
EasyChair Preprint

№ 334

Towards a Semantic Measure of the Execution

Time in Call-by-Value lambda-Calculus

Giulio Guerrieri

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 9, 2018

Submitted to:
ITRS 2018

c© G. Guerrieri
This work is licensed under the
Creative Commons Attribution License.

Towards a Semantic Measure of the Execution Time in
Call-by-Value lambda-Calculus

Giulio Guerrieri
Dipartimento di Informatica – Scienza e Ingegneria (DISI), Università di Bologna, Bologna, Italy

giulio.guerrieri@unibo.it

We investigate the possibility of a semantic account of the execution time (i.e. the number of βv-steps
leading to the normal form, if any) for the shuffling calculus, an extension of Plotkin’s call-by-value
λ -calculus. For this purpose, we use a linear logic based denotational model that can be seen as a non-
idempotent intersection type system: relational semantics. Our investigation is inspired by similar ones
for linear logic proof-nets and untyped call-by-name λ -calculus. We first prove a qualitative result: a
(possibly open) term is normalizable for weak reduction (which does not reduce under abstractions) if
and only if its interpretation is not empty. We then show that the size of type derivations can be used
to measure the execution time. Finally, we show that, differently from the case of linear logic and
call-by-name λ -calculus, the quantitative information enclosed in type derivations does not lift to types
(i.e. to the interpretation of terms). To get a truly semantic measure of execution time in a call-by-value
setting, we conjecture that a refinement of its syntax and operational semantics is needed.

1 Introduction

Type systems enforce properties of programs, such as termination or deadlock-freedom. The guarantee
provided by most type systems for the λ -calculus is termination.

Intersection types have been introduced as a way of extending simple types for the λ -calculus to
“finite polymorphism”, by adding a new type constructor ∩ and new typing rules governing it. Contrarily
to simple types, intersection types provide a sound and complete characterization of termination: not only
typed programs terminate, but all terminating programs are typable as well (see [14, 15, 36, 30] where
different intersection type systems characterize different notions of normalization). Intersection types are
idempotent, that is, they verify the equation A∩A = A. This corresponds to an interpretation of a typed
term t : A∩B as “t can be used both as data of type A and as data of type B”.

More recently [19, 29, 32, 11] (a survey can be found in [9]), non-idempotent variants of intersection
types have been introduced: they are obtained by dropping the equation A∩A = A. In a non-idempotent
setting, the meaning of the typed term t : A∩A∩B is refined as “t can be used twice as data of type A
and once as data of type B”. This could give to programmers a way to keep control on the performance
of their code and to count resource consumption. Finite multisets are the natural setting to interpret an
associative, commutative and non-idempotent connective ∩: if A and B are non-idempotent intersection
types, the multiset [A,A,B] represents the non-idempotent intersection type A∩A∩B.

Non-idempotent intersection types have two main features, both enlightened in de Carvalho’s system
R [11]:

1. Bounds on the execution time: they go beyond simply qualitative characterisations of termination,
as type derivations provide quantitative bounds on the execution time (i.e. on the number of β -steps
to reach the β -normal form). Therefore, non-idempotent intersection types give intensional insights
on programs, and seem to provide a tool to reason about complexity of programs. The approach is

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
mailto:giulio.guerrieri@unibo.it

2 Towards a Semantic Measure of the Execution Time in Call-by-Value lambda-Calculus

defining a measure for type derivations and showing that the measure gives (a bound to) the length
of the evaluation of typed terms.

2. Linear logic interpretation: non-idempotent intersection types are deeply linked to linear logic
(LL) [20]. Relational semantics [21, 7] — the category Rel of sets and relations endowed with
the comonad ! of finite multisets — is a sort of “canonical” denotational model of LL; the Kleisli
category Rel! of the comonad ! is a CCC and then provides a denotational model of the ordinary
(i.e. call-by-name) λ -calculus. Non-idempotent intersection types can be seen as a syntactic
presentation of Rel!: the semantics of a term t is the set of conclusions of all type derivations of t.

These two facts together have a potential, fascinating consequence: denotational semantics may
provide abstract tools for complexity analysis, that are theoretically solid, being grounded on LL.

