
EasyChair Preprint
№ 1785

Cross-Domain Ambiguity Detection using Linear
Transformation of Word Embedding Spaces

Vaibhav Jain, Sanskar Jain and Nishant Tanwar

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 27, 2019

Cross-Domain Ambiguity Detection using Linear
Transformation of Word Embedding Spaces

Vaibhav Jain, Sanskar Jain, Nishant Tanwar
Delhi Technological University

Abstract
The requirements engineering process is a crucial stage of the software de-
velopment life cycle. It involves various stakeholders from different profes-
sional backgrounds, particularly in the requirements elicitation phase. Each
stakeholder carries distinct domain knowledge, causing them to differently
interpret certain words, leading to cross-domain ambiguity. This can result
in misunderstanding amongst them and jeopardize the entire project. We
propose a computationally cheap natural language processing approach to
find potentially ambiguous words for a given set of domains. The idea is to
apply linear transformations on word embedding models trained on different
domain corpora, to bring them into a unified embedding space. We then find
words with divergent embeddings as they signify a variation in the meaning
across the domains. Applying the approach to a set of hypothetical scenarios
produces promising results. It can help a requirements analyst in preventing
misunderstandings during elicitation interviews and meetings by defining a
set of potentially ambiguous terms in advance.

Keywords: Cross-domain ambiguity, Work embeddings, Linear transforma-
tion, Requirements engineering, Natural language processing

Introduction

In the context of software engineering, requirements engineering aims to describe
the intended behaviour of a software system along with the associated constraints. It
can be viewed in terms of seven phases: inception, elicitation, elaboration, negotiation,
specification, validation, and management (Pressman, 2010).

Requirements elicitation has been termed as the most difficult, critical, and
communication-intensive aspect of software development (Aggarwal and Singh, 2005). It
requires interaction between different stakeholders through various techniques like brain-
storming sessions and facilitated application specification technique. A stakeholder is
any person with a vested interest in the project, such as potential users, developers,
testers, domain experts, and regulatory agency personnel (Singh and Malhotra, 2012).
As these stakeholders come from different professional backgrounds and carry different
domain knowledge, cross-domain ambiguity can occur amongst them. One may assign an
interpretation to another’s expression different from the intended meaning. This results in
misunderstanding and distrust in requirements elicitation meetings, and costly problems
in the later stages of the software life cycle (Wang et al., 2013).

The first attempt to deal with cross-domain ambiguity in requirements engineering
was by Ferrari et al. (2017) who used Wikipedia crawling and word embeddings (Mikolov

2

et al., 2013b) to estimate ambiguous computer science (CS) terms vis-à-vis other appli-
cation domains. Mishra and Sharma (2019) extended this work by focusing on various
engineering subdomains. Another approach was suggested by Ferrari et al. (2018) which
also considered the ambiguity caused by non-CS domain-specific words and addressed
some of the technical limitations of the previous work. This approach was later extended
to include quantitative evaluation of the obtained results (Ferrari and Esuli, 2019). An al-
ternative approach which doesn’t require domain-specific word embeddings was suggested
by Toews and Holland (2019).

In this paper, we propose a natural language processing (NLP) approach based
on linear transformation of word embedding spaces. Word embedding is a vector repre-
sentation of a word capable of capturing its semantic and syntactic relations. A linear
transformation can be used to learn a linear relationship between two word embedding
spaces. The proposed approach produces a ranked list of potentially ambiguous terms
for a given set of domains. We construct a word embedding space for each domain using
corpora composed of Wikipedia articles. We then apply linear transformations on these
spaces in order to align them and construct a unified embedding space. For each word in
a set of dominant shared terms, we consider the domain-specific embeddings which satisfy
a minimum frequency threshold. An ambiguity score is then assigned to the word by
applying a distance metric on these embeddings.

The remainder of this paper is organised as follows: We first provide some back-
ground on ambiguity in requirements engineering and linear transformation of word em-
bedding space in Section 2. The existing approaches to cross-domain ambiguity detection
are briefly explained in Section 3. We outline the proposed approach in Section 4, and the
results are presented and discussed in Section 5. Final remarks are provided in Section 6.

