
EasyChair Preprint
№ 3222

Analysis of TCP Congestion Control Queuing
Mechanism and Investigation for High
Throughput and Low Queuing Delay

Iqtidar Ali, Tariq Hussain, Fatima Perviz and Altaf Hussain

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 22, 2020

ANALYSIS OF TCP CONGESTION CONTROL QUEUING

MECHANISM AND INVESTIGATION FOR HIGH THROUGHPUT

AND LOW QUEUING DELAY

Iqtidar Ali1, Tariq Hussain1*, Fatima Perviz1, Altaf Hussain1

1University of Agricultural, Peshawar

 Iqtidar @aup.edu.pk, uom.tariq@gmail.com*, faaatimakhaaan31@gmail.com, altafkfm74@gmail.com

Abstract: A protocol is a set of rules that governs data communication which decides when to communicate, how

to communicate and where to communicate and also what to communicate. One of them is Transmission Control

Protocol (TCP) that is the most popular and known protocol for controlling of the data transmission from source

to destination or from one node to another node. It gives the best results in offline streaming of the data as

compared to User Datagram Protocol (UDP). Congestion is the mechanism in networking that takes place in the

time of communication when the data exceeds from its actual limit and it becomes overhead then congestion

problem occurs. It usually occurs on the network like if there exist a router then the overhead occurs on router

when there is limited time-baud buffer due to which the data may loss or overhead occurs. For this solution TCP

is the best option to control and avoid from this problem. In this paper, an analysis has been made with the help of

TCP for examining the congestion control queuing mechanism. Along with that, some parameters have been

taken into account take are throughput and delay. These parameters have been tested under different settings and

have been showed that by utilizing TCP congestion control queuing approach high throughput and low delay of

queuing has encountered. From OPNET simulation results it has been concluded that TCP have shown

remarkable and outstanding performance for controlling congestion issue with the help of other existing schemes

that has shown poor performance.

Keywords: Transmission Control Protocol, Congestion Control Queuing, Throughput, Queuing Delay.

1. INTRODUCTION

The core of TCP congestion control is in the additive

increase, multiplicative decrease and halving the

window for congestion after receiving each window

containing some packet loss. Another important

component of the congestion control mechanism is

high retransmit timer which includes the exponential

back off when a retransmission packet itself discarded.

Subsequently, the third fundamental element is the

start mechanism for initial probing to know the

available bandwidth rather than sending a high rate

data in beginning which may not be supported by a

network [1]. Furthermore, another congestion

mechanism is a term called acknowledgement clocking

(ACK) where the appearance of acknowledgement at

the instigator is used to clock out the broadcast of new

data [2]. When we merge all these mechanisms such as

retransmit timers, ACK clocking, additive increase

multiplicative decrease and slow start, there is a

tremendous possibility of distinct behaviours [3]. For

an instance, many things can be taken into

consideration such as Return round trip, specific

algorithm for retransmit timeout, the reply to rearrange

or delay packets, the length of the congestion window

in the initial time.

Henceforth, distinct TCP implementation differs in

some extent to compete for available bandwidth

however as they all adhere to some set mechanism,

there is no starvation of bandwidth among completing

TCP connections. And as a result, equal bandwidth

sharing is not common between TCP connections and

it is unlikely that one TCP implementation will prevent

other TCP connection for an adequate bandwidth

sharing of the available limit (Martin

[4]. Our literature review section discusses different

themes based on TCP congestion algorithm. One of

the authors discussed about TCP congestion control

algorithms tend to increase robustness all across the

mailto:uom.tariq@gmail.com
mailto:faaatimakhaaan31@gmail.com

2

environment instead of fine tuning for a specific

network requirement or traffic type at the sake of

another TCP connection [5].

A secondary ideology is the independent changes are

in development and evaluating one change needs

considering the other account interaction with other

changes in progress. On top of considering the

influence of a specific impact of change in TCP,

provided the recent environment it is also useful to

recognize the potential influence of a proposed change

some year down the road when other changes are

taking place to the network. Now the last theme theory

is based on an inevitable heterogeneity in the

congestion control mechanism deployed TCP

deployment. For instance, an uneven implementation

allows more robust operation when several packets are

discarded from a congestion widow of data which is

now widely deployed [3].