Starting from [11], research on relational semantics/non-idempotent intersection types has proliferated:
various works in the literature explore their power in bounding the execution time or in characterizing
normalization [12, 8, 6, 27, 5, 13, 34, 28, 9, 31]. All these works study relational semantics/non-idempotent
intersection types either in LL proof-nets (the graphical representation of proofs in LL), or in some variant
of ordinary (i.e. call-by-name) λ -calculus. In the second case, the construction of the relational model
Rel! sketched above essentially relies on Girard’s call-by-name translation (·)n of intuitionistic logic into
LL, which decomposes the intuitionistic arrow as (A⇒ B)n = !An (Bn.

Ehrhard [17] showed that the relational semantics Rel of LL induces also a denotational model for
the call-by-value λ -calculus1 that can still be viewed as a non-idempotent intersection type system.
The syntactic counterpart of this construction is Girard’s (“boring”) call-by-value translation (·)v of
intuitionistic logic into LL [20], which decomposes the intuitionistic arrow as (A⇒ B)v = !(Av (Bv).
Just few works have started the study of relational semantics/non-idempotent intersection types in a
call-by-value setting [17, 16, 10, 18], and no one investigates their bounding power on the execution time
in such a framework. The aim of our paper is to fill this gap and to study the information enclosed in
relational semantics/non-idempotent intersection types concerning the execution time in the call-by-value
λ -calculus.

A difficulty arises immediately in the qualitative characterization of call-by-value normalization via
the relational model. One would expect that the semantics of a term t is non-empty if and only if t is
(strongly) normalizable for (some restriction of) the call-by-value evaluation→βv , but it is impossible to
get this result in Plotkin’s original call-by-value λ -calculus λv [35]. Indeed, the terms t and u below are
βv-normal but their semantics in the relational model are empty:

t := (λy.∆)(zI)∆ u := ∆((λy.∆)(zI)) (where ∆ := λx.xx and I := λx.x) (1)

Actually, t and u should behave like the famous divergent term ∆∆, since in λv they are observationally
equivalent to ∆∆ with respect all closing contexts and have the same semantics as ∆∆ in all non-trivial
denotational models of Plotkin’s λv.

The reason of this mismatching is that in λv there are stuck β -redexes such as (λy.∆)(zI) in Eq. (1),
i.e. β -redexes that βv-reduction will never fire because their argument is normal but not a value (nor will
it ever become one). The real problem with stuck β -redexes is that they may prevent the creation of other
βv-redexes, providing “premature” βv-normal forms like t and u in Eq. (1). The issue affects termination
and thus can impact on the study of observational equivalence and other operational properties in λv.

1In call-by-value evaluation→βv
, function’s arguments are evaluated before being passed to the function, so that β -redexes

can fire only when their arguments are values, i.e. abstractions or variables. Call-by-value evaluation is the most common
parameter passing mechanism used by programming languages.

G. Guerrieri 3

In a call-by-value setting, the issue of stuck β -redexes and then of premature βv-normal forms arises
only with open terms (in particular, when the reduction under abstractions is allowed, since it forces to
deal with “locally open” terms). Even if to model functional programming languages with a call-by-value
parameter passing, such as OCaml, it is usually enough to just consider closed terms and evaluation not
reducing under abstractions (i.e. function bodies are evaluated only when all parameters are supplied),
the importance to consider open terms in a call-by-value setting can be found, for example, in partial
evaluation (which evaluates a function when not all parameters are supplied, see [26]), in the theory of
proof assistants such as Coq (in particular, for type checking in a system based on dependent types, see
[22]), or to reason about (denotational or operational) equivalences of terms in λv that are congruences, or
about other theoretical properties of λv such as separability or solvability [33, 39, 3, 10].

In order to overcome this issue, we study relational semantics/non-idempotent intersection types in
the shuffling calculus λsh, a conservative extension of Plotkin’s λv proposed in [10] and further studied
in [23, 24, 2, 25]. It keeps the same term syntax as λv and adds to βv-reduction two commutation rules,
σ1 and σ3, which “shuffle” constructors in order to move stuck β -redexes: they unblock βv-redexes
that are hidden by the “hyper-sequential structure” of terms. These commutation rules (referred also
as σ -reduction rules) are similar to Regnier’s σ -rules for the call-by-name λ -calculus [37, 38] and are
inspired by the aforementioned (·)v translation of the λ -calculus into LL proof-nets.