Background

Ambiguity in Requirements Engineering

Ambiguity refers to the ability of a natural language (NL) expression to be in-
terpreted in multiple manners. As requirements elicitation is a communication-intensive
process, ambiguity is a major negative factor as it can lead to an unclear and incomplete
Software Requirements Specification (SRS) document. SRS needs to be unambiguous since
it acts as a legal contract between the developers and customers, guides the subsequent
development phases and is vital for quality control (de Bruijn and Dekkers, 2010). Most
of the existing literature on ambiguity in requirements engineering is focused on written
requirement documents, and the role of ambiguity in oral NL during elicitation interviews
has not been investigated thoroughly (Ferrari et al., 2016).

Ambiguity can cause misunderstanding situations during elicitation interviews,
where the requirements analyst does not understand the customer’s expression or in-
terprets it incorrectly. The latter phenomenon is known as subconscious disambiguation
and is one of the major causes of requirements failure (Gause and Weinberg, 1989). It
is difficult to identify unless the interpretation by the analyst is not acceptable in his or
her mental framework (Ferrari et al., 2016). The problem of cross-domain ambiguity can
be seen as a special case of subconscious disambiguation which is caused due to different
domain knowledge.

Word Embeddings

Word embedding is a collective term for language modelling techniques that map
each word in the vocabulary to a dense vector representation. Contrary to one-hot repre-

3

sentation, word embedding techniques embed each word into a low-dimensional continuous
space and capture its semantic and syntactic relationships (Li et al., 2015). It is based on
the distributional hypothesis proposed by Harris (1954) which states that words appearing
in similar linguistic contexts share similar meanings.

One of the most popular word embedding techniques is skip-gram with negative
sampling (SGNS) proposed by Mikolov et al. (2013b). It trains a shallow two-layer neu-
ral network which, given a single input word w, predicts a set of context words c(w).
The context for a word wi is the set of words surrounding it in a fixed-size window, i.e.
{wi−L, · · · , wi−1, wi+1, · · · , wi+L}, where L is the context-window size. Each word w is
associated with vectors uw ∈ RD and vw ∈ RD, called the input and output vectors re-
spectively. If T is the number of windows in the given corpus, then the objective of the
skip-gram model is to maximize

1
T

T∑
t=1

∑
−L6i6L;i 6=0

log p(wt+i|wt) (1)

If we use the softmax function to define p(wt+i|wi), then

p(wO|wI) =
exp (uT

wI
vwO)

W∑
w=1

exp (uT
wI
vw)

(2)

where W is the number of words in the vocabulary. However, this formula is not used
in practice due to the high computational cost of computing ∆p(wO|wI). An alternative
approximation is the negative sampling method, in which the probability function changes
to

p(wO|wI) = log σ(uT
wI
vwO) +

k∑
i=1

log σ(−uT
wI
vwi) (3)

where wi ∼ P (w) and P (w) is the noise distribution.
Linear Transformation. A linear transformation can be used to learn a linear

mapping from one vector space to another. Its use for combining different word embedding
spaces was first explored by Mikolov et al. (2013a) who used it for bilingual machine
translation. They used a list of word pairs {xi, yi}ni=1, where yi is the translation of xi.
Then they learned a translation matrix W by minimizing the following loss function

n∑
i=1
|xiW − yi| (4)

This approach can also be used for aligning monolingual word embeddings. If we assume
that the meaning of most words remains unchanged, linear regression can be used to find
the best rotational alignment between two word embedding spaces. Failure to properly
align a word can be then used to identify a change in meaning. This is the basis for our
approach towards identifying cross-domain ambiguous words. Similar approaches have
been used to detect linguistic variation in the meaning of a word with time (Kulkarni et al.,
2015; Hamilton et al., 2016) and to develop ensemble word embedding models (Muromägi
et al., 2017).

Significant work has been done to improve the linear transformation method. Xing
et al. (2015) noticed a hypothetical inconsistency in the distance metrics used in the opti-
mization objectives in Mikolov et al. (2013a): dot product for training word embeddings,

4

Euclidean distance for learning transformation matrix, and cosine distance for similarity
computations. It was solved by normalizing the word embeddings and by requiring the
transformation matrix to be orthogonal. The optimal orthogonal transformation matrix
to map X to Y is given by

W = V UT (5)

where Y TX = UΣV T is the singular value decomposition (SVD) factorization of Y TX.
Dimension-wise mean centering has been shown to improve the performance of linear
transformation methods in downstream tasks (Artetxe et al., 2016).