There have been various changes to TCP congestion

control mechanism which intend to prevent various

unimportant retransmit timeouts for small transfers to

advance performance in terms with delay time, corrupt

packets and reordering. Rather than associating with

fundamental changes to congestion control

mechanisms these variations would bring TCP closer

to purify congestion control behaviours elaborated

briefly in further sections such as additive increase,

increase/multiplicative decrease, fast transmit and fast

recovery [1]. Retransmit timeouts are a need for last

resort in TCP flow control used with TCP sender has

no other mechanism to identify that a retransmission is

required. In addition, back off algorithms for

retransmit timers are a basic element for congestion

window of a segment. However, when the congestion

window is bigger than one segment, TCP uses the

fundamental such as additive increase,

increase/multiplicative decrease, fast transmit and fast

recovery which are fundamental congestion control

mechanisms and particularly in this case it would

favourable to prevent unwanted retransmit timeout

efficiently [6].

When we consider recent TCP implementations which

have two possible mechanisms for figuring out the

packet loss and fast retransmit. A TCP connection in

generic terms recovers more swiftly from a packet loss

with the help of fast retransmit and inferring the

communication with fast retransmit with three

duplicate ACKs packets. When fast retransmit is

initiated then the TCP source node retransmit the

segment inferred to be lost and reduced its congestion

and continuing the data transfer. If the TCP data

source nodes do not receive three supplicate ACKs

after a packet loss, the source nodes go for a

considerable delay for waiting for the transmit timer to

expire. Many experimental studies discussed about the

performance costs to small flows of unwontedly

waiting for expiration of retransmit timer [2].

2. RELATED TERMS

Now after the above investigation of TCP congestion

control mechanism, we would raise a question that

why we would require any enhancement of the

algorithms constituting several elements such as

additive increase, increase/multiplicative decrease, fast

transmit and fast recovery. Previous studies and our

thorough study literature review section shows that

there still possibility to fine tune TCP’s retransmit

timeout algorithm to attain efficient balance between

retransmit timeouts and unwanted delay of sensing the

delay. However, it is quite not possible to design

timeout algorithms which would not result in

unwanted retransmit timeout. Likewise, while it would

be possible to tune TCP’s fast retransmit algorithm to

attain improved equilibrium between unwanted

unnecessary delay and unwanted fast transmission in

sensing loss [5]. Therefore, we would not expect to

fine tune TCP algorithm to flawlessly function as it is

not possible to devise an algorithm which correctly

identify the reception of a duplicate ACK. Henceforth

it is desirable for congestion control algorithm to

perform well even with retransmit timeout and fast

retransmits[7].

Our study suggests that there is a huge scope of

improving the congestion control mechanisms by

experimenting the existing elements and testing them

together to find out the most efficient way based on

different scenarios. We consider different scenarios as

the congestion control gets affected by the changes in

network as a packet travel through several networks

[4]. One more factor influencing the behaviours of

TCP congestion mechanism control is the scheduling

mechanism used by various routing devices however

the research will include only FIFO scheduling method

[6].

We firmly believe that hypothesis carries clarity and

focuses on main issues on a research. Previous studies

have argued that any hypothesis should be based on

some real time observation which we believe quite true

[14]. Our research has influenced by some hypothesis

which are quite generic for congestion control

mechanisms such as: -

• Elements of TCP congestion control mechanism

have an impact on the performance of a packet

• Element impacts the behavior of each other along

with the complete congestion control mechanism

3

As research hypothesis is always based on

examination of some tests that evoke suspicion on

current ideas and concepts. We are not trying to

approve or disapprove our research hypothesis

however we will endeavor to delve down into TCP

congestion control mechanism to find the scope of

improvement [8]. It is also not indispensable to create

a research hypothesis to investigate on issues however

we have deduced the hypothesis on the basis of our

literature review, and we will be testifying the above

statements through our experiments in Sheffield

Hallam Laboratories.

