
EasyChair Preprint
№ 6355

Continuous Self-Adaptation of Control Policies in
Automatic Cloud Management

Wlodzimierz Funika, Paweł Koperek and Jacek Kitowski

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 23, 2021

Continuous Self-Adaptation of Control Policies in
Automatic Cloud Management

Włodzimierz Funika1[0000−0003−3321−7348], Paweł Koperek1[0000−0003−3613−2390],
and Jacek Kitowski1,2[0000−0003−3902−8310]

1 AGH-UST, Faculty of Computer Science, Electronics and Telecommunication,
Institute of Computer Science, al. Mickiewicza 30, 30-059, Kraków, Poland
2 AGH, ACC CYFRONET AGH, ul. Nawojki 11, 30-950, Kraków, Poland

email:funika@agh.edu.pl, pkoperek@gmail.com, kito@agh.edu.pl

Abstract. Deep Reinforcement Learning has been recently a very active
field of research. The policies generated with use of that class of train-
ing algorithms are flexible and thus have many practical applications. In
this paper we present the results of our attempt to use the recent ad-
vancements in Reinforcement Learning to automate the management of
resources in a compute cloud environment. We describe a new approach
to self-adaptation of autonomous management, which uses a digital clone
of the managed infrastructure to continuously update the control policy.
We present the architecture of our system and discuss the results of eval-
uation which includes autonomous management of a sample application
deployed to Amazon Web Services cloud. We also provide the details of
training of the management policy using the Proximal Policy Optimiza-
tion algorithm. Finally, we discuss the feasibility to extend the presented
approach to further scenarios.

Keywords: Computing clouds · Autonomous control · Digital Twin ·
Deep Reinforcement Learning.

1 Introduction

In the last few years, computing clouds have gained wide-spread adoption. Al-
most every newly created software utilizes resources which are available through
a cloud-like interface. On the one hand this approach allowed to greatly im-
prove the development time, on the other hand it also posed a number of chal-
lenges. One of the more prominent ones is the optimization of costs, especially
when working with Infrastructure-as-a-Service (IaaS) environments. Since the
resources (Virtual Machines - VMs) are charged usually based on how long they
are being used, in order to limit the costs one needs to reduce the usage time.
Unfortunately, this is a non-trivial task, especially given that there might be
special constraints imposed by Service Level Agreements (SLAs).

In the recent years we could also observe a lot of progress being made in
the field of Reinforcement Learning (RL) [19]. Initially, the algorithms which

2 Włodzimierz Funika , Paweł Koperek , and Jacek Kitowski

are part of that domain, were only perceived as applicable to relatively simple
problems. It was assumed that the controlled environment could be observed
with the use of only a few metrics and there could not be too many actions to
execute. Fortunately, combining RL with the Deep Learning techniques allowed
to mitigate those limitations and reach new state-of-the-art results [14,15,18].
The main advantage of the mentioned methods is the ability to learn through
observing and interacting with an environment which is similar to or the same
as the one the agent is going to operate in. Using such an approach allowed to
achieve results surpassing the performance of humans.

There are also first attempts to utilize Deep Reinforcement Learning (DRL)
in the context of autonomous cloud management. These systems share one com-
mon flaw: their policies are able to make good decisions only in situations, which
they were exposed to in the prior training. Without external intervention there is
no way to update the policy after deployment. One might argue that an obvious
solution to this problem would be to continuously train the policy while it is in
control of the cloud environment, in other words: use an online policy training
algorithm. Unfortunately, there is one significant disadvantage to this approach.
Due to the nature of the training process, the new versions of the policy might
not make decisions as good as the current policy. Making constant changes in-
troduces a risk that the update might trigger applying potentially disastrous
changes into the managed environment. To avoid such a situation, the perfor-
mance of a new version of the policy needs to be verified prior to its deployment.
One way of doing this is to compare the reward achieved by the old and new
policies within a tightly controlled environment. A good example is a simula-
tion, where the conditions: time flow, workload, available resources are provided
equally and the decisions coming from the policies are the only major difference.
Another advantage of such an approach is that it introduces a mechanism which
allows the policy to become closer and closer suited to the environment it con-
trols. New information is constantly being added to the representation of the
policy (e.g. in the case of DNN - to the neural network weights).