Related Work

Several approaches have been suggested for identification of cross-domain ambigu-
ous words in the context of requirements engineering. The first approach was suggested
by Ferrari et al. (2017) who employed Wikipedia crawling and word embeddings to esti-
mate the variation of typical CS words (e.g., code, database, windows) in other domains.
They used Wikipedia articles to create two corpora: a CS one and a domain-specific one,
replaced the target words (top-k most frequent nouns in the CS corpus) in the latter by
a uniquely identifiable modified version, and trained a single language model for both
corpora. Cosine similarity was then used as a metric to estimate the variation in the
meaning of the target words when they are used in the specified domain. However, this
approach suffers from two drawbacks: (a) the inability to identify non-CS cross-domain
ambiguous words and (b) the need to construct a language model for each combination
of domains. This approach was extended by Mishra and Sharma (2019) who applied it
on various subdomains of engineering with varying corpus size. They used the obtained
results to identify a similarity threshold for ambiguous words.

Ferrari et al. (2018) suggested an approach based on developing word embedding
spaces for each domain, and then estimating the variation in the meaning of a word by
comparing the lists of its most similar words in each domain. This approach addressed
the above-mentioned drawbacks of the previous one. It was later extended by Ferrari
and Esuli (2019), with the major contribution being the introduction of a systematical
evaluation of the approach.

An alternative approach which doesn’t require domain-specific word embeddings was
suggested by Toews and Holland (2019). It estimates a word’s similarity across domains
through context similarity. This approach does require trained word embeddings, but they
are not domain-specific, which allows it to be used on small domain corpora as well. If D1
and D2 are two domain corpora, then the context similarity of a word w is defined as

simc(w) = center(c1) · center(c2)
‖center(c1)‖ · ‖center(c2)‖ (6)

center(c) = 1
|c|

∑
w∈c

IDFD(w) · vw (7)

where c1 ⊂ D1 and c2 ⊂ D2 consist of all words from sentences containing w.

Approach

The proposed approach to find a ranked list of potentially ambiguous terms for a
given set of domains is depicted in Figure 1.

5

Domains
Di

Wikipedia
Crawling

Domain
Corpora

Ci

Embedding
Spaces

Generation

Embedding
Spaces

Si

Embedding
Spaces

Alignment

Transformation
Matrices

Mi

Cross-domain
Term

Selection

Dominant
Shared
Terms

TD

Cross-domain
Ambiguity
Ranking

Ambiguity
Ranking

AD

Figure 1 . The proposed approach based on word embedding space alignment

Wikipedia Crawling

Given a set of domains D = {D1, · · · , Dn}, this step constructs a set of corpora C =
{C1, · · · , Cn}. Each corpus includes Wikipedia articles from a domain-specific category.
Each category is a collection of articles and other subcategories. Given the root category,
we perform a breadth-first search on its subcategories and add all the reachable articles
to the domain corpus. A maximum subcategory depth of 3 is kept during the search to
ensure that only relevant articles are added, and the number of total articles in a corpus
is also limited to 20,000 to avoid corpus size imbalance across domains.

Corpus generation is followed by text preprocessing – an auxiliary step not depicted
in Figure 1. This involves (a) converting each word to lowercase, (b) stop-words removal,
and (c) lemmatization. Stop-words refer to common words that appear quite frequently
in a natural language and are removed before various NLP tasks. Lemmatization refers
to the process of reducing a word from an inflectional form to its lemma, i.e. root word.

Embedding Spaces Generation

A word embedding space Si is generated for each corpus Ci ∈ C. The SGNS variant
of the word2vec algorithm (Mikolov et al., 2013b) is used to train the word embeddings.
This involves defining the dimension of the word embeddings d, context window size L, the
number of noise samples η, and the minimum frequency fmin for a word to be considered.
This step is followed by an auxiliary step called embedding preprocessing, which consists
of length normalization and dimension-wise mean centring.

Embedding Spaces Alignment

This step determines a transformation matrix Mi for each domain Di which maps
it to a unified embedding space. The algorithm for this step is reported as Algorithm 1.

