∩Mod(C)),
S 7→ CnS

form a Galois retraction between the lattice of all extensions of CnM and
that of all subprevarieties of P;

(ii) for any L-calculus C, the extension of CnM relatively axiomatized by C is
mapped to the subprevariety of P relatively axiomatized by C;

(iii) given any K ⊆ P, <(K)∩ P, being the subprevariety of P relatively axiom-
atized by an L-calculus C, is mapped to the extension of CnM defined by
K and relatively axiomatized by C.

Next, combining Lemmas 4.6 and 5.1, we immediately get:

Proposition 5.4. Let ε be an equational L-system for K ∪ {A}. Suppose A is
discriminated by K[, while either both A and R are finite or both A is finitely-
generated and both K and all members of it are finite]. Then, A ∈ IPSD∗

[ω] ISK ⊆
PV(K).

Note that x0 ≈ x1 is an equational (L + ≈)-system for (K ∪ {A}) + ≈. Hence,
as a particular case of Proposition 5.4 valuable within Universal Algebra, we have:
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Corollary 5.5 (cf. Remark 1.2 of [19] for the purely-algebraic case). Suppose
{R = ∅,} A+≈ is discriminated by K +≈[, while either both A and R are finite
or both A is finitely-generated and both K and all members of it are finite]. Then,
A ∈ IPSD

[ω]IS{>1}K ⊆ PV(K).

It is the purely-algebraic particular case (with R = ∅) that justifies the term
“discriminated” chosen here.

In addition, we also have:

Proposition 5.6. Let I be a set of (L[+≈])-axioms. Suppose A ∈ Mod[≈](I) is
discriminated by K. Then, it is so by Mod[≈](I) ∩ SK.

Proof. Consider any r ∈ R of arity α ∈ κ and any ā ∈ (Aα \ rA). Then, there
are some B ∈ K and some h ∈ hom(A,B) such that ā 6∈ h−1[rB], in which case
C , (B�(img h)) ∈ SK, ā 6∈ h−1[rC ] and h ∈ hom(A[+≈], C[+≈]) is surjective, and
so C ∈ Mod[≈](I), in view of (3.3), as required. �

6. Applications and examples

[Bounded] lattices are supposed to be of the functional signature F+[,01] ,
{∧,∨[,⊥,>]} with binary ∧ (conjunction) and ∨ (disjunction) [as well as nullary ⊥
and >]. Let F ⊇ F+ be a functional signature. Given any φ, ψ ∈ TmF , the formal
expression φ / ψ stands for the equation (φ∧ψ) ≈ φ. Given any F -algebra A such
that A�F+ is a lattice, the partial ordering/[prime] filters|ideals of the latter is/are
denoted by 6A/referred to as those of A.

Given any n ∈ (ω \ 1), by Dn[,01] we denote the [bounded] distributive lattice
over the chain n ordered by the natural partial ordering.

During this section, we entirely follow Subsection 3.1.

6.1. Filtered De Morgan Boolean algebras versus the classical expansion
of Belnap’s four-valued logic. Boolean algebras are supposed to be of the clas-
sical signature F− , (F+ ∪ {¬}) with unary ¬ (classical negation), the secondary
binary “material” implication ⊃ and respective equivalence ↔ connectives being,
as usual, defined by:

(x0 ⊃ x0) , (¬x0 ∨ x1),

(x0 ↔ x1) , ((x0 ⊃ x1) ∧ (x1 ⊃ x0)).

The ordinary two-element Boolean algebra with carrier 2 is denoted by B2. (More
precisely, (B2�F+,01) , D2

2,01 and ¬B2i , (1− i), for all i ∈ 2.)
During this subsection, we deal with the functional signature F' , (F− ∪ {∼})

with unary ∼ (weak negation) and the secondary binary “strong equivalence” con-
nective ≡ defined by (x0 ≡ x1) , ((x0 ↔ x1) ∧ (∼x0 ↔ ∼x1)) and treated as an
equational 〈F', {D}〉-system.

According to [12] (cf. [15]), a De Morgan Boolean algebra is any F'-algebra A
such that A�F− is a Boolean algebra, and the following De Morgan identities are
true in A:

∼∼x0 ≈ x0,(6.1)
∼(x0 ∨ x1) ≈ ∼x0 ∧ ∼x1,(6.2)

the variety of all them being denoted by DMBA. De Morgan Boolean algebras
also satisfy the following identities to be used tacitly throughout the rest of this
subsection:

∼(x0 ∧ x1) ≈ ∼x0 ∨ ∼x1,(6.3)
∼⊥ ≈ >,(6.4)
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∼> ≈ ⊥,(6.5)
∼¬x ≈ ¬∼x.(6.6)

A filtered De Morgan Boolean algebra is any F'-matrix with underlying algebra
being a De Morgan Boolean algebra and satisfying the following quasi-identities:

D(x0 ≡ x1) → (x0 ≈ x1),(6.7)
{D(x0), D(x1)} → D(x0 ∧ x1),(6.8)

D(x0 ∧ x1) → D(x0),(6.9)
D(>),(6.10)

the quasivariety of all them being denoted by FDMBA. The identity (x0 ↔ x0) ≈ >
is well known to be true in Boolean algebras, in which case the identity (x0 ≡ x0) ≈
> is true in De Morgan Boolean algebras, and so, by (6.7) and (6.10), x0 ≡ x1 is
an equational (F' ∪ {D})-system for FDMBA (this fact is used tacitly throughout
the rest of the paper).