An approach, which also utilizes a simulated copy of the managed resources,
called the Digital Twin or the Virtual Twin has been employed in industrial and
manufacturing systems for over a decade [12]. In this paper we present an experi-
mental monitoring and management system, which to the best of our knowledge,
is a first attempt to apply the concept of a digital twin to cloud resources man-
agement. It is an extension of our previous research [5] which demonstrated how
DRL techniques can be used to control cloud application’s resources. It uses the
newly acquired data to continuously re-train the control policy and then com-
pare this with the currently used version. This allows the management system to
respond to a potentially changing workload while addressing the issues described
above. This paper’s contribution includes a novel architecture of an autonomous
management system which utilizes a continuous policy improvement loop, initial
policy training procedure, implementation of the described concepts available as
an Open Source project [6], experiments and analysis of their results.

Continuous Self-Adaptation of Control Policies 3

The paper is organized as follows: in Section 2 we overview related work,
Section 3 describes the system’s architecture and Section 4 explains the policy
training procedure. Section 5 discusses the design of the experiment, description
of the environment it was executed in and evaluates the results of the experiment.
Section 6 summarizes our research and outlines further work.

2 Related Work

Reinforcement Learning can be applied in the field of cloud resource autoscaling
in various ways [8], e.g. to create a policy which changes the number of acquired
resources (typically VMs) or a policy which assigns a computational task to a
specific resource (typically VMs to physical servers).

In [16] authors aim to create a cloud resource scheduling framework, which
uses the Deep Q-network (DQN) algorithm. The autonomous agent is assign-
ing virtual machines, which execute computational tasks, to a set of physical
servers. Its objective is to minimize both the submitted task execution times-
pan and the energy consumption of resources. The approach has been verified
using a simulated experiment, in which the proposed approach has been com-
pared to random, round robin and multi-objective particle swarm optimization
allocation algorithms. The policy created using the DQN algorithm was able
to find near-optimal allocation, what suggests that the presented approach can
be considered as an efficient resource allocation and task scheduling strategy.
A similar approach is used in [3]. In this case, however, the objective of the
DQN-trained policy was to choose an assignment policy (e.g. first fit) for incom-
ing VM placement requests. Authors performed a number of simulation experi-
ments where they compared the proposed approach with traditional assignment
heuristics. That analysis showed the effectiveness of the DRL-based approach,
especially in the context of handling workloads with major fluctuations. In [20]
a resource provisioning framework based on the concept of monitoring-analysis-
planning-execution (MAPE) loop is introduced. It consists of two loops: the
first one is responsible for provisioning resources from an IaaS provider and uses
DRL techniques; the second loop is coordinating cloud services which use the
provisioned resources. Using both loops allows to control the number of used
VMs while reducing the waste caused by incorrectly predicting the specific task
resource consumption. The approach has been verified using a simulated exper-
iment which demonstrated its ability to increase utilization, decrease the total
cost while avoiding SLA violations.

The mentioned papers suggest that autonomous control achieved by using
DRL techniques can render good results. Unfortunately such conclusions are
confirmed only by results of simulations. This raises a concern, whether the dis-
cussed approach can be applied to more complex, real-world infrastructures. In
our previous work [5] we demonstrated how such a task could be addressed and
presented a proof-of-concept of an autonomous resource provisioning system.
That system used a policy, created by a DRL training algorithm, to control re-
sources utilized by a sample application deployed to Amazon Web Services cloud

4 Włodzimierz Funika , Paweł Koperek , and Jacek Kitowski

[1]. In this paper we are extending this approach. We introduce a simulated copy
of the managed resources (a so called digital twin) which is used to continuously
improve the initially deployed policy.