6

Algorithm 1 Aligning word embedding spaces
1: procedure AlignWordEmbeddings(S)
2: M1 ← Id

3: S′ ← {S1}
4: for Si ∈ S \ S1 do
5: X,Y ← []
6: for wj ∈ Vocabulary(Si) do
7: V ← ∅
8: for Sk ∈ S′ do
9: if wj ∈ Vocabulary(Sk) then

10: V ← V ∪ {Sk(wj) ·Mk}
11: if V 6= ∅ then
12: X.insert(Si(wj))
13: Y .insert(Average(V))
14: U,Σ, V T ← SVD(Y XT)
15: Mi ← V UT

16: return M

The transformation matrices are determined incrementally. The transformation
matrix M1 for S1 is the identity matrix Id. Subsequent Mi maps the corresponding Si to
the average of the transformed versions of its previous embedding spaces S1, S2, · · · , Si−1.
More specifically, for each word wj in the vocabulary of Si, the target vector yij is defined
as the average of the corresponding word embeddings in the already transformed spaces.
These pairs (Si(wj), yij) are then used to learn the optimal transformation matrix Mi

which is constrained to be orthogonal.

Cross-Domain Term Selection

The approach for identifying dominant shared terms TD has been reported as Algo-
rithm 2.

Algorithm 2 Selecting dominant shared terms
1: procedure SelectTerms(C, k, ρ)
2: TD ← ∅
3: for wi ∈ Vocabulary(C1) ∪ · · · ∪Vocabulary(Cn) do
4: if POS(wi) = NN then
5: counts = {Freq(C1, wi), · · · ,Freq(Cn, wi)}
6: c1, c2 ← Top2Values(counts)
7: if c1 > p ∧ c2 > ρ× c1 then
8: TD ← TD ∪ {wi}
9: return TD

This step requires two numerical parameters, k and ρ. To be considered a dominant
shared term, a word w must satisfy two conditions:

1. Its maximum frequency in a domain corpus, i.e. fmax = max(counti(w)), should be
greater than or equal to k.

2. It should have a frequency of at least ρfmax in any other domain corpus.

7

We limited the scope to only nouns, but this approach can be extended to other parts of
speech as well.

Cross-Domain Ambiguity Ranking

This step assigns an ambiguity score to each word in TD based on their cross-domain
ambiguity across the corpora C = {C1, · · · , Cn}. The algorithm for the same is reported
as Algorithm 3.

Algorithm 3 Assigning ambiguity scores
1: procedure AssignAmbiguityScores(TD,M, S)
2: Score← ∅
3: for w ∈ TD do
4: V ← ∅
5: counts = {Freq(S1, w), · · · ,Freq(Sn, w)}
6: fmax ←Max(counts)
7: for Si ∈ S do
8: if w ∈ Si then
9: V ← V ∪ {MiSi(w)}

10: U ← 0
11: for vi ∈ V do
12: for vj ∈ V \ vi do
13: U ← U + CosineDistance(vi, vj)
14: Score[w]← U

|V |(|V |−1)

15: AD ← Sort(TD, Score)
16: return AD

The idea is as follows. For each word w in the set of dominant shared terms TD, we
find the cosine distance for each unordered pair of its transformed embeddings, which is
given by

cosineDistance(vi, vj) = 1− cosineSimilarity(vi, vj) (8)

cosineSimilarity(vi, vj) = vi · vj

‖vi‖‖vj‖
(9)

The average of all these cosine distances is the ambiguity score assigned to the word
w. All words in TD are sorted according to their score and a ranked list AD is produced.

Our linear transformation-based approach is computationally cheaper than the one
suggested by Ferrari and Esuli (2019) which relies on k-nearest neighbour (KNN) search.
We also hypothesize that it is logically more sound: the KNN approach assumes that the
meanings of the neighbouring words remain constant across domains, but this assumption
fails for ambiguous clusters. For example, a lot of topics in artificial intelligence, such
as neural networks and genetic algorithms, are inspired by biology. Due to this, certain
words appear together in both these domains but carry different interpretations. On the
other hand, our approach works on a much weaker assumption that the meaning of most
words remains the same across domains. Hence, it judges a word’s meaning from a global
context rather than a local one.