By DMB4 we denote the Boolean De Morgan algebra defined as follows: put
(DMB4�F−) , B2

2 and ∼DMB4~a , 〈1−a1−i〉i∈2, for all ~a ∈ 22. In this connection,
we use the following standard abbreviations going back to [2]:

t , 〈1, 1〉,
f , 〈0, 0〉,
b , 〈1, 0〉,
n , 〈0, 1〉.

Since {b, t} is a prime filter of B2
2, we have ((a ∈ {b, t}) ⇔ (b ∈ {b, t})) ⇔

((a ↔B2
2 b) ∈ {b, t}), for all a, b ∈ 22. And what is more, a = b iff, for each

i ∈ 2, ((∼DMB4)ia ∈ {b, t}) ⇔ ((∼DMB4)ib ∈ {b, t}), for all a, b ∈ 22. Hence,
x0 ≡ x1 is an equational L-system for DMB4 , 〈DMB4, {b, t}〉 defining the
classical expansion CB4 of Belnap’s logic DB4 [12], and so DMB4 ∈ FDMBA.
In particular, Theorem 4.5 is well-applicable to CB4. In this way, in view of the
following primary result, to find its extensions is to find subprevarieties of FDMBA:

Proposition 6.1. Every filtered De Morgan Boolean algebra is discriminated by
DMB4. In particular, FDMBA = PV(DMB4).

Proof. Consider any A ∈ FDMBA and any a ∈ (A \DA). Then, as DA is a filter
of the Boolean algebra A�F−, by the Prime Ideal Theorem, there is some prime
filter X of A�F− such that DA ⊆ X 63 a. Then, by the following claim, h , hA

X ∈
homS(〈A, X〉,DMB4), in which case h ∈ hom(A,DMB4), while a 6∈ h−1[DDMB4 ],
and so A is discriminated by DMB4:

Claim 6.2. Let A ∈ DMBA, X a prime filter of A�F− and Y , (∼A)−1[A \X].
Then, hA

X , (χX
A × χY

A) ∈ hom(A,DMB4).

Proof. First, by (6.2), (6.3), (6.4) and (6.5), Y is a prime filter of A�F−. Moreover,
given a prime filter Z of a Boolean algebra B, χZ

B ∈ hom(B,B2). Therefore,
h , hA

X ∈ hom(A�F−,B2
2). Finally, using (6.1), it is routine checking that h(∼Ab) =

∼DMB4h(b), for all b ∈ A, as required. �

In this way, Proposition 5.4 completes the argument. �

The relative subvariety IFDMBA of FDMBA, constituted by all its inconsistent
members, is relatively axiomatized by the axiom D(x0) and corresponds to the
inconsistent extension of CB4. In view of (6.7) and (6.10), a filtered De Morgan
Boolean algebra is inconsistent iff it is one-element.
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The relative subvariety of FDMBA, constituted by all its non-paracomplete mem-
bers, is denoted by NPCFDMBA and corresponds to the least non-paracomplete
extension of CB4.

Note that DMB2 , (DMB4�{f, t}) is the only proper subalgebra of DMB4,
and so DMB2 , 〈DMB2, {t}〉 = (DMB4�{f, t}) is the only proper submatrix of
DMB4. Moreover, both (3.6) and the identity:

(6.11) ∼x0 ≈ ¬x0

are true in DMB2, while neither (3.6) nor (6.11) is true in DMB4 under [x0/n].
In this way, as DMB2, being non-one-element, is consistent, by Propositions 5.4,
5.6 and 6.1, we immediately get:

Corollary 6.3. Relative subvarieties of FDMBA form the three-element chain:

[Q]V(∅) = IFDMBA ( NPCFDMBA = PV(DMB2) ( FDMBA,

NPCFDMBA being relatively axiomatized by (6.11).

Thus, the logic of DMB2, being the definitional expansion of the classical logic
PC of 〈B2, {1}〉 given by (6.11), is the only proper consistent axiomatic extension
of CB4. The rest of this section is devoted to finding all non-axiomatic ones.

A filtered De Morgan Boolean algebra is said to be truth-singular if it satisfies
the following quasi-identity:

(6.12) D(x0) → (x0 ≈ >),

the quasivariety of all them being denoted by TSFDMBA.

Remark 6.4. It is routine checking that the rule D(x0) → D(∼x0 ∨ (x0 ≡ >)) is
true in FDMBA. In this way, TSFDMBA is the subquasivariety of FDMBA relatively
axiomatized by the Modus Ponens rule for the one more “material” implication
∼x0 ∨ x1:

(6.13) {D(x0), D(∼x0 ∨ x1)} → D(x1),

and so the extension of CB4 corresponding to TSFDMBA is relatively axiomatized
by (6.13) as well. �

Recall that the quasi-identity ((x0 ↔ x1) ≈ >) → (x0 ≈ x1) is true in Boolean
algebras, and so in DMBA. Therefore, for any K ⊆ DMBA, we have (K + >) ,
{〈A, {>A}〉 | A ∈ K} ⊆ TSFDMBA. In particular, by (6.10), we get:

(6.14) TSFDMBA = (DMBA +>).