3. Methodology, Tools and Techniques

Experimentation method is known as empirical

research which includes conclusion and can be verified

with experiments and observation. Our research can be

termed as explanatory research where majorly

quantitative method has a great participation. The

laboratory work will be performed in Sheffield Hallam

University. As elaborated in the literature review

sections, the hypothesis will be evaluated through

independent and dependent on variables [9]. Our

resultant will be produced by changing these variables

in the laboratory and data will be evaluated and

analyzed to see measure performance of different

elements and TCP congestion control mechanisms in

totality [10]. The research methodology will be

deductive in nature where we instigate our research

with a pre-defined idea and further evaluating with

experimentations. In our research, it is crucial to find

facts and views at the source nodes and to simulate

required scenario.

a. Techniques

We will consider first two elements of TCP congestion

control mechanism by implementing on a simulation

tool which will transmit a packet. The secondary step

will evaluate two elements behaviours and influenced

caused by them to the TCP congestion control

mechanism in totality. Once we record the captured

behaviours of these elements on congestion control

mechanism, we would consider the resultants as

empirical data which can be analyzed [14].

b. Simulation Environment

We will implement a network in one of the

laboratories of Sheffield Hallam University where we

will use the OPNET IT Guru Academic Edition

(OPNET, 2011). The OPNET tool will facilitate us to

create a network set up which can testify various TCP

congestion control mechanisms. The tool will also

empower us to monitor network packets and simulate

congestion control environment so that all possible

elements such as fast recovery, additive increase and

multiplicative decrease can be assessed. IT Guru

Academic Edition application is meant for networking

related experiments and designed to test various

laboratory work (OPNET, 2011).

c. Experiment Design

 Experimental designs are intrusive in nature and it is

complicated to carry out in real world circumstance

[11]. And as often experimentation is an incursion, we

will formulate an artificial environment so that we will

be able to evaluate the relationship between with high

validity. In generic terms, our experiment will have

two groups and it will be interesting to determine

whether these groups produce different congestion

window size. In the research work, we will be

designed to reveal TCP congestion control algorithms

which will consist of various simulation scenarios with

different elements such as additive increase,

increase/multiplicative decrease, fast transmit and fast

recovery [8]. The element will have varied values

which can be changed which can provided us different

resultants. In the laboratory of Sheffield Hallam

University, we will set up a network where TCP

protocol will be used and an end to end transmission

will be established between two devices. Our network

set up will allows capturing the congestion window

with different mechanisms.

4. RESULTS AND DISCUSSION

In this research we will discuss the different scenarios

that were designed and implemented on that network

and the graphs that are obtained as a result of

performing the simulation using the OPNET IT Guru

Academic version. The scenarios are designed to

investigate the congestion control algorithms of TCP

along the queuing mechanism. The algorithms are

tested on the network design for different scenarios.

The network design will use TCP as its end to end

transmission protocol for FTP application and will

analyses the size of congestion window and sent

segment sequence number for basic flow of FTP. On

the routers one by one, one of the queuing mechanisms

among the FIFO, PQ and WFQ will be implemented

between router and IP32_Cloud to examine the effect

of congestion control algorithm along these queuing

mechanisms.

The three scenarios No-Drop, Drop-fast and Drop-

Nofast have been checked for FTP using three queuing

mechanisms FIFO, WFQ and PQ. In the No-Drop

scenario the fast retransmit was enable and assign

Reno to fast recovery to Server Hallam also to the IP

cloud packet discard ratio of 0.05% was assigned. In

4

Drop-Nofast to the IP cloud author assign the packet

discard ratio same 0.05% and enable the fast

retransmit and fast recovery mechanism of Server

Hallam, while in Drop-fast scenario author have

enable the fast retransmit and assign Tahoe to fast

recovery mechanism of Server Hallam and have also

keep the packet discarded ratio 0.05% same to the IP

Cloud. The duration of the simulation is kept 8

minutes for all the scenarios. The resultant and

comparative graphs obtained from these scenarios are

discussed below.

4.1. Congestion Control Algorithm along FIFO

To compare the graphs obtained from all three

scenario i.e., No-Drop, Drop-fast, Drop-Nofast, select

the Compare Result from Result menu. Expand the

Object Statistics and select the Congestion window

size and Sent Segment Sequence Number. The graph

can be displayed by first clicking on the Object

Statistics under the Global statistics, after that click on

your network, in this case click on Choose from Map,

Sheffield Hallam University, Server Hallam, TCP

Connection and then select your parameter congestion

Window Size or Sent Segment Sequence Number To

see clear view of the resultant graph, Click Show. The

resulting graphs are showing the comparison of all the

three scenarios below for Congestion window size Fig

1 and Sent Segment Sequence Number Fig 2.