Following the same approach used in [11] for the call-by-name λ -calculus and in [12] for LL proof-
nets, we prove that in the shuffling calculus λsh:

1. (qualitative result) a possibly open term is normalizable for weak reduction (not reducing under
λ ’s) if and only if its interpretation in the relational semantics is not empty (Thm. 16); this result
was already proven in [10] using different techniques;

2. (quantiative result) the size of type derivations can be used to measure the execution time, i.e. the
number of βv-steps (and not σ -steps) to reach the normal form of the weak reduction (Prop. 21).

Finally, we show that, differently from the case of LL and call-by-name λ -calculus, we are not able to
lift the quantitative information enclosed in type derivations to types (i.e. to the interpretation of terms)
following the same technique used in [11, 12], as our Ex. 25 shows. In order to get a genuine semantic
measure of execution time in a call-by-value setting, we conjecture that a refinement of its syntax and
operational semantics is needed.

Even if our main goal has not yet been achieved, this investigation leaded to new interesting results:

1. all normalizing weak reduction sequences (if any) in λsh from a given term have the same number
of βv-steps (Cor. 22); this is not obvious, as we shall explain in Ex. 23;

2. terms whose weak reduction in λsh ends in a value has an elegant semantic characterization
(Prop. 18), and the number of βv-steps needed to reach their normal form can be computed in a
simple way from a specific type derivation (Thm. 24).

Omitted proofs are in Appendix A together with a list of notations and terminology used here.

2 The shuffling calculus

In this section we introduce the shuffling calculus λsh, namely the call-by-value λ -calculus defined in [10]
and further studied in [23, 24, 2, 25]: it adds two commutation rules — the σ1- and σ3-reductions — to
Plotkin’s pure (i.e. without constants) call-by-value λ -calculus λv [35]. The syntax for terms of λsh is the
same as Plotkin’s λv and then the same as the ordinary (i.e. call-by-name) λ -calculus, see Fig. 1.

4 Towards a Semantic Measure of the Execution Time in Call-by-Value lambda-Calculus

terms: t,u,s ::= v | tu (set: Λ)

values: v ::= x | λx.t (set: Λv)

contexts: C ::= 〈·〉 | λx.C |Ct | tC (set: ΛC)

Balanced contexts: B ::= 〈·〉 | (λx.B)t | Bt | tB (set: ΛB)

Root-steps: (λx.t)v 7→βv t{v/x} (λx.t)us 7→σ1 (λx.ts)u, x /∈ fv(s) v((λx.s)u) 7→σ3 (λx.vs)u, x /∈ fv(v)
7→σ := 7→σ1 ∪ 7→σ3 7→sh := 7→βv ∪ 7→σ

r-reduction: t→r u ⇐⇒ ∃C ∈ ΛC, ∃ t ′,u′∈ Λ : t =C〈t ′〉, u =C〈u′〉, t ′ 7→r u′

r[-reduction: t→r[u ⇐⇒ ∃B ∈ ΛB, ∃ t ′,u′∈ Λ : t = B〈t ′〉, u = B〈u′〉, t ′ 7→r u′

Figure 1: The shuffling λ -calculus λsh

Clearly, Λv (Λ. All terms are considered up to α-conversion (i.e. renaming of bound variables). The
set of free variables of a term t is denoted by fv(t): t is open if fv(t) 6= /0, closed otherwise. Given v ∈ Λv,
t{v/x} denotes the term obtained by the capture-avoiding substitution of v for each free occurrence of x
in the term t. Note that if v,v′ ∈ Λv then v{v′/x} ∈ Λv (values are closed under substitution).

One-hole contexts C are defined as usual, see Fig. 1. We use C〈t〉 for the term obtained by the
capture-allowing substitution of the term t for the hole 〈·〉 in the context C. In Fig. 1 we define also a
special kind of contexts, balanced contexts B.

Reductions in the shuffling calculus are defined in Fig. 1 as follows: given a root-step rule 7→r⊆Λ×Λ,
we define the r-reduction→r (resp. r[-reduction→r[) as the closure of 7→r under contexts (resp. balanced
contexts). The r[-reduction is non-deterministic and — because of balanced contexts — can reduce under
abstractions, but it is “morally” weak: it reduces under a λ only when the λ is applied to an argument.
Clearly,→sh[(→sh since→sh can freely reduce under λ ’s.