First, we have:

Proposition 6.5. Every truth-singular filtered De Morgan Boolean algebra is dis-
criminated by DMB4 +>. In particular, TSFDMBA = PV(DMB4 +⊥).

Proof. Consider any A ∈ TSFDMBA and any a ∈ (A \ DA). Then, as DA is a
filter of the Boolean algebra A�F−, by the Prime Ideal Theorem, there is some
prime filter X of A�F− such that DA ⊆ X 63 a. Then, by Claim 6.2, h , hA

X ∈
homS(〈A, X〉,DMB4), in which case, by (6.14), h ∈ hom(A,DMB4 + >), while
a 6∈ h−1[DDMB4 ] ⊇ h−1[DDMB4+>], and so A is discriminated by DMB4 +>. In
this way, Proposition 5.4 completes the argument. �

A filtered De Morgan Boolean algebra is said to be non-idempotent, provided it
satisfies the following quasi-identity:

(6.15) (∼x0 ≈ x0) → (x0 ≈ x1).

The quasivariety of all [truth-singular] non-idempotent filtered De Morgan Boolean
algebras is denoted by [TS]NIFDMBA.
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Lemma 6.6. Let A ∈ NIFDMBA. Suppose |A| > 1. Then, hom(A,DMB2) 6= ∅.

Proof. Given any n ∈ ω, by induction on any i ∈ (n+ 1), define:

ϕn
i ,

{
x0 ∨ ∼x0 if i = 0,
((xi ∨ ∼xi) ∨ ∼ϕn

i−1) ∧ ϕn
i−1 otherwise,

in which case the identity ∼ϕn
i / ϕn

i is true in DMB4. Then, by induction on any
j ∈ ((n+ 1) \ i), it is routine checking that the quasi-identity:

(6.16) (∼xi ≈ xi) → (∼φn
j ≈ φn

j )

is true in DMB4. Further, given any k ∈ ω and any l ∈ (ω \ 1), it is routine
checking that the first-order clause

(
∧

({∼xi+1 / xi+1 | i ∈ k} ∪ {D(x0)}∪
{xj+1 / ∼xj+1 | j ∈ ((k + l) \ k)}∪

{(∧〈〈xi+1〉i∈k, x0〉) / (∨〈xj+1〉j∈((k+l)\k))})) →

(
∨
{∼xm+1 ≈ xm+1 | m ∈ (k + l)})

is true in DMB4. Therefore, taking (6.16) with j = n = (k + l) into account, we
see that the quasi-identity

(6.17) ({∼xi+1 / xi+1 | i ∈ k} ∪ {D(x0)}∪
{xj+1 / ∼xj+1 | j ∈ ((k + l) \ k)}

∪ {(∧〈〈xi+1〉i∈k, x0〉) / (∨〈xj+1〉j∈((k+l)\k))}) → (∼ϕk+l
k+l ≈ ϕk+l

k+l)

is true in DMB4, and so in A, in view of Proposition 6.1. In this way, as A is both
non-idempotent and non-one-element, combining (6.15) and (6.17), we conclude
that the filter F , {a ∈ A | (∧A〈〈bi ∨A ∼Abi〉i∈k, c〉) 6A a, b̄ ∈ Ak, k ∈ ω, c ∈
DA} ⊇ DA of A�F− is disjoint with its ideal I , {a ∈ A | a 6A (∨A〈dj ∧A

∼Adj〉j∈l), d̄ ∈ Al, l ∈ (ω \ 1)}, in which case, by the Prime Ideal Theorem, there is
a prime filter G ⊇ F of A�F− disjoint with I, and so (a ∈ G) ⇔ (∼Aa 6∈ G), for all
a ∈ A. Then, by Claim 6.2, hA

G ∈ hom(A,DMB2), as required. �

Corollary 6.7. Any A ∈ [TS]NIFDMBA is discriminated by DMB4[(DMB4 +
>)]×DMB2.

Proof. Consider any a 6∈ DA, in which case A is consistent, and so not one-element.
Then, first, by Proposition 6.1[6.5], there is some f ∈ hom(A,DMB4[DMB4 +>])
such that f(a) 6∈ DDMB4[DMB4+>]. Moreover, by Lemma 6.6, there is some g ∈
hom(A,DMB2) 6= ∅. In this way, h , (f × g) ∈ hom(A,DMB4[(DMB4 +
>)] × DMB2), while we have π0(h(a)) = f(a) 6∈ DDMB4[DMB4+>], and so we get
h(a) 6∈ DDMB4[(DMB4+>)]×DMB2 , as required. �

Clearly, [for any A ∈ FDMBA,] ([A×]DMB2) ∈ NIFDMBA, for DMB2 6|=
((∃1)(∼x0 ≈ x0))[, and so:

(6.18) (A×DMB2) 6|= ((∃1)(∼x0 ≈ x0)),

for π1 ∈ hom(A × DMB2,DMB2) is surjective]. In this way, [as DMB2 =
(DMB2 + >)], by [(6.14),] Proposition 5.4, Corollaries 6.3 and 6.7, we eventually
get:

Proposition 6.8. NPCFDMBA ⊆ [TS]NIFDMBA = PV((DMB4[(DMB4 +>)])×
DMB2).