The idea of using a virtual clone of a physical object or system is not new. It
has been first proposed in 2003 [10] and since then applied primarily to manu-
facturing processes, aviation and healthcare [2]. The digital copy can be a source
of information for production optimization, predictive maintenance, cost opti-
mization and physical resource management. To the best of our knowledge, the
presented system is the first attempt to apply this technique together with DRL
to cloud resources management. In this context, a set of simulated resources
becomes the digitial twin of the application infrastructure deployed to a public
cloud. Due to the fact that the source environment is also digital and can be
examined through a set of well defined APIs, its replication is relatively easy.
The simulated behavior of the managed resources can be made quite accurate
as they are governed by complex, yet precise and deterministic rules. By using
a simulation we can create a safe environment in which on the one hand the
training process can be performed safely (a policy making disastrous changes
would not be copied to the real environment) and in a short amount of time
(e.g. thanks to a speed up in the time flow).

3 Digital Twin System Architecture

The architecture of the described system consists of two loops. The first one
is the feedback loop of the subsystem which embeds the control policy in the
real cloud environment. The second one is formed of the components used to
continuously update the policy, including the simulated copy of the controlled
resources (the digital twin). The components of both loops are shown in Fig. 1.

The first feedback loop starts with collecting measurements about the re-
sources which take part in executing the jobs. Each of them is configured to
start reporting relevant measurements as soon as the resource becomes online.
The measurements often differ in their nature what influences how often their
values are provided, e.g. the amount of free RAM and CPU usage is reported
every 10 seconds while the virtual machine (VM) count - once per minute. To
simplify the implementation of collecting of those raw measurements, we intro-
duced the Graphite monitoring tool [9]. Graphite aggregates all the collected
values into a single interval to create a consistent snapshot of the environment.
This interval in our case is set to one minute.

Next, the measurements are passed to the SAMM monitoring and manage-
ment system [7]. SAMM enables experimenting with new approaches to man-
agement automation. It allows to easily add support for new types of resources,
relevant metrics, to integrate new algorithms and technologies, and to observe
their impact on the observed system. In our use case, SAMM is used to combine
other elements of the system together. First, it periodically polls measurements
which portray the current state of the system (e.g. the average CPU usage in the
computation cluster, amount of used memory etc). Then, SAMM aggregates the

Continuous Self-Adaptation of Control Policies 5

Fig. 1: Components of the real cloud environment under discussion. On the left
side there is the environment-policy feedback loop. On the right side, the contin-
uous policy update loop. Arrows denote interactions between the components.

measurements into metrics used by the decision policy. Finally, it communicates
with the Policy Evaluation Service: provides the current state of the system in
a form of metric values and retrieves decisions. The decisions are then executed
through a cloud vendor API (e.g. Amazon Web Services API).

The Policy Evaluation Service provides decisions on how to change the al-
location of resources based on the results of evaluation of the observed system
state. The decisions are made according to the policy trained with the use of the
PPO [18] algorithm. The results of the evaluation may include starting a new
small, medium or large VM (deficient resources are used to handle the workload
under the current system state), removing resources - shutting down a small,
medium, large VM (excessive resources are used given the current state of the
system), doing nothing (a proper amount of resources is allocated). One should
remember that implementing the change is always subject to environment con-
straints. Not always it is possible to immediately execute an action. We might
need to wait for a while because the system is in a warm-up or cool-down (a
period of inactivity to allow to stabilize the metrics after the previous action has
been executed), the previous request might still be being fulfilled, the request
failed and needs to be retried in some time. In order to be able to train a policy
which can cope with such limitations, the mentioned factors need to be involved
in the simulation used for training.

For the described system we make a few assumptions about the workload
under management:

– processing is organized into many independent tasks,
– the number of tasks which are yet to be executed can be monitored,
– the tasks which have been interrupted before their termination (e.g. in case

the processing VMs are shutdown) are rescheduled,

6 Włodzimierz Funika , Paweł Koperek , and Jacek Kitowski

– the tasks are considered idempotent, i.e. executing them multiple times does
not change the end result,

– information about the currently executed tasks (e.g. schedule time, resources
usage) needs to be available to the management system,

– resources administering the workload (e.g. accepting the input requests) are
exempt from automatic management to prevent the workload from being
accidentally terminated.

Fulfilling the monitoring requirements may require introducing extensions
to the software which generates the workloads and instrumenting the resources
which are used to create tasks. In our case, the workload driver has been en-
hanced with the capability to store relevant workload information in a database.