8

Results

Project Scenarios

To showcase the working of our approach, we have considered the same hypothet-
ical project scenarios similar that were used by Ferrari and Esuli (2019). They involve
five domains: computer science (CS), electronic engineering (EE), mechanical engineering
(ME), medicine (MED), and sports (SPO).

1. Light Controller [CS, EE]: an embedded software for room illumination system

2. Mechanical CAD [CS, ME]: a software for designing and drafting mechanical com-
ponents.

3. Medical Software [CS, MED]: a disease-prediction software.

4. Athletes Network [CS, SPO]: a social network for athletes.

5. Medical Device [CS, EE, MED]: a fitness tracker connected to a mobile app

6. Medical Robot [CS, EE, ME, MED]: a computer-controlled robotic arm used for
surgery.

7. Sport Rehab Machine [CS, EE, ME, MED, SPO]: a rehabilitation machine targeted
towards athletes.

Experimental Setup

We used the Wikipedia API for Python1 to create domain corpora. A maximum sub-
category depth of 3 and a maximum article limit of 20,000 is set while creating each domain
corpus.2 We converted each article text to lowercase and removed all non-alphanumeric
words. The article count, word count, and vocabulary size for each domain corpus is
reported by Table 1.

Table 1
Domain corpora statistics

Domain Articles Words Vocabulary
Computer science 20,000 80,37,521 1,77,764
Electronic engineering 16,420 77,10,843 1,79,898
Mechanical engineering 20,000 1,02,02,205 1,99,696
Medicine 20,000 80,45,379 2,00,266
Sports 20,000 94,48,453 2,42,583

The word embeddings were trained using the gensim3 implementation of the
word2vec SGNS algorithm with word embedding dimension d = 50, context window size
L = 10, negative sampling size η = 5, and minimum frequency fmin = 10. For identifying
dominant shared terms, the parameters were set as k = 1000 and ρ = 0.3.

1https://pypi.org/project/wikipedia/
2Since Category:Computer science is a subcategory of Category:Electronic engineering, it was excluded

while creating the EE corpus to avoid extensive overlap with the CS corpus.
3https://radimrehurek.com/gensim/

https://pypi.org/project/wikipedia/
https://en.wikipedia.org/wiki/Category:Computer_science
https://en.wikipedia.org/wiki/Category:Electronic_engineering
https://radimrehurek.com/gensim/

9

Cross-Domain Ambiguity Rankings

We have reported the top-20 and bottom-20 ranked terms for each project scenario
along with their ambiguity scores in Tables 2, 3, and 4 (terms referred in the text have
been highlighted). Here, we discuss some of the notable inferences that can be made from
these results.

1. We can observe that the ambiguity scores for the light controller scenario are con-
siderably lower than that for other scenarios. This is on expected lines as CS and
electronic engineering are closely related fields. The ambiguity seems to increase as
we go from technical domains like mechanical engineering and medicine to a non-
technical one like sports. This shows that our approach can be used to quantitatively
define the technical similarity between domains.

2. Most of the high ranked words in the light controller [CS, EE] scenario seem to be of
technical nature, with an important exception being the word family. By inspecting
a word’s nearest neighbours in individual domain-specific embedding spaces, we
can estimate its meaning in those domains. The word family is nearest to mildly,
immigrated, and grzegorczyk in the CS domain, and to 6100, 8051, and 7400 in the
EE domain. This indicates that it is mostly used to denote an electronic component
series in the EE domain. The nearest words for translation are translator, translate,
and nlp in CS, and syntax, semantics, and parsing in EE. This is a case of pragmatic
ambiguity as the word can be used in an NLP or a compiler design context.

3. The word assembly occurs amongst the top-20 ranked terms in all scenarios except
light controller and sports rehab machine. Its nearest words in each domain are
(a) CS: assembler, compiler, verilog, (b) EE: assembling, tooling, assembled, (c) ME:
joint, assembled, housing, (d) MED: election, wha, vote, and (e) SPO: congress, cgf,
legislative.

4. The most ambiguous word for the set of all five domains is induction with an ambigu-
ity score of 0.8868. Its nearest words in each domain are (a) CS: inductive, equational,
deduction, (b) EE: dynamo, inductive, emf, (c) ME: homopolar, reluctance, magne-
tizing, (d) MED: inducing, initiation, suppression, and (e) SPO: inductee, inducting,
honoree.