14 A. P. PYNKO

Proposition 6.9. NIFDMBA∪TSFDMBA = PV({DMB4×DMB2,DMB4 +>})
is the subquasivariety of FDMBA relatively axiomatized by the quasi-identity:

(6.19) {∼x0 ≈ x0, D(x1)} → (x1 ≈ >).

Proof. First, consider any filtered De Morgan Boolean algebra A satisfying (6.19).
Assume A 6∈ NIFDMBA. Then, there is some a ∈ A such that ∼Aa = a. Con-
sider any b ∈ DA. Then, by (6.19)[x0/a, x1/b], we get b = >A, so A is truth-
singular. Thus, A ∈ (NIFDMBA ∪ TSFDMBA). Next, by Propositions 6.5 and 6.8,
(NIFDMBA ∪ TSFDMBA) ⊆ PV({DMB4 × DMB2,DMB4 + >}), Finally, (6.19)
is true in both DMB4 × DMB2, in view of (6.18), and DMB4 + >, in view of
(6.14). �

The quasivariety of all non-paraconsistent filtered De Morgan Boolean algebras
is denoted by NPFDMBA. It corresponds to the least non-paraconsistent extension
of CB4.

Lemma 6.10. Let A be a consistent non-paraconsistent filtered De Morgan Boolean
algebra. Then, hom(A,DMB4 +>) 6= ∅.

Proof. First, F , DA is a filter of A�F−. Then, in view of (6.1), (6.2) and (6.3), I ,
∼A[DA] is an ideal of A�F−. Moreover, since A is consistent but not paraconsistent,
in view of (6.1), (F ∩ I) = ∅. Hence, by the Prime Ideal Theorem, there is a prime
filter G ⊇ F of A�F− disjoint with I, in which case F ⊆ H , (∼A)−1[A \G], and so,
by Claim 6.2, hA

G ∈ hom(A,DMB4 +>), as required. �

Corollary 6.11. Any A ∈ NPFDMBA is discriminated by DMB4× (DMB4 +>).

Proof. Consider any a 6∈ DA, in which case A is consistent. Then, first, by Propo-
sition 6.1, there is some f ∈ hom(A,DMB4) such that f(a) 6∈ DDMB4 . More-
over, by Lemma 6.10, there is some g ∈ hom(A,DMB4 + >) 6= ∅. In this way,
h , (f × g) ∈ hom(A,DMB4 × (DMB4 + >)), while π0(h(a)) = f(a) 6∈ DDMB4 ,
and so h(a) 6∈ DDMB4×(DMB4+>), as required. �

Clearly, (DMB4×(DMB4+>)) ∈ NPFDMBA, for (DMB4+>) 6|= ((∃1)(D(∼x0)
∧ D(x0))), and so (DMB4 × (DMB4 + >)) 6|= ((∃1)(D(∼x0) ∧ D(x0))), for π1 ∈
hom(DMB4× (DMB4 +>),DMB4 +>) is surjective. In this way, by Proposition
5.4 and Corollary 6.11, we eventually get:

Proposition 6.12. NPFDMBA = PV(DMB4 × (DMB4 +>)).

Theorem 6.13. Prevarieties of filtered De Morgan Boolean algebras form the eight-
element non-chain distributive lattice depicted at Figure 1.

Proof. We use Corollary 6.3 tacitly.
First, note that (3.5) is not true in DMB4 under the assignment [x0/b, x1/f], so

NPFDMBA ( FDMBA. Next, any filtered De Morgan Boolean algebra satisfying
the identity > ≈ ⊥ is one-element, and so inconsistent, in view of (6.10), so, by
(6.1) and (6.5), TSFBDMA ⊆ NPFBDMA. Moreover, by (6.1), (6.7), (6.8) and (6.9),
the following quasi-identity is true in FDMBA:

(6.20) {D(x0), D(∼x0)} → (x0 ≈ ∼x0),

so NIFDMBA ⊆ NPFDMBA, for any one-element filtered De Morgan Boolean al-
gebra is inconsistent, in view of (6.10). Further, (6.19) is not true in DMB4 ×
(DMB4 + >) under [x0/〈b, b〉, x1/〈b, t〉]. Thus, by Propositions 6.9 and 6.12,
(NIFDMBA ∪ TSFDMBA) ( NPFDMBA. Furthermore, DMB4 × DMB2 is not
truth-singular, while DMB4 + > is not non-idempotent. Hence, by Propositions
6.5 and 6.8, NIFDMBA * TSFDMBA, while TSFDMBA * NIFDMBA. Finally, (3.6)
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rFDMBA rNPFDMBA r NIFDMBA ∪ TSFDMBA
@

@
�

�rTSFDMBA r NIFDMBA

�
�

@
@ r

NITSFDMBArNPCFDMBA rIFDMBA

Figure 1. The lattice of prevarieties of filtered De Morgan
Boolean algebras.

is not true in BDM4 +> under [x0/b], and so, by (3.3), in (BDM4 +>)×DMB2,
for π0 is a surjective homomorphism from the latter onto the former, in which case,
by Proposition 6.8, we get NPCFDMBA ( TSNIFDMBA. In this way, the eight
quasivarieties of filtered De Morgan Boolean algebras involved do form the lattice
depicted at Figure 1. It only remains to argue that there is no more prevariety
of filtered De Morgan Boolean algebras. For take any prevariety P of filtered De
Morgan Boolean algebras. Consider the following eight exhaustive cases:

(1) P ⊆ IFDMBA.
Then, P = IFDMBA.