Fig 1: Window Size with FIFO

In fig 4.2 the blue colour is representing the No-Drop

scenario, the green colour is representing the Drop-

Fast scenario while the red colour is representing the

Drop-Nofast scenario. The X-axis is showing the

simulation time while the Y-axis is showing the size of

the congestion window. After 1min and 56 second the

change is shown by all the scenarios, the No-Drop blue

line in graph is showing a constant increase in

congestion it is represented by a straight line while in

the other two scenario there is a fluctuation, it is

showing irregular increase and decrease in the size of

congestion window transmission. In Drop-Nofast the

stability of the congestion window size transmission is

low as compared to Drop-Fast. The packet discard

ration of 0.05% is also assigned to the IP Cloud, and

the fast recovery and fast retransmit algorithms are

enabled, so it takes time to stable. The green colour is

showing that the Drop-Fast recover soon because the

recovery Tahoe is assigned, and retransmission is

enabled in this scenario.

4.1.1. Sent Segment Sequence Number Along FIFO

In fig 2 the No Drop and the Drop Fast is showing

approximately the same growth in Sent Segment

Sequence Number with increase in traffic while

segment sequence number has slowest growth in

Drop_NoFast Scenario using the FIFO queuing

Mechanism on the links connecting the routers to the

IP Cloud. With every drop-in size of the congestion

window one can see the change in graph in Sent

Segment Sequence Number.

Fig 2: Sent Segment Sequence Number with FIFO

4.1.2 Graphs obtained from congestion control

algorithms along PQ

The same three scenarios No_Drop, Drop_Fast and

Drop_NoFast have been implemented with the PQ and

the results were obtained on the basis of the same

matrices (Congestion Window and Sent Segment

Sequence Number) and were compared, the compared

graphs are discussed and given below.

5

Fig 3: Congestion window size with PQ

Fig 3 shows that a change in the three scenarios can be

noticed after 1 minute and 55 seconds has elapsed, the

congestion window size graph show fluctuation for all

the scenarios, the congestion window is increasing and

then decreasing up to 1. The No-Drop scenario has

taken more time to maintain a constant congestion

window size for transmission, while in the rest of the

two scenarios the Drop-Nofast scenario taken more

time to maintain a constant congestion window size

transmission. In the Drop-Fast scenario the congestion

window drops and is then increased and stabilize early

compared to other two scenarios.

Fig 4: Sent Segment Sequence Number with PQ

In fig 4 the graph is showing that the Sent Segment

Sequence numbers of the three graphs are same up to 1

minute and 54 seconds. After that a change in all three

scenarios can be examined. With every drop in the

congestion window size, the Sent segment sequence

number is decreasing. After 1 min and 54 seconds it is

observed that during transmission after the lost packet,

the segment data is delayed until retransmission timer

expires. The Drop_Fast has given the best result for

sent segment sequence number as compared to other

two scenarios by sending more in less time compared

to other two scenarios. With the passage of time the

number of Sent Segment Sequence Number of the

No_Drop starts decreasing.

4.1.3 Graphs obtained from congestion control

algorithms along WFQ

The same three scenarios No-Drop, Drop-Fast and

Drop-No Fast have been implemented with WFQ and

the results were obtained on the basis of the same

matrices (Congestion Window Size and Sent segment

Sequence number) results were compared, the

compared graphs are discussed and given below.

Fig 5: Congestion window size with WFQ

In figure 5 the peaks are showing that the transmission

of the congestion window size is high and is then

decreases dramatically, the No-Drop is showing a

constant increase after 1 mint and 55 sec of the

simulation and is taking more time to stabilize

transmission compared to all other scenarios. The

congestion window size of the Drop-fast become

constant after 2 mint and 18 sec, while the Drop-No-

fast was the slowest one in all which took more time

for stabilizing the congestion window size in last. The

fluctuation is showing that the congestion window is

decreasing and then again grows up.