5. Most of the low-ranked terms are either generic terms such as infrastructure, op-
portunity, and nature, or common names such as robert and peter. The word gov-
ernment, with an ambiguity score of 0.1438, is the least ambiguous term for the
set of all domains. This fact can be verified by looking at its nearest words: (a)
CS: governmental, ministry, federal, (b) EE: mandate, policy, legislation, (c) ME:
authority, immigration, diplomatic, (d) MED: authority, governmental, obligation,
and (e) SPO: authority, policy, governmental.

10

Table 2
Ranked list of dominant shared terms for project scenarios (a) light controller and (b)
mechanical CAD.

Light controller [CS, EE]
Term Score
family 0.6661
translation 0.6505
deal 0.6401
base 0.6390
weight 0.6287
kingdom 0.6229
derivative 0.6202
box 0.6179
grid 0.6053
volume 0.5890
gap 0.5786
chain 0.5693
mark 0.5401
differential 0.5401
generator 0.5385
actor 0.5236
curve 0.5195
studio 0.5136
press 0.5084
expansion 0.5071

...
...

reason 0.1246
community 0.1228
innovation 0.1227
benefit 0.1222
support 0.1203
monitoring 0.1203
app 0.1180
robert 0.1177
ceo 0.1175
email 0.1174
instruction 0.1166
bandwidth 0.1147
country 0.1125
company 0.1118
authority 0.1060
photo 0.1035
lack 0.0977
founder 0.0961
infrastructure 0.0960
government 0.0893

Mechanical CAD [CS, ME]
Term Score
thread 1.0477
induction 0.8943
lighting 0.8412
freedom 0.8011
race 0.7890
sun 0.7652
assembly 0.7277
background 0.7152
separation 0.7107
translation 0.7098
compression 0.6950
machinery 0.6819
base 0.6807
weight 0.6770
root 0.6724
profile 0.6666
trace 0.6334
utility 0.6329
fiber 0.6288
disc 0.6272

...
...

threat 0.1439
nature 0.1438
episode 0.1431
fact 0.1418
cost 0.1390
technique 0.1373
technology 0.1349
mother 0.1324
commission 0.1320
daughter 0.1312
infrastructure 0.1311
benefit 0.1297
step 0.1276
situation 0.1204
notion 0.1157
lack 0.1142
authority 0.1024
wife 0.0982
story 0.0954
government 0.0929

11

Table 3
Ranked list of dominant shared terms for project scenarios (a) medical software and (b)
athletes network.

Medical software [CS,MED]
Term Score
mouse 1.0655
assembly 0.9194
compression 0.8661
derivative 0.8546
conversion 0.8535
agent 0.8072
root 0.7846
sun 0.7828
base 0.7719
kingdom 0.7641
branch 0.7503
expression 0.7446
domain 0.7385
mass 0.7375
background 0.7274
column 0.7180
line 0.7166
scale 0.6996
case 0.6720
host 0.6709

...
...

angle 0.1715
demand 0.1708
institution 0.1700
shape 0.1657
experiment 0.1650
campaign 0.1634
decade 0.1629
understanding 0.1564
topic 0.1564
government 0.1531
discussion 0.1513
report 0.1427
article 0.1413
nature 0.1384
peter 0.1367
robert 0.1277
publication 0.1257
opportunity 0.1256
thomas 0.1247
education 0.1190

Athletes network [CS, SPO]
Term Score
assembly 1.0774
advance 1.0380
receiver 0.9631
goal 0.9410
field 0.9347
uniform 0.9115
delivery 0.9032
touch 0.8898
tag 0.8813
sun 0.8545
gear 0.8487
boot 0.8298
engine 0.8157
bell 0.8046
gate 0.7916
ring 0.7880
appearance 0.7879
sign 0.7819
capture 0.7723
balance 0.7672

...
...

treatment 0.1926
temperature 0.1925
audience 0.1898
consequence 0.1872
evidence 0.1861
entertainment 0.1818
hospital 0.1817
education 0.1798
authority 0.1782
damage 0.1738
culture 0.1730
movie 0.1708
army 0.1706
report 0.1621
sale 0.1599
interview 0.1556
benefit 0.1529
robert 0.1501
market 0.1428
government 0.1167

12

Table 4
Ranked list of dominant shared terms for project scenarios (a) medical device, (b) medical
robot, and (c) sports rehab machine.