(2) P ⊆ NPCFDMBA but P * IFDMBA.
Take any consistent A ∈ P, in which case it is not one-element, and so, by
(6.14) and Proposition 6.8, {〈0,⊥A〉, 〈1,>A〉} is an embedding of DMB2

into A. Then, P = NPCFDMBA.
(3) P ⊆ TSNIFDMBA but P * NPCFDMBA.

We use (6.14) tacitly. Take any paracomplete A ∈ P, in which case there
is some a ∈ A such that b , (a ∨A ∼Aa) 6= >A. If c , (∼Ab ∨A ¬Ab) was
equal to >A, then b would be equal to ∼Ab, so it would be equal to >A, in
view of (6.15). Likewise, if d , ¬A∼Ab was equal to >A, then ∼Ab would
be equal to ⊥A, so b would be equal to >A, in view of (6.1) and (6.4). In
this way, the mapping e : (22 ×∆2) → A, given by:

e(〈t, t〉) , >A,

e(〈b, t〉) , b,

e(〈n, t〉) , d,

e(〈f, t〉) , ∼Ac,

e(〈f, f〉) , ⊥A,

e(〈b, f〉) , ∼Ab,

e(〈n, f〉) , ∼Ad,

e(〈t, f〉) , c,

is a strict homomorphism from (BDM4 + >) × DMB2 to A, in which
case it is injective, in view of Lemma 4.6, and so, by Proposition 6.8, P =
TSNIFDMBA.
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(4) P ⊆ TSFDMBA but P * NIFDMBA.
We use (6.14) tacitly. Then, A is not one-element, in which case ⊥A 6= >A,
while there is some a ∈ A such that ∼Aa = a, in which case, by (6.6),
∼A¬Aa = ¬Aa, while, by (6.4) and (6.5), a 6= >A 6= ¬Aa. In this way, the
mapping e : 22 → A, given by:

eb , a,

en , ¬Aa,

et , >A,

ef , ⊥A,

is a strict homomorphism from DMB4+> toA, in which case it is injective,
in view of Lemma 4.6, and so, by Proposition 6.5, we eventually get P =
TSFBDMBA.

(5) P * NPFDMBA.
Then, there is a paraconsistent filtered De Morgan Boolean algebra A ∈ P,
in which case, by the following claim, DMB4 ∈ P:

Claim 6.14. Let A be a paraconsistent filtered De Morgan Boolean algebra.
Then, DMB4 is embeddable into A.

Proof. In that case, A is consistent, and so non-one-element, while there is
some a ∈ A such that {a,∼Aa} ⊆ DA, in which case, by (6.20), a = ∼Aa,
and so, by (6.6), ¬Aa = ∼A¬Aa. Therefore, the mapping e : 22 → A, given
by:

eb , a,

en , ¬Aa,

et , >A,

ef , ⊥A,

is a strict homomorphism from DMB4 to A, in which case it is injective,
in view of Lemma 4.6, as required. �

Thus, by Proposition 6.1, P = FDMBA.
(6) P ⊆ NPFDMBA but P * (NIFDMBA ∪ TSFDMBA).

Then, by Proposition 6.9, there are some A ∈ P, c ∈ A and b ∈ DA such
that ∼Ac = c, while b 6= >A, in which case A is not one-element. Put:

a ,

{
c if (c ∨A b) 6= >A,

¬Ac otherwise.

Then, in view of (6.6), both ∼Aa = a and ∼A¬Aa = ¬Aa, while a ∨A b 6=
>A, for b 6= >A, whereas (a ∨A b) ∈ DA, in view of (6.9), for b ∈ DA.
Moreover, since A is not one-element, and so consistent, by (3.5) and (6.8),
we have ({a,¬Aa, a ∨A ¬Ab} ∩ DA) = ∅. Moreover, by (6.7), (6.8) and
(6.10), the following quasi-identity:

(6.21) {D(¬∼x0), D(x0)} → (x0 ≈ >)

is true in FDMBA, and so in A. Therefore, (¬Aa ∨A ¬A∼Ab) 6∈ DA, for
>A 6= (a ∨A b) ∈ DA. And what is more, the quasi-identity:

{x0 ≈ ∼x0, D(x1), D(¬x0 ∨ ∼x1)} → (⊥ ≈ >)

is true in DMB4× (DMB4 +>), and so in A, in view of Proposition 6.12.
Therefore, (¬Aa ∨A ∼Ab) 6∈ DA. In this way, by (6.9) and (6.10), we have
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the strict homomorphism h from DMB4 × (DMB4 +>) to A defined by:

h〈f, f〉 , ⊥A,

h〈t, t〉 , >A,

h〈b, b〉 , a,

h〈n, n〉 , ¬Aa,

h〈b, t〉 , a ∨A b,

h〈b, f〉 , a ∧A ∼Ab,

h〈n, f〉 , (¬Aa ∧A ¬Ab),

h〈n, t〉 , (¬Aa ∨A ¬A∼Ab),

h〈f, n〉 , ¬Aa ∧A b,

h〈t, n〉 , (¬Aa ∨A ∼Ab),

h〈f, b〉 , (a ∧A ¬A∼Ab),

h〈t, b〉 , (a ∨A ¬Ab),

h〈t, f〉 , ((a ∧A ∼Ab) ∨A (¬Aa ∧A ¬Ab)),

h〈f, t〉 , ((a ∨A b) ∧A (¬Aa ∨A ¬A∼Ab)),

h〈b, n〉 , ((a ∨A b) ∧A (¬Aa ∨A ∼Ab)),

h〈n, b〉 , ((¬Aa ∧A ¬Ab) ∨A (a ∧A ¬A∼Ab)).