6

Fig 6: Sent Segment Sequence Number with WFQ

In fig 6 the change in the sequence number can be seen

after passing of 1 minute and 58 seconds, one can see

the change in segment sequence number of the three

scenarios, with every drop in the congestion window

has effect on the Sent Segment Sequence Number.

The Drop-No fast is showing the slowest growth in

number of Sent Segment Sequence Number.

Fig 7: Congestion Window size with WFQ

The above fig 7 is clearly showing the average of the

congestion window size growth of the three-scenario

using WFQ as queuing mechanism, it is clear from fig

8 that the Drop-fast stable the size of congestion

window size quickly so suffer less congestion. While

the No-Drop show that it has taken more time to

stabilize its congestion window size for transmission.

Fig 8: Sent Segment Sequence Number with WFQ

Observing the fig 8, the data is showing that the No-

Drop is having the less increase in Sent Segment

Sequence number as compared to other to scenarios

Drop-No-fast and Drop-Fast. The data is clearly

showing that the No-Drop is having the lowest

increase in the Sent Segment Sequence number. That’s

because with every drop-in size of the congestion

window result drop in the sent segment sequence

number while the Drop-Fast is giving the best result

for Sent Segment Sequence Number.

Congestion Window with FIFO.

Fig 9: Congestion Window Size with FIFO

In fig 9 one can clearly see that Drop-fast takes less

time to stable its congestion window for transmission,

in Drop-fast the transmission is low, while the No-

Drop has taken more time to stable its size of

congestion window.

7

Fig 10: Sent Segment Sequence Number with FIFO

The excel graph in Fig 10 is showing that the No_Drop

and Drop_Fast is having approximately the same

increase in Sent Segment Sequence Number using

FIFO as a queuing mechanism while the Drop_NoFast

is having the highest increase in Sent Segment

Sequence Number.

Fig 11: Congestion Window Size with PQ

Fig 11 is clearly showing that the congestion window

size of Drop_Fast with PQ is giving good result. The

Drop_Fast took less time to stables the size of the

congestion window from fluctuation and recover fast

compared to all the other scenarios. The No_Drop

scenario is showing to be the worst one which took

more time to stable its congestion window size. The

value of the average of the congestion window size of

12197.18 makes it the best amongst all the

mechanisms.

Fig 12: Sent Segment Sequence Number with PQ

The results of the three different scenario in fig 12 is

clearly showing that the Drop_Fast Scenario in which

the fast retransmit was enable and to fast recovery

Tahoe is assigned showing the behaviour of fast

recovery of congestion window has also increased the

number of Sent Segment Sequence Number compared

to all other scenario. Below the table is showing the

summary of the graphs data.

Table 1: Comparison Table of all Scenarios and

showing Average behaviour for all the Scenarios

Elements No_Drop Drop_Nofast Drop_Fast

Avg CWnd

with FIFO

103752 44476 44388

Avg CWnd

with WFQ

103752 42549 38119

Avg CWnd

with PQ

14206 12583 12197

Avg SSSeq

no’s with

FIFO

31248806 31250147 31248802

Avg SSSeq

no’s with

WFQ

31252078 31252247 31252291

Avg SSSeq

no’s with

PQ

31250632 31252337 31252860

Table 1 is showing the average values for congestion

window the time it takes to be stable for transmission

and sent segment sequence number collected for each

scenario.