Medical device
[CS, EE, MED]

Term Score
analogue 0.8034
kernel 0.8014
valve 0.7802
mouse 0.7706
driver 0.7706
packet 0.7502
processor 0.7475
mac 0.7475
gate 0.7441
root 0.7375
calculator 0.7333
thread 0.7331
assembly 0.7164
resistance 0.7145
window 0.7068
intel 0.7049
kingdom 0.6990
bit 0.6884
pipeline 0.6841
iron 0.6835

...
...

infrastructure 0.1841
country 0.1782
shape 0.1756
nature 0.1738
discussion 0.1732
institution 0.1730
company 0.1711
publication 0.1706
committee 0.1659
founder 0.1637
compiler 0.1607
thomas 0.1520
opportunity 0.1497
authority 0.1444
decade 0.1444
partnership 0.1431
byte 0.1422
peter 0.1412
robert 0.1326
government 0.1256

Medical robot
[CS, EE, ME, MED]

Term Score
stroke 0.8567
thread 0.8334
spark 0.7612
injection 0.7534
induction 0.7328
pipeline 0.7259
sugar 0.7192
analogue 0.7176
trace 0.7103
root 0.7067
mouse 0.6855
assembly 0.6841
compression 0.6784
strain 0.6763
expansion 0.6748
cd 0.6652
oracle 0.6603
kingdom 0.6597
clock 0.6539
grid 0.6520

...
...

company 0.1782
founder 0.1781
nature 0.1774
understanding 0.1743
country 0.1719
subsidiary 0.1716
infrastructure 0.1705
publication 0.1703
shape 0.1687
purchase 0.1662
decade 0.1626
chairman 0.1605
town 0.1573
opportunity 0.1548
joseph 0.1521
peter 0.1470
money 0.1458
authority 0.1305
government 0.1292
wife 0.1232

Sport rehab machine
[CS, EE, ME, MED, SPO]
Term Score
induction 0.8868
partition 0.8366
stroke 0.8129
thread 0.8057
pipeline 0.7878
suspension 0.7830
root 0.7804
toe 0.7782
hammer 0.7669
trace 0.7559
mouse 0.7438
relay 0.7433
rifle 0.7411
ice 0.7368
analogue 0.7281
pistol 0.7265
mac 0.7243
glider 0.7183
lane 0.7170
gate 0.7166

...
...

report 0.2011
policy 0.2007
money 0.1990
subsidiary 0.1963
peter 0.1957
circumstance 0.1953
father 0.1936
robert 0.1928
decade 0.1889
infrastructure 0.1871
opportunity 0.1860
fear 0.1842
daniel 0.1809
understanding 0.1784
purchase 0.1734
wife 0.1708
joseph 0.1648
love 0.1644
authority 0.1483
government 0.1438

13

Conclusion and Future Work

Ambiguous requirements are a major hindrance to successful software development
and it is necessary to avoid them from the elicitation phase itself. Although this problem
has been studied extensively, cross-domain ambiguity has attracted research only in recent
times. We have proposed a novel approach which makes use of linear transformation to
map various domain-specific language models into a unified embedding space, allowing
comparison of word embeddings trained from different corpora. Our work provides a
computationally efficient way of determining potentially ambiguous words. The planned
future work includes (a) quantitative evaluation, (b) experiments with distance metrics
other than average pairwise cosine distance, (c) defining an ambiguity threshold, and (d)
identifying better corpora sources.

References

Aggarwal, K. and Singh, Y. (2005). Software Engineering. New Age International (P)
Limited.

Artetxe, M., Labaka, G., and Agirre, E. (2016). Learning principled bilingual mappings of
word embeddings while preserving monolingual invariance. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, pages 2289–2294,
Austin, Texas. Association for Computational Linguistics.

de Bruijn, F. and Dekkers, H. L. (2010). Ambiguity in natural language software require-
ments: A case study. In Requirements Engineering: Foundation for Software Quality,
pages 233–247, Berlin, Heidelberg. Springer Berlin Heidelberg.