The second loop highlighted in Fig. 1 is responsible for continuously updat-
ing the policy. This part of the autonomous management system is responsible
for ensuring that the decisions implemented in the real environment are made
by the policy which has been retrained with the use of the most recent data.
This loop starts with the Policy Evaluation Service which hosts the currently
used Behavior Policy. Actions taken by the policy are implemented in the cloud
environment and thus are observable in the measurements and metrics (e.g. in
the number of used CPU cores) recorded in the database. The content of the
database is then used by the Policy Training Service. It periodically retrieves a
set of the most recently processed tasks and the specification of the resources
which were available when those tasks were being executed. This allows the
service to configure the simulated environment in which a Candidate Behavior
Policy is being trained. Once the training is over, the driver compares the reward
from the simulation and that from the real environment. If the former reward is
greater, the candidate policy replaces the currently used one. The simulator has
been implemented following the results of our prior research [4].

The policy is trained according to the procedure described in the next section.

4 Policy Training

The policy has been implemented as a neural network. We experimented with
different architectures of the neural network used as a decision policy. The best
results have been obtained with the use of the long-short term memory (LSTM)
[11] architecture. LSTM is a type of recurrent neural network, which means it
passes the output of a layer back to its input. This makes it well-suited to process
data in form of sequences, as it has access to the previously made decisions. A
basic building block in the LSTM networks is usually described as a cell. In our
case the network consisted of 128 cells. For training we have used the Proximal
Policy Optimization (PPO) [18] algorithm with parameters as shown in Table 1.

To avoid the cold start problem, we have trained the initial version of the
policy in the above described simulator. As the workload we have used a set of
1551 jobs. The jobs have been organized into 21 batches (10 batches of 100 and
11 batches of 50 jobs) submitted at 8 minute intervals. Every job requested 360

Continuous Self-Adaptation of Control Policies 7

Parameter name Parameter value Parameter name Parameter value
Value function coefficient 0.0005 Lambda 0.97

Gamma 0.99 Training timesteps 250000

Clipping factor 0.2 Learning rate 0.0003

Batch size 250 Simulator speedup 60

Table 1: Policy training process - parameters.

seconds on a single CPU core. The single job has been added 30 minutes after
the final batch. This ensured that there would always be a cool-down period of
time at the end. We chose such a workload because on the one hand it was small
enough so that it allowed to conduct a full simulation in a short amount of time
and on the other hand it was comprehensive enough to allow the policy to gather
some valuable experience about batch processing applications. In our experiment
we present a scenario where such an application is being automatically managed.
The discussed approach is not limited to batch processing, though. If a different
type of workload needs to be controlled, the policy can be adjusted by training
it with the use of a different workload.

The agent objective was defined as minimizing the overall cost of resources,
which has been expressed as maximizing the following reward function:

F (TS , TM , TL, TQ) = −
∑
x∈V

(Tx · Cx)− TQ · CQ (1)

where:

– F (TS , TM , TL, TQ) is the negative cost of resources used for processing,
– V denotes a set of possible VM sizes. In our experiments it includes S, M

or L which represent small, medium or large VMs, accordingly,
– Tx denote the number of hours of running VMs of size x,
– Cx is the hourly cost of running a machine of size x. In our case CS = $0.2,

CM = $0.4 and CL = $0.8,
– TQ – the hours spent by tasks waiting for execution.
– CQ – the hourly penalty for missing SLA targers when a task is waiting for

execution. The cost 0.036 is accrued for every second of a delay between sub-
mitting task for execution and actual execution. There were no limitations
on the waiting time or the waiting queue size.

5 Experiment

To evaluate our approach to the autonomous cloud resources control, we have
conducted an experiment with the use of resources of a publicly available cloud
environment. The overall objective was to quantify the impact of the continuous
training loop on the management process. First, we ran the sample application
10 times and managed it using the initial version of control policy. Next, we

8 Włodzimierz Funika , Paweł Koperek , and Jacek Kitowski

ran the same sample application 10 more times but managed it with the use
of a policy which was being continuously updated. Afterwards, we compared
the average resource costs and computation times. Finally, we analyzed how the
update process influenced the decisions made by the policy.