8

Fig.13: Graph based on average for Comparison of

various algorithms using different Queuing

Mechanisms

Fig 14: Graph based on average for Comparison of

various algorithms using different Queuing

Mechanisms

By comparing the graphs of Fig 13, Fig 14 and values

in table 1 above Its clearly showing that the Drop-Fast

scenario (Scenario in which fast retransmit enable and

to the fast recovery assigned Tahoe also to the packet

discard ratio 0.05% was assigned) using PQ deliver

best result for congestion window size and sent

segment sequence number for transmission 1MB file

transmission. Using the Tahoe, when the packet is

dropped, Algorithms in Tahoe TCP i.e. fast recovery

can be used effectively when compared to other

mechanisms to minimize the congestion. Tahoe takes

very less time to recover from congestion by enabling

fast retransmit mechanism and its fast recovery

mechanism, thus congestion is reduced, and

congestion window is increased and become stable in

very less time. As a whole the simulation results are

showing that the queuing mechanism PQ along Tahoe

and enable retransmission appears to be the best

combination for controlling congestion on TCP. The

Overall summary of all these graphs is that the

queuing mechanisms have an impact on the congestion

control algorithms of TCP. The sent segment sequence

number increase and decrease in different scenarios

and the increase and decrease in congestion window

size of these are clearly showing that there is still a

chance of improvement

5. CONCLUSION AND FUTURE WORK

In this research, we have concluded the discussion on

the basis of literature review and resultant graphs that

are obtained from simulation. The most difficult part

of the dissertation was calculating the performance of

experiment and relating results to the relevant

literature review. A lot of work was done on this hot

topic and is gaining more attention because of the

increase in the number of internet users, still limited

research work is carried on congestion control

algorithms along queuing mechanism.

The topic was broad, so authors had to divide the study

into 4 parts; Study of TCP, related study of congestion

control algorithms, queuing mechanisms and

implementation of TCP congestion control algorithms

in OPNET. The investigation of the congestion control

algorithms along the queuing mechanism was very

challenging but knowledgeable and interesting for

authors because of the challenges that authors faced

during learning process and later for getting the

simulation performance results.

After performing the study of TCP, Congestion control

algorithms, Queuing mechanism and OPNET. A

simulation was performed, and it was finding out from

the resultant graph, that the queuing mechanisms that

are configured on the network devices and the

congestion control algorithms of TCP that are working

for controlling congestion on transport layer for

reliable transport of data have an impact on reliability.

It was also found that there is still a chance of

improvement if appropriate queuing mechanism is

used on these devices. I will conclude the discussion

by saying that “the results obtained were showing that

the queuing mechanisms have an impact on

performance of network”.

REFERENCES

1. Yun, L., et al. An improved TCP congestion

control algorithm over mixed wired/wireless

networks. in 2009 2nd IEEE International

Conference on Broadband Network &

Multimedia Technology. 2009. IEEE.

2. Afanasyev, A., et al., Host-to-host congestion

control for TCP. IEEE Communications surveys

& tutorials, 2010. 12(3): p. 304-342.

9

3. Wang, H. and K.G. Shin, Robust TCP congestion

recovery. Journal of High Speed Networks, 2004.

13(2): p. 103-121.

4. Martin, J., A. Nilsson, and I. Rhee, Delay-based

congestion avoidance for TCP. IEEE/ACM

Transactions on networking, 2003. 11(3): p. 356-

369.

5. Lai, Y.-C., TCP-friendly congestion control to

guarantee smoothness by Slack Term. Computer

communications, 2007. 30(2): p. 341-350.

6. Wei, D.X., et al., FAST TCP: motivation,

architecture, algorithms, performance.

IEEE/ACM transactions on Networking, 2006.

14(6): p. 1246-1259.

7. Anker, T., et al. TCP-friendly many-to-many end-

to-end congestion control. in 22nd International

Symposium on Reliable Distributed Systems,

2003. Proceedings. 2003. IEEE.

8. Ruddle, A., C. Allison, and P. Lindsay.

Visualising interactions between TCP's

congestion and flow control algorithms. in

Proceedings. Eleventh International Conference

on Computer Communications and Networks.

2002. IEEE.

9. Dawson, C., A practical guide to research

methods: A users friendly manual for mastering

research techniques and projects. 2007: How To

Books.

10. Tsaoussidis, V. and C. Zhang, The dynamics of

responsiveness and smoothness in heterogeneous

networks. IEEE Journal on Selected Areas in

Communications, 2005. 23(6): p. 1178-1189.

11. Leedy, P. and J. Ormrod, Practical Research

Planning and Design . New Jersey: Pearson

Merrill Prentice Hall. 2005.

12 OPNET (2011) [Online] Jul [cited 2013 July 15];

Available from: http://www.opnet.com/

13 Plato Quotes (2011) [Online] last accessed date

04 July 2011 at:

www.cyrket.com/p/palm/com.brighthouselabs.pla

toquotes/

14 Kothari C R, 2006, Research Methodology:

Methods and Techniques, second editions, New

Delhi, New Age International (P), Limited,

Publishers