Ferrari, A., Donati, B., and Gnesi, S. (2017). Detecting domain-specific ambiguities: An
NLP approach based on wikipedia crawling and word embeddings. In 2017 IEEE 25th
International Requirements Engineering Conference Workshops (REW), pages 393–399.

Ferrari, A. and Esuli, A. (2019). An NLP approach for cross-domain ambiguity detection
in requirements engineering. Automated Software Engineering, 26(3):559–598.

Ferrari, A., Esuli, A., and Gnesi, S. (2018). Identification of cross-domain ambiguity
with language models. In 2018 5th International Workshop on Artificial Intelligence for
Requirements Engineering (AIRE), pages 31–38.

Ferrari, A., Spoletini, P., and Gnesi, S. (2016). Ambiguity and tacit knowledge in require-
ments elicitation interviews. Requirements Engineering, 21(3):333–355.

Gause, D. C. andWeinberg, G. M. (1989). Exploring Requirements: Quality Before Design.
Dorset House Publishing Co., Inc., New York, NY, USA.

Hamilton, W. L., Leskovec, J., and Jurafsky, D. (2016). Diachronic word embeddings
reveal statistical laws of semantic change. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 1489–
1501, Berlin, Germany. Association for Computational Linguistics.

Harris, Z. S. (1954). Distributional structure. Word, 10(2-3):146–162.

Kulkarni, V., Al-Rfou, R., Perozzi, B., and Skiena, S. (2015). Statistically significant
detection of linguistic change. In Proceedings of the 24th International Conference on
World Wide Web, WWW ’15, pages 625–635, Republic and Canton of Geneva, Switzer-
land. International World Wide Web Conferences Steering Committee.

14

Li, Y., Xu, L., Tian, F., Jiang, L., Zhong, X., and Chen, E. (2015). Word embedding
revisited: A new representation learning and explicit matrix factorization perspective.
In Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI’15,
pages 3650–3656. AAAI Press.

Mikolov, T., Le, Q. V., and Sutskever, I. (2013a). Exploiting similarities among languages
for machine translation. ArXiv, abs/1309.4168.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013b). Distributed
representations of words and phrases and their compositionality. In Proceedings of the
26th International Conference on Neural Information Processing Systems - Volume 2,
NIPS’13, pages 3111–3119, USA. Curran Associates Inc.

Mishra, S. and Sharma, A. (2019). On the use of word embeddings for identifying do-
main specific ambiguities in requirements. In Proceedings of the 27th International Re-
quirements Engineering Conference Workshops (REW), pages 234–240. IEEE Computer
Society.

Muromägi, A., Sirts, K., and Laur, S. (2017). Linear ensembles of word embedding models.
In Proceedings of the 21st Nordic Conference on Computational Linguistics, pages 96–
104, Gothenburg, Sweden. Association for Computational Linguistics.

Pressman, R. S. (2010). Software Engineering: A Practitioner’s Approach. McGraw-Hill.

Singh, Y. and Malhotra, R. (2012). Object-Oriented Software Engineering. PHI Learning.

Toews, D. and Holland, L. V. (2019). Determining domain-specific differences of polyse-
mous words using context information. In Joint Proceedings of REFSQ-2019 Workshops,
Doctoral Symposium, Live Studies Track, and Poster Track co-located with the 25th In-
ternational Conference on Requirements Engineering: Foundation for Software Quality
(REFSQ 2019), Essen, Germany, March 18th, 2019.

Wang, Y., Manotas Gutièrrez, I. L., Winbladh, K., and Fang, H. (2013). Automatic
detection of ambiguous terminology for software requirements. In Natural Language
Processing and Information Systems, pages 25–37, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Xing, C., Wang, D., Liu, C., and Lin, Y. (2015). Normalized word embedding and orthog-
onal transform for bilingual word translation. In Proceedings of the 2015 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 1006–1011, Denver, Colorado. Association for Computa-
tional Linguistics.

	Introduction
	Background
	Ambiguity in Requirements Engineering
	Word Embeddings
	Linear Transformation

	Related Work
	Approach
	Wikipedia Crawling
	Embedding Spaces Generation
	Embedding Spaces Alignment
	Cross-Domain Term Selection
	Cross-Domain Ambiguity Ranking

	Results
	Project Scenarios
	Experimental Setup
	Cross-Domain Ambiguity Rankings

	Conclusion and Future Work
	References