Then, by Lemma 4.6, h is injective. Hence, (DMB4 × (DMB4 +>)) ∈ P,
so, by Proposition 6.12, P = NPFDMBA.

(7) P ⊆ NIFBDMA but P * TSFBDMA.
Take any non-truth-singular A ∈ P. Then, there is some a ∈ DA such
that a 6= >A, in which case A is not one-element. Put b , (a ∨A ∼Aa),
in which case b ∈ DA, in view of (6.9), while ∼Ab 6A b, whereas b 6= >A,
for, otherwise, we would have ∼Aa = ¬Aa, in which case, by (6.21), we
would get a = >A. Moreover, as A is both non-idempotent and non-one-
element, ∼Ab 6= b. Therefore, by (6.20), ∼Ab 6∈ DA, in which case, by
(6.8), (∼Ab ∨A ¬Ab) 6∈ DA, while, by (6.21), ¬A∼Ab 6∈ DA. Moreover,
since A is non-one-element, and so consistent, by (6.9), ⊥A 6∈ DA, so, by
(6.8), ¬Ab 6∈ DA. In this way, by (6.9) and (6.10), we have the strict
homomorphism h from DMB4 ×DMB2 to A defined by:

h〈f, f〉 , ⊥A,

h〈t, t〉 , >A,

h〈b, t〉 , b,

h〈b, f〉 , ∼Ab,

h〈n, f〉 , ¬Ab,

h〈n, t〉 , ¬A∼Ab,

h〈t, f〉 , (∼Ab ∨A ¬Ab),

h〈f, t〉 , (b ∧A ¬A∼Ab).

Then, by Lemma 4.6, h is injective. Therefore, (DMB4 ×DMB2) ∈ P, so,
by Proposition 6.8, P = NIFDMBA.

(8) P ⊆ (TSFDMBA ∪ NIFDMBA) but P * NIFDMBA.
Then, (P ∩ NIFDMBA) ⊆ NIFDMBA but (P ∩ NIFDMBA) * TSFDMBA,
in which case, by Case (7), (P ∩ NIFDMBA) = NIFDMBA. Likewise,
(P ∩ TSFDMBA) ⊆ TSFDMBA but (P ∩ TSFDMBA) * NITSFDMBA, in
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which case, by Case (4), (P ∩ TSFDMBA) = TSFBDMA. In this way,
P = (TSFDMBA ∪ NIFDMBA).

This completes the argument. �

First of all, as, according to Theorem 6.13, NPFDMBA is the greatest proper
subprevariety of FDMBA, we have:

Corollary 6.15. CB4 is a maximal paraconsistent logic in the sense that it is
paraconsistent and has no proper paraconsistent extension.

Such a maximal paraconsistency has been proved for certain three-valued para-
consistent logics in [10] and [16]. In this way, CB4 becomes a first non-artificial in-
stance of a four-valued maximal paraconsistent logic. On the other hand, the logic of
paradox LP [8] , being initially defined by the three-valued matrix K3 , 〈K3, 3 \ 1〉
(cf. [10]), where, for every n ∈ (ω \ 2), Kn is the chain Kleene lattice over n, in
view of (3.2), is equally defined by the n-valued matrix Kn , 〈Kn, n \ 1〉, where
n ∈ (ω \ 4), for ({〈0, 0〉, 〈n− 1, 2〉} ∪ ((n \ {0, n − 1}) × {1})) ∈ homS

S(Kn,K3).
Thus, for every n ∈ (ω \ 4) (in particular, n = 4), LP is a maximal paraconsistent
n-valued logic as well but is not minimally so, as opposed to CB4, in view of the
following corollary:

Corollary 6.16. Let A ∈ Mod(CB4) be paraconsistent. Then, 4 6 |A|. In par-
ticular, any class M of F -matrices defining CB4 contains a member B such that
4 6 |B|, and so CB4 is minimally 4-valued.

Proof. Then, by (3.2), Corollary 4.4 and Proposition 6.1, there is some θ ∈ Con(A)
such that (A/θ) ∈ FDMBA is paraconsistent. Hence, by Claim 6.14, DMB4 is
embeddable into A. In this way, we eventually get 4 = |DMB4| 6 |A/θ| 6 |A|, as
required. �

To justify the non-purely-algebraic framework involved here, we finally prove:

Corollary 6.17. There is no quasivariety Q of F -algebras such that CB4 and Cn≈Q
are equivalent in the sense of [11].