As a sample workload, we have used the pytorch-dnn-evolution tool [17].
This is a tool which attempts to discover an optimal structure of a Deep Neu-
ral Network (DNN) to solve a given problem (e.g. categorize images in a given
set) using a co-evolutionary algorithm. In our setup, the evolution process was
configured to search an optimal DNN architecture for recognizing the handwrit-
ten digits from the MNIST dataset [13]. Using pytorch-dnn-evolution also has
its drawbacks. The workload is CPU-intensive and very irregular. The number
of evaluated individuals can greatly change in subsequent evolution iterations,
what makes it hard to choose the proper amount of resources. On the other
hand, we have verified that such a workload met all the conditions outlined in
Section 4, which enabled using a dynamic scaling approach.

The experiment was carried out with the use of the Amazon Web Services [1]
infrastructure. The sample application has been using Virtual Machines (VMs)
of three types: large (2 core CPU and 8 GB of RAM), xlarge (4 core CPU
and 16 GB of RAM) and 2xlarge (8 core CPU and 32 GB of RAM). Each
run started with 1 virtual machine of each type already provisioned and ran
until all the scheduled tasks were completed. We did not allow the autonomous
management policy to remove all VMs of a given type to avoid situations in
which the progress would have stalled completely. This would force us to predict
whether the policy is going to recover from such a state, which is a variant of the
halting problem. Shutting down all the virtual machines is also undesirable in
a production environment, therefore we have decided to exclude this possibility
from our tests. It is worth noting, however, that it is technically possible to
configure the presented system to allow the disposing of all of the provisioned
resources. All VMs were running in the same region (US North Virginia) and
the same availability zone to avoid introducing any additional network latency.
The components SAMM, Graphite and the workload driver have been running
on a separate VM.

Workload run 1 2 3 4 5 6 7 8 9 10
Resources cost, initial policy (USD) 7.86 8.10 8.07 7.82 8.43 8.15 8.29 8.04 8.25 7.41
Resources cost, policy updates (USD) 7.35 6.63 7.04 6.62 6.64 6.70 7.05 6.63 6.57 6.89
Workload time, initial policy (min.) 322 316 282 308 257 249 235 260 248 345
Workload time, policy updates (min.) 344 300 295 272 272 312 300 315 275 311

Table 2: Raw measurements of subsequent workload runs.

Table 2 presents raw observations of the total resources cost and the time
required to process all of the jobs for a given workload run. When the policy
remained unchanged, the average cost of resources was equal to 8.04 USD (stan-

Continuous Self-Adaptation of Control Policies 9

dard deviation of 0.29). That value decreased to 6.81 USD (standard deviation
of 0.26) when the policy updates were activated. That can be interpreted as a
15.3% cost reduction. We have attempted to confirm that result with the use
of the one-tail t-Student test, however we noticed that one of the value sets did
not meet the near-normal criterion according to Shapiro-Wilk test. However, the
observed cost averages show a strong difference while manifesting their low stan-
dard deviations. We reason that updating the control policy while a workload is
being executed, rendered superior results.

It is also worth noting that the lowering of the resource cost seemed to
increase the workload time (on average by 6.17%, from 282.20 to 299.6 minutes).
The dynamically changed policy on the average showed slower overall execution,
which shows that the policy traded off the execution time for the desirable cost
reduction. We have analyzed a number of factors, which potentially might have
affected the execution time, to confirm that the observed cost reduction resulted
from introducing the changes in control policy.

– The number of the fully executed jobs (not interrupted by a VM ter-
mination) within a workload run. In both cases those numbers were very
similar and thus would not affect the results.

– Average computation time required for a single job. We have noticed
that the average amount of time required to finish a single job has been
shorter by 0.98 seconds in the case of continuous policy updates. That can
be caused by the workload driver generating jobs which require less com-
putations to finalize. When considered in the context of a whole workload
run, that factor could account for a reduction in the total used resource time
by 184.69 minutes or in other words a reduction of $0.13 of monetary costs.
Given that the difference between the averages of raw observations in the
two considered scenarios (with continuous policy updates and without them)
is equal to $1.23, we can estimate that at least $1.1 of the cost reduction
can be attributed to the continuous policy updates. This allows to sustain
the claim that policy updates reduce the overall monetary cost.