The root-steps used in the shuffling calculus are 7→βv (the reduction rule in Plotkin’s λv), the commu-
tation rules 7→σ1 and 7→σ3 , and 7→σ := 7→σ1 ∪ 7→σ3 and 7→sh := 7→βv ∪ 7→σ . The side conditions for 7→σ1

and 7→σ3 in Fig. 1 can be always fulfilled by α-renaming. For any r ∈ {βv,σ1,σ3,σ ,sh}, if t 7→r t ′ then
t is a r-redex and t ′ is its r-contractum. A term of the shape (λx.t)u is a β -redex. Clearly, any βv-redex
is a β -redex but the converse does not hold: (λx.z)(yI) is a β -redex but not a βv-redex. Redexes of
different kind may overlap: for instance, the term ∆I∆ is a σ1-redex and contains the βv-redex ∆I; the
term ∆(I∆)(xI) is a σ1-redex and contains the σ3-redex ∆(I∆), which contains in turn the βv-redex I∆.

From definitions in Fig. 1 it follows that→sh=→βv ∪→σ and→σ =→σ1 ∪→σ3 , as well as→sh[=

→
β [

v
∪→

σ [and→
σ [=→σ [

1
∪→

σ [
3
. The shuffling (resp. balanced shuffling) calculus λsh (resp. λ [

sh) is the
set Λ of terms endowed with the reduction→sh (resp.→sh[). The set Λ endowed with the reduction→βv

is Plotkin’s pure call-by-value λ -calculus λv [35], a sub-calculus of λsh.

Proposition 1 (Basic properties of reductions, [35, 10]). The σ - and σ [-reductions are confluent and
strongly normalizing. The βv-, β [

v-, sh- and sh[-reductions are confluent.

Example 2. Recall the terms t and u in Eq. (1): t =(λy.∆)(xI)∆→
σ [

1
(λy.∆∆)(xI)→

β [
v
(λy.∆∆)(xI)→

β [
v
. . .

and u = ∆((λy.∆)(xI))→
σ [

3
(λy.∆∆)(xI)→

β [
v
(λy.∆∆)(xI)→

β [
v
. . . are the only possible sh-reduction paths

from t and u respectively: t and u are not sh-normalizable and t 'sh u. But t and u are βv-normal
((λy.∆)(xI) is a stuck β -redex) and different, hence t 6'βv u by confluence of→βv (Prop. 1).

Example 2 shows how σ -reduction shuffles constructors and moves stuck β -redex in order to unblock
βv-redexes which are hidden by the “hyper-sequential structure” of terms, avoiding “premature” normal

G. Guerrieri 5

forms. An alternative approach to circumvent the issue of stuck β -redexes is given by λvsub, the call-
by-value λ -calculus with explicit substitutions introduced in [3], where hidden βv-redexes are reduced
using rules acting at a distance. In [2] it has been shown that λvsub and λsh can be embedded in each other
preserving termination and divergence. Interestingly, both calculi are inspired by an analysis of Girard’s
“boring” call-by-value translation of λ -terms into linear logic proof-nets [20, 1] according to the linear
recursive type o = !o (!o, or equivalently o = !(o (o). In this translation, sh-reduction corresponds to
cut-elimination, more precisely βv-steps (resp. σ -steps) correspond to exponential (resp. multiplicative)
cut-elimination steps; sh[-reduction corresponds to cut-elimination at depth 0.

Consider the two subsets of terms defined by mutual induction (notice that Λa (Λn) Λv):

a ::= xv | xa | an (set: Λa) n ::= v | a | (λx.n)a (set: Λn).

Any t ∈ Λa is neither a value nor a β -redex, but an open applicative term with a free “head variable”.

Proposition 3 (Syntactic characterization on sh[-normal forms). Let t be a term: Proof p. 14

• t is sh[-normal iff t ∈ Λn;

• t is sh[-normal and is neither a value nor a β -redex iff t ∈ Λa.

Stuck β -redexes correspond to sh[-normal forms of the shape (λx.n)a. As a consequence of Prop. 3,
the behaviour of closed terms with respect to sh[-reduction is quite simple: either they diverge or they
sh[-normalize to a (closed) value. Indeed:

Corollary 4 (Syntactic characterization of closed sh[-normal forms). Let t be a closed term: Proof p. 15t is sh[-
normal iff t is a value iff t = λx.u for some term u with fv(u)⊆ {x}.