Proof. Clearly, ∆22 ∈ homS(DMB4 + >,DMB4), Hence, in view of (3.3), (6.14),
Proposition 6.5 and Theorem 6.13, the logic C of DMB4 + > is a proper exten-
sion of CB4 satisfying same axioms and being equivalent to the variety DMBA
(more precisely, to Cn≈DMBA) in the sense of [11]. In this way, Theorem 3.16 of [11]
completes the argument. �

6.2. Resolutional filtered Kleene lattices versus Kleene’s three-valued
logic. During this subsection, we deal with the functional signature F∼ , (F+ ∪
{∼}) with unary ∼ (weak negation).

Recall that a De Morgan lattice (cf. [12], [13]) is any F∼-algebra, whose F+-
reduct is a distributive lattice and that satisfies the identities (6.1) and (6.2), and
so (6.3). Then, a Kleene lattice (cf. [13], [14]) is any De Morgan lattice satisfying
the identity:

(6.22) (x0 ∧ ∼x0) / (x1 ∨ ∼x1).

Given any n ∈ (ω \ 1), by Kn we denote the Kleene lattice such that (Kn�F+) ,
Dn and ∼Kni , (n − 1 − i), for all i ∈ n. Then, set Kn , 〈Kn, {n− 1} \ 1〉. In
this way, K3/2 defines Kleene’s three-valued logic K3 [4]/ the classical logic PC,
respectively.

A filtered Kleene lattice is any F∼-matrix, whose underlying algebra is a Kleene
lattice and that satisfies the quasi-identities (6.8) and (6.9). This is said to be
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resolutional, whenever it satisfies the following notorious Resolution rule:

(6.23) {D(x0 ∨ x1), D(∼x0 ∨ x1)} → D(x1),

in which case it is non-paraconsistent. The quasivariety of all resolutional filtered
Kleene lattices is denoted by RFKL. In view of Theorem 5.3 (used tacitly throughout
the rest of this subsection) and the following preliminary result, to find extensions
of K3 is to find subprevarieties of RFKL relatively axiomatized without equality.

Proposition 6.18. Any resolutional filtered Kleene lattice is discriminated by K3 ∈
RFKL.

Proof. Clearly, K3 ∈ RFKL. Conversely, consider any A ∈ RFKL, any a ∈ (A \DA)
and the following complementary cases:

(1) DA = ∅.
Then, since {〈0, 1〉} is an embedding of K1 into K3, the following claim
completes the argument:

Claim 6.19. Any truth-empty A ∈ RFKL is discriminated by K1.

Proof. Consider any a ∈ A = (A\DA). Then, h , (A×{0}) ∈ hom(A,K1)
and a 6∈ ∅ = h−1[∅] = h−1[DK1 ], as required. �

(2) DA 6= ∅,
in which case DA is a filter of the Kleene lattice A. Moreover, as it is
well-known, in view of (6.22), I′ , {b ∈ A | b 6A ∼Ab} is an ideal of A, in
which case, by (6.23), I , {b ∈ A | b 6A (a ∨A c), c ∈ I′} is an ideal of A
disjoint withDA. Hence, by the Prime Ideal Theorem, there is a prime filter
F ⊇ DA of A disjoint with I, and so with I′ ⊆ I. Then, by (6.1), (6.2) and
(6.3), F′ , (∼A)−1[A \ F] is a prime filter of A. Moreover, as F is disjoint
with I′, we have F ⊆ F′. Therefore, h , χ〈A,F′,F〉 ∈ hom(A�F+,D3), in
which case DA ⊆ F = h−1[{2}] 63 a, for F is disjoint with I 3 a. And what
is more, using (6.1), it is routine checking that h(∼Ab) = (2− h(b)), for all
b ∈ A. Thus, h ∈ hom(A,K3), as required. �

Note that (3.6) is satisfied in K2 but is not satisfied in K3 under [x0/1]. Moreover,
{1} and {0, 2} are the only subsets of 3 forming subalgebras of K3, K3�{0, 2} being
isomorphic to K2, while K3�{1} being truth-empty, and so satisfying no axiom. In
this way, combining (3.2) and Lemma 5.1 with Propositions 5.6 and 6.18, we first
get:

Corollary 6.20. A resolutional filtered Kleene lattice is non-paracomplete iff it
is discriminated by K2. In particular, PC is the only proper consistent axiomatic
extension of K3 and is relatively axiomatized by (3.6).

Next, we have:

Corollary 6.21. A resolutional filtered Kleene lattice satisfies the rule:

(6.24) D(x0) → D(x1 ∨ ∼x1)

iff it is discriminated by {K2,K1}. In particular, PC+0, being defined by {K2,K1},
is the extension of K3 relatively axiomatized by (6.24).

Proof. With using Remark 3.3. Clearly, both K2, being non-paracomplete, and K1,
being truth-empty, satisfy (6.24). Then, the “if” part is by Lemma 5.1. Conversely,
consider any A ∈ RFKL satisfying (6.24) and the following complementary cases:

(1) DA = ∅.
Then, Claim 6.19 completes the argument.
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Figure 2. Proper [non-seudo-axiomatic] extensions of K3 [with
solely solid circles].

(2) DA 6= ∅.
Then, A is not paracomplete, and so Corollary 6.20 completes the argu-
ment. �

By IC we denote the inconsistent F∼-logic that is defined by ∅ and is the
axiomatic extension of K3 relatively axiomatized by D(x0).