– Environment factors. Factors like network latency, VM start-up time,
etc. had the same impact on both approaches (using a static policy and
using that with continuous updates). These factors’ effect has been reduced
by running each variant of the policy multiple times. We also assume that
given the small differences in the total used resource time measurements (e.g.
11221 minutes on average with a standard deviation of 403.98 minutes for
runs without policy updates) the impact of the environment factors on the
results of our experiment is very limited.

The summarized results of the conducted experiment are shown in Table 3.
To demonstrate the effects of continuous re-training and updating the policy,

in Fig. 2 we present a single run of the initial policy versus a run of one of the
policy versions obtained after a few iterations of the continuous training. The
initial policy seems to focus on multiple changes to the count of small VMs. The
second policy is more aggressive in the resource allocation: it launches multiple

10 Włodzimierz Funika , Paweł Koperek , and Jacek Kitowski

Measured value Without updates With updates
Average resource cost (USD) 8.04 (σ = 0.29) 6.81 (σ = 0.26)
Average workload time (min.) 282.20 (σ = 37.95) 299.60 (σ = 22.71)
Average used resource time (min.) 11221 9504
Average single job time (seconds) 41.87 40.77

Average number of fully executed jobs 11422 11424

Table 3: Results of managing the sample application with and without the con-
tinuous policy updates. All values are averages over 10 runs.

Fig. 2: Number of VMs running while the environment was being managed au-
tomatically. Top: initial policy, bottom: updated policy.

medium and large VMs, however the changes in VM counts seem to be less
frequent. This results in a shorter total calculation time (189 minutes instead
of 249 minutes in the top chart). The number of the executed jobs and the
average job execution times are very similar in both cases: 11424 and 41.76
for the initial policy vs. 11389 jobs and 41.34 seconds for the updated policy.
This allows to conclude that the observed differences were primarily driven by
the change in policy. As presented in the example above, the continuous re-
training process is capable of introducing the versions of policy, which manifest
significantly different behaviors, what translates to an optimization of costs.

6 Conclusions and Further Work

In this paper we have presented the use of the digital twin approach for the
autonomous management of cloud resources. We created a digital, simulated
version of an existing environment and used it to reduce the monetary cost of

Continuous Self-Adaptation of Control Policies 11

running it. We explained the architecture of a novel management system based
on that idea and discussed its implementation which is based on the SAMM
monitoring and management system. Finally, we have conducted an experiment
to verify the presented approach, which empirically demonstrated the benefits
of the used management method. We were able to reduce the average cost of
resources from $8.04 to $6.83 (by 15.3%). The management policy was being up-
dated using the new information coming from the managed environment, which
allowed to respond to the situations to which it not been exposed before.

The continuous policy update loop proved to be an effective way of dynami-
cally adjusting the management policy. At the same time this approach also has
its disadvantages. Training an RL policy requires quite a significant amount of
time. This means that, depending on the pace of changes to the actual workload,
the update procedure might not be able to respond fast enough to changes in
the workload or environment. Extending the management system with the con-
tinuous training loop increases its complexity and adds more parameters that
need to be tuned. These parameters need to be tuned very carefully, otherwise
one risks creating a policy which e.g. ignores historical data and only focuses on
the most recent observations.

Our on-going work is focused on extending the presented approach. We plan
to investigate the influence of different variants of the continuous training setup
on the performance of the policy. We are working on introducing a parallelism of
simulation, which would support more frequent re-training. We believe that neu-
ral network models which are used as the control policy can be further optimized,
e.g. by using a bi-directional LSTM layer.

Acknowledgements. The research presented in this paper was supported by
the funds assigned to AGH University of Science and Technology by the Polish
Ministry of Education and Science. The experiments have been carried out on
the PL-Grid infrastructure resources of ACC Cyfronet AGH and on the Amazon
Web Services Elastic Compute Cloud.