3 A non-idempotent intersection type system

We aim to define a non-idempotent intersection types system in order to characterize the (strong) normal-
izable terms for the reduction→sh.

Types are positive or negative types, defined in turn by mutual induction as follows:

Negative Types: M,N ::= P (Q Positive Types: P,Q ::= [N1, . . . ,Nn] (with n ∈ N)

where [N1, . . . ,Nn] is a (possibly empty) finite multiset of negative types; in particular the empty multiset
[] (obtained for n = 0) is the atomic (positive) type. A positive type [N1, . . . ,Nn] has to be intended as
a conjunction N1∧·· ·∧Nn of negative types N1, . . . ,Nn, for a commutative and associative conjunction
connective ∧ that is not idempotent and whose neutral element is [].

The derivation rules for the non-idempotent intersection types system are in Fig. 2. In this typing
system, judgments have the shape Γ ` t : P where t is a term, P is a positive type and Γ is an environment
(that is, a partial function from variables to positive types whose domain is finite). The sum of environments
Γ]∆ is defined pointwise using the multiset sum, when Γ and ∆ have the same domain: if x ∈ dom(Γ) =
dom(∆), then (Γ]∆)(x) = Γ(x)]∆(x). An environment Γ such that dom(Γ) = {x1, . . . ,xn} with xi 6= x j

and Γ(xi) = mi for all 1 ≤ i 6= j ≤ n is often written as Γ = x1 : m1, . . . ,xn : mn. Note that the sum of
environments] is commutative, associative and, given an environment Γ with dom(Γ) = {x1, . . . ,xn}
(for some n ∈ N), one has Γ]Γ0 = Γ iff Γ0 = x1 : [], . . . ,xn : [] (i.e. Γ0 is the neutral element for]). The
notation π B Γ ` t : P means that π is a derivation with conclusion the judgment Γ ` t : P. We write π B t
if π is such that π B Γ ` t : P for some environment Γ and positive type P.

6 Towards a Semantic Measure of the Execution Time in Call-by-Value lambda-Calculus

ax
Γ0,x :P ` x :P

Γ ` t : [P (Q] Γ′ ` u :P
@

Γ]Γ′ ` tu :Q

Γ1,x :P1 ` t :Q1
n∈N. . . Γn,x :Pn ` t :Qn

λ
Γ0]Γ1]·· ·]Γn ` λx.t : [P1 (Q1, . . . ,Pn (Qn]

Figure 2: Non-idempotent intersection type system for the shuffling calculus. In the rules ax and λ ,
Γ0 = x1 : [], . . . ,xn : [] (with x 6= xi for all 1≤ i≤ n), and in the rule λ , fv(t)⊆ dom(Γ0).

It is worth noticing that the typing system in Fig. 2 is syntax oriented: for each type judgment J there
is a unique derivation rule whose conclusion matches the judgment J.

The size |π| of a type derivation π is just the the number of @ rules in π . Note that judgments play no
role in in the size of a derivation.
Example 5. Let I = λx.x and x,x1, . . . ,xk be pairwise distinct variable (with k ∈ N). Setting Γ =
x1 : [], . . . ,xk : [], the derivations (typing II and I with same type and same context)

πII =

ax
Γ,x : [] ` x : []

λ
Γ ` I : [[]([]]

λ
Γ ` I : []

@
Γ ` II : []

πI = λ
Γ ` I : []

are such that |πII|= 1 and |πI|= 0. Note that II→sh[I and |πI|= |πII|+1.
The following lemma (whose proof is quite technical) will play a crucial role to prove the substitution

lemma (Lemma 7) and the subject reduction (Prop. 8) and expansion (Prop. 10).
Lemma 6 (Judgment decomposition for values). LetProof p. 15 v ∈ Λv, ∆ be an environment, and P1, . . . ,Pp be
positive types (for some p ∈ N). There is a derivation π B ∆ ` v : P1]·· ·]Pp iff for all 1≤ i≤ p there
are an environment ∆i and a derivation πi B ∆i ` v : Pi such that dom(∆1) = . . .= dom(∆p) = dom(∆)
and ∆ =

⊎p
i=1 ∆i. Moreover, |π|= ∑

p
i=1|πi|.