Proposition 6.22. Any A ∈ RFKL satisfies the rule:

(6.25) D(x0) → D(x1)

iff it is discriminated by K1. In particular, IC+0, being defined by K1, is the
extension of K3 relatively axiomatized by (6.25).

Proof. With using Remark 3.3. Clearly, K1, being truth-empty, satisfies (6.25).
Then, the “if” part is by Lemma 5.1. Conversely, consider any a ∈ (A \ DA), in
which case, by (6.25), A is truth-empty, and so Claim 6.19 completes the argument.

�

Theorem 6.23. Proper [non-pseudo-axiomatic] extensions of K3 form the four
[two]-element diamond[chain] depicted at Figure 2.

Proof. We use Remark 3.2, Propositions 3.4, 6.18, 6.22 and Corollaries 6.20 and
6.21 tacitly. First, (6.24) is not satisfied in K3 under [x0/2, x1/1]. Next, K1, being
truth-empty, does not satisfy any axiom, and so is paracomplete. Further, (6.25)
is not satisfied in K2 under [x0/1, x1/0]. Finally, K1/2 are both consistent, while
any logic satisfying both (6.25) and any axiom (in particular, (3.6)) is inconsistent.
Thus, the four logics PC[+0] and IC[+0] are proper extensions of K3 and form the
diamond depicted at Figure 2. After all, consider any extension C ′ of K3, in which
case it is defined by S , (Mod(C ′)∩RFKL), and the following five exhaustive cases:

(1) IC ⊆ C ′.
Then, C ′ = IC.

(2) PC * C ′ but IC+0 ⊆ C ′,
in which case IC * C ′, and so, by the following claim, C ′ is theorem-less:

Claim 6.24. Let C ′′ and C ′′′ be F -logics. Suppose C ′′ * C ′′′ is non-
pseudo-axiomatic and C ′′+0 ⊆ C ′′′. Then, C ′′′ has no theorem.

Proof. By contradiction and with using Remark 3.2 tacitly. For suppose C ′′′

has a theorem, in which case it is non-pseudo-axiomatic, and so C ′′′−0 = C ′′′.
In this way, we get C ′′ = (C ′′+0)−0 ⊆ C ′′′−0 = C ′′′. This contradiction
completes the argument. �

Therefore, as C ′−0 ⊆ IC, we have C ′ = (C ′−0)+0 ⊆ IC+0, and so we get
C ′ = IC+0.
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(3) IC+0 * C ′ but PC ⊆ C ′,
in which case IC * C ′, and so there is some consistent non-paracomplete
A ∈ S. Then, there is some a ∈ A such that b , (a ∨A ∼Aa) ∈ DA, in
which case b >A ∼Ab 6∈ DA, for A, being resolutional, is not paraconsistent
but is consistent, and so {〈0,∼Ab〉, 〈1, b〉} is an embedding of K2 into A.
Hence, by (3.2), K2 ∈ S, in which case C ′ ⊆ PC, and so C ′ = PC.

(4) PC+0 ⊆ C ′ but both PC * C ′ and IC+0 * C ′.
Then, by Claim 6.24, C ′ has no theorem. Moreover, (6.24), being satisfied
in PC+0, is so in C ′, in which case, by the structurality of C ′, (x0∨∼x0) ∈
(
⋂

β∈κ C
′(xβ)) = C ′−0(∅), and so PC ⊆ C ′−0. On the other hand, IC =

(IC+0)−0 * C ′−0, so IC+0 * C ′−0. Hence, by Case (3), C ′−0 = PC. In this
way, C ′ = (C ′−0)+0 = PC+0.

(5) PC+0 * C ′.
Then, there is some A ∈ S not satisfying (6.24), in which case there are
some a ∈ DA and some b ∈ A such that c , (b ∨A ∼Ab) 6∈ DA, and so
c 6= d , (a ∨A c) ∈ DA. Clearly, B , {∼Ad,∼Ac, c, d}, forming a chain
sublattice of A�F+, forms a subalgebra of A, by (6.1), while ({〈∼A)id, 2 ·
(1− i)〉 | i ∈ 2} ∪ {〈(∼A)ic, 1〉 | i ∈ 2}) is a strict surjective homomorphism
from (A�B) = 〈A�B, {d}〉 onto K3, in which case K3 ∈ S, by (3.2), and so
C ′ = K3. �

It is remarkable that K3 is not covered by Section 4, for, otherwise, by Theorem
4.3, ε would be empty for K3 to satisfy τε(3.7), since K3 has no theorem, in which
case τε(3.11) would be equal to (6.25) that is not satisfied in K3 under [x0/2, x1/0].
Likewise, since 1 6∈ {2} = DK3 forms a subalgebra of K3, K3 is not covered by the
purely-algebraic approach of [14]. Thus, meanwhile, Section 5 remains a unique
generic approach applicable to K3 that highlights its value.

7. Conclusions

As a matter of fact, in view of Theorem 4.3(ii)⇔(iii), the general approach devel-
oped here is equally applicable to to arbitrary equivalential equality-free universal
Horn theories in the sense of [18] (in particular, to all sequent calculi constructed in
[17]; cf. Proposition 10 of [18]). However, this issue deserves a particular emphasis
and, for this reason, is going to be eventually presented elsewhere.
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