References

1. Amazon Web Services Elastic Compute Cloud. https://aws.amazon.com/ec2/
(2020), accessed: 2020-11-30

2. Barricelli, B.R., Casiraghi, E., Fogli, D.: A survey on digital twin: Defini-
tions, characteristics, applications, and design implications. IEEE Access 7,
167653–167671 (2019). https://doi.org/10.1109/ACCESS.2019.2953499, https://
doi.org/10.1109/ACCESS.2019.2953499

3. Caviglione, L., Gaggero, M., Paolucci, M., Ronco, R.: Deep reinforcement learn-
ing for multi-objective placement of virtual machines in cloud datacenters.
Soft Computing (2020). https://doi.org/10.1007/s00500-020-05462-x, https://
doi.org/10.1007/s00500-020-05462-x

4. Funika, W., Koperek, P.: Evaluating the use of policy gradient optimization ap-
proach for automatic cloud resource provisioning. In: Wyrzykowski, R., Deelman,
E., Dongarra, J., Karczewski, K. (eds.) Parallel Processing and Applied Mathe-
matics. pp. 467–478. LNCS 12043, Springer International Publishing (2020)

12 Włodzimierz Funika , Paweł Koperek , and Jacek Kitowski

5. Funika, W., Koperek, P., Kitowski, J.: Automatic management of cloud applica-
tions with use of proximal policy optimization. In: Krzhizhanovskaya, V.V., Závod-
szky, G., Lees, M.H., Dongarra, J.J., Sloot, P.M.A., Brissos, S., Teixeira, J. (eds.)
Computational Science – ICCS 2020. pp. 73–87. Springer International Publishing,
Cham (2020)

6. Funika, W., Koperek, P.: Trainloop driver. https://gitlab.com/pkoperek/
trainloop-driver (2020), accessed: 2021-04-30

7. Funika, W., Kupisz, M., Koperek, P.: Towards autonomic semantic-based manage-
ment of distributed applications. Computer Science 11(0), pp. 51–64 (2010)

8. Garí, Y., Monge, D.A., Pacini, E., Mateos, C., Garino, C.G.: Reinforcement
learning-based application autoscaling in the cloud: A survey (2020)

9. Graphite Project. https://graphiteapp.org/ (2011), accessed: 2020-11-28
10. Grieves, M.: Digital twin: manufacturing excellence through virtual factory repli-

cation. White paper 1, 1–7 (2014)
11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation

9(8), 1735–1780 (1997)
12. Jones, D., Snider, C., Nassehi, A., Yon, J., Hicks, B.: Character-

ising the digital twin: A systematic literature review. CIRP Jour-
nal of Manufacturing Science and Technology 29, 36–52 (2020).
https://doi.org/https://doi.org/10.1016/j.cirpj.2020.02.002, https://www.
sciencedirect.com/science/article/pii/S1755581720300110

13. LeCun, Y., Cortes, C.: MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/ (2010), http://yann.lecun.com/exdb/
mnist/

14. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Harley, T., Lillicrap, T.P., Silver,
D., Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning. In:
Proceedings of the 33rd International Conference on International Conference on
Machine Learning - Volume 48. p. 1928–1937. ICML’16, JMLR.org (2016)

15. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M.: Playing atari with deep reinforcement learning (2013)

16. Peng, Z., Lin, J., Cui, D., Li, Q., He, J.: A multi-objective trade-off framework for
cloud resource scheduling based on the deep q-network algorithm. Clust. Comput.
23(4), 2753–2767 (2020). https://doi.org/10.1007/s10586-019-03042-9, https://
doi.org/10.1007/s10586-019-03042-9

17. PyTorch DNN Evolution. https://gitlab.com/pkoperek/
pytorch-dnn-evolution (2018), accessed: 2020-12-01

18. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. CoRR abs/1707.06347 (2017), http://arxiv.org/abs/
1707.06347

19. Sutton, R.S.: Temporal Credit Assignment in Reinforcement Learning. Ph.D. the-
sis, University of Massachusetts Amherst (1984)

20. Zong, Q., Zheng, X., Wei, Y., Sun, H.: A deep reinforcement learning based re-
source autonomic provisioning approach for cloud services. In: Gao, H., Wang, X.,
Iqbal, M., Yin, Y., Yin, J., Gu, N. (eds.) Collaborative Computing: Networking,
Applications and Worksharing. pp. 132–153. Springer International Publishing,
Cham (2021)