The left-to-right direction of Lemma 6 means that, given π B ∆ ` v : P, for every p ∈ N and every
decomposition of the positive type P into a multiset sum of positive types P1, . . . ,Pp, there are environments
∆1, . . . ,∆p such that ∆i ` v : Pi is derivable for all 1≤ i≤ p.
Lemma 7 (Substitution). LetProof p. 16 t ∈ Λ and v ∈ Λv. If π B Γ,x : P ` t : Q and π ′ B ∆ ` v : P where dom(Γ) =
dom(∆), then there exists π ′′ B Γ]∆ ` t{v/x} : Q such that |π ′′|= |π|+ |π ′|.

We can now prove the subject reduction, with a quantitative flavour about the size of type derivations
in order to extract information about the execution time.
Proposition 8 (Quantitative balanced subject reduction). LetProof p. 18 t, t ′ ∈ Λ and π B Γ ` t : Q.

1. Shrinkage under β [
v-step: If t→

β [
v

t ′ then |π|> 0 and there exists a derivation π ′ with conclusion
Γ ` t ′ : Q such that |π ′|= |π|−1.

2. Size invariance under σ [-step: If t→
σ [t ′ then |π|> 0 and there exists a derivation π ′ with conclusion

Γ ` t ′ : Q such that |π ′|= |π|.
In Prop. 8, the fact that→sh does not reduce under λ ’s is crucial to get the quantitative information,

otherwise one can have a term t such that every derivation π B Γ ` t : P is such that |π| = 0 (and then
there is no derivation π ′ with conclusion Γ ` t ′ : P such that |π|= |π ′|−1): this is the case, for example,
for t = λx.δδ →

β [
v

t.
In order to prove the quantitative subject expansion (Prop. 10), we first need the following technical

lemma stating the commutation of abstraction with abstraction and application.

G. Guerrieri 7

Lemma 9 (Abstraction commutation). Proof p. 21

1. Abstraction vs. abstraction: Let n ∈ N. If π B ∆ ` λy.(λx.t)v :
⊎n

i=1[P
′
i (Pi] and y /∈ fv(v), then

there is π ′ B ∆ ` (λx.λy.t)v :
⊎n

i=1[P
′
i (Pi] such that |π ′|= |π|+1−n.

2. Application vs. abstraction: If π B ∆ ` ((λx.t)v)((λx.u)v) : P then there exists a derivation π ′ B
∆ ` (λx.tu)v : P such that |π ′|= |π|−1.

Proposition 10 (Quantitative balanced subject expansion). Proof p. 22Let t, t ′ ∈ Λ and π ′ B Γ ` t ′ : Q.

1. Enlargement under anti-β [
v-step: If t→

β [
v

t ′ then there is π B Γ ` t : Q with |π|= |π ′|+1.

2. Size invariance under anti-σ [-step: If t→
σ [t ′ then |π ′|> 0 and there exists π B Γ ` t : Q such that

|π|= |π ′|.
Actually, subject reduction and expansion hold for the whole sh-reduction →sh, not only for the

balanced sh-reduction→sh[. The drawback for→sh is that the quantitative information about the size of
the derivation is lost in the case of a βv-step.

Lemma 11 (Subject reduction). Proof p. 26Let t, t ′ ∈ Λ and π B Γ ` t : Q.

1. Shrinkage under βv-step: If t→βv t ′ then there is π ′ B Γ ` t ′ : Q with |π| ≥ |π ′|.
2. Size invariance under σ -step: If t→σ t ′ then there is π ′ B Γ ` t ′ : Q such that |π|= |π ′|.

Lemma 12 (Subject expansion). Proof p. 26Let t, t ′ ∈ Λ and π ′ B Γ ` t ′ : Q.

1. Enlargement under anti-βv-step: If t→βv t ′ then there is π B Γ ` t : Q with |π| ≥ |π ′|.
2. Size invariance under anti-σ -step: If t→σ t ′ then there is π B Γ ` t : Q such that |π|= |π ′|.
In Lemmas 11.1 and 12.1 it is impossible to estimate more precisely the relationship between |π| and

|π ′|. Indeed, Ex. 5 has shown that there are πI B y : [] ` I : [] and πII B y : [] ` II : [] such that |πI|= 0 and
|πII|= 1 (where I = λx.x). So, given n ∈ N, consider the derivations πn B` λy.II : [[]([], n. . . , []([]]
and π ′n B` λy.I : [[]([], n. . . , []([]] below:

πn =

...πII

y : [] ` II : [] n. . .

...πII

y : [] ` II : []
λ` λy.II : [[]([], n. . . , []([]]

π
′
n =

...πI

y : [] ` I : [] n. . .

...πI

y : [] ` I : []
λ

` λy.I :
[
[]([], n. . . , []([]

]
Clearly, λy.II →sh λy.I (but λy.II 6→sh[λy.I) and the π ′n (resp. πn) is the only derivation typing λy.I
(resp. λy.II) with the same type and environment as πn (resp. π ′n). One has |πn| = n · |πII| = n and
|π ′n|= n · |πI|= 0, thus the difference of size of the derivations πn and π ′n can be arbitrarely large (since
n ∈ N); in particular |π0|= |π ′0|, so for n = 0 the size of derivations does not even strictly decrease.

4 Relational semantics: qualitative results

Lemmas 11 and 12 have an important consequence: the non-idempotent intersection type system of Fig. 2
defines a denotational model for the shuffling calculus λsh (Thm. 14 below).

Definition 13 (Suitable list of variables for a term, semantics of a term). Let t ∈ Λ and let x1, . . . ,xn be
pairwise distinct variables, for some n ∈ N.

If fv(t)⊆ {x1, . . . ,xn}, then we say that the list~x = (x1, . . . ,xn) is suitable for t.
If~x = (x1, . . . ,xn) is suitable for t, the (relational) semantics, or interpretation, of t for~x is

JtK~x = {((P1, . . . ,Pn),Q) | ∃π B x1 : P1, . . . ,xn : Pn ` t : Q} .

8 Towards a Semantic Measure of the Execution Time in Call-by-Value lambda-Calculus

Essentially, the semantics of a term t for a suitable list~x of variables is the set of judgments for~x and t
that can be derived in the non-idempotent intersection type system of Fig. 2.

If we identify the type P (Q with the pair (P,Q) and if we set U :=
⋃

k∈N Uk where:

U0 := /0 Uk+1 := Mf(Uk)×Mf(Uk) (Mf(X) is the set of finite multisets over the set X)

then, for any t ∈ Λ and any suitable list~x = (x1, . . . ,xk) for t, one has JtK~x ⊆Mf(U)k×Mf(U); in partic-
ular, if t is closed and~x = (), then JtK = {Q | ∃π B ` t : Q} ⊆Mf(U) (up to an obvious isomorphism).
Note that U =Mf(U)×Mf(U): [17, 10] proved that the latter identity is enough to have a denotational
model for λsh. We can also prove it explicitly using Lemmas 11 and 12.
Theorem 14 (Invariance under sh-equivalence).Proof p. 27 Let t,u ∈ Λ, let n ∈ N and let ~x = (x1, . . . ,xn) be a
suitable list of variables for t and u. If t 'sh u then JtK~x = JuK~x.

An interesting property of relational semantics is that all sh[-normal forms have a non-empty inter-
pretation (Lemma 15). To prove that we use the syntactic characterization of sh[-normal forms (Prop. 3).
Note that a stronger statement (Lemma 15.1) is required for sh[-normal forms belonging to Λa, in order to
handle the case where the sh[-normal form is a β -redex.
Lemma 15 (Semantics of sh[-normal forms).Proof p. 27 Let t be a term, let k ∈N and let~x = (x1, . . . ,xk) be a list of
variables suitable for t.

1. If t ∈ Λa then for every positive type Q there exist positive types P1, . . . ,Pk and a derivation
π B x1 : P1, . . . ,xk : Pk ` t : Q.

2. If t ∈ Λn then there are positive types Q,P1, . . . ,Pk and a derivation π B x1 : P1, . . . ,xk : Pk ` t : Q.

3. If t is sh[-normal then JtK~x 6= /0.
A consequence of Prop. 8 (and Thm. 14 and Lemma 15) is a qualitative result: a semantic and logical

(if we consider our non-idempotent type system as a logical framework) characterization of (strong)
sh[-normalizable terms (Thm. 16). In this theorem, the main equivalences are between Points 1, 3 and 5,
already proven in [10] using different techniques. Points 2 and 4 can be seen as “intermediate stages” in
the proof of the main equivalences, which are informative enough to deserve to be explicitely stated.
Theorem 16 (Semantic and logical characterization of sh[-normalization).Proof p. 28 Let t ∈Λ and let~x=(x1, . . . ,xn)
be a suitable list of variables for t. The following are equivalent:

1. t is sh[-normalizable;

2. t 'sh u for some sh[-normal u ∈ Λ;

3. JtK~x 6= /0;

4. there exists a derivation π B x1 : P1, . . . ,xn : Pn ` t : Q for some positive types P1, . . . ,Pn,Q;

5. t is strongly sh[-normalizable.
Equivalence (5)⇔(1) means that normalization and strong normalization are equivalent for sh[-

reduction, thus in studying the termination of sh[-reduction no intricacy arises from its non-determinism.
Equivalence (1)⇔(2) says that sh[-reduction is complete to get sh[-normal forms; in particular, this entails
that every sh-normalizable term is sh[-normalizable. Equivalence (1)⇔(2) is the analogue of a well-
known theorem [4, Thm. 8.3.11] for ordinary (i.e. call-by-name) λ -calculus relating head β -reduction
and β -equivalence: this corroborates the idea that sh[-reduction is the “head reduction” in a call-by-value
setting, despite its non-determinism.

The implication (5)⇒(3) does not hold in Plotkin’s λv: indeed, the terms t and u in Eq. (1) (see also
Ex. 2) are βv-normal (because of a stuck β -redex) but JtKx = /0 = JuKx. Equivalences such as the ones in
Thm. 16 hold in a call-by-value setting provided that βv-reduction is extended, e.g. by adding σ -reduction
(see [2] for other equivalent approaches).

G. Guerrieri 9

Lemma 17 (Uniqueness of the derivation with empty types; Semantic and logical characterization of
values). Proof p. 29Let t ∈ Λ be sh[-normal and~x = (x1, . . . ,xk) be suitable for t.

1. For every π B x1 : [], . . . ,xk : [] ` t : [] and π ′ B x1 : [], . . . ,xk : [] ` t : [], one has t ∈ Λv, |π|= 0 and
π = π ′. More precisely, π consists only of the rule ax if t is a variable, otherwise t is an abstraction
and π consists only of a 0-ary rule λ .

2. The following are equivalent:

(a) t is a value;
(b) (([], k. . . , []), []) ∈ JtK~x ;

(c) there exists π B x1 : [], . . . ,xk : [] ` t : [] ;
(d) there exists π B t such that |π|= 0.

Qualitatively, Lemma 17 allows us to refine the semantic and logical characterization given by Thm. 16
for a specific class of terms: the valuable ones, i.e. the terms that sh[-normalize to a value. Valuable terms
are all only the terms whose semantics contains a specific element: the point with only empty types.

Proposition 18 (Logical and semantic characterization of valuability). Proof p. 29Let t be a term and~x = (x1, . . . ,xk)
be suitable for t. The following are equivalent:

1. t is sh[-normalizable and the sh[-normal form of t is a value;

2. (([], k. . . , []), []) ∈ JtK~x;

3. there exists π B x1 : [], . . . ,xk : [] ` t : [].

5 The quantitative side of type derivations

From the quantitative subject reduction (Prop. 8) it follows immediately that the size of any derivation
typing a (sh[-normalizable) term t is an upper bound on the number of β [

v-steps in any sh[-normalizing
reduction sequence from t, since the size of a type derivation decreases by 1 after each β [

v-step, and does
not change after each σ [-step.

Corollary 19 (Upper bound for the number of β [
v-steps). Let t be a sh[-normalizable term and t0 be its

sh[-normal form. For any reduction sequence d : t→∗
sh[

t0 and any π B t, leng
β [

v
(d)≤ |π|.

In order to extract from a type derivation the exact number of β [
v-steps to reach the sh[-normal form,

we have to take into account that a sh[-normal form could have only type derivations whose size is not 0,
so we should consider also the size of (type derivations of) sh[-normal forms.

The balanced size of a term t, denoted by |t|[, is defined by induction on t as follows (v ∈ Λv):

|v|[= 0 |tu|[=

{
|s|[+ |u|[+1 if t = λx.s
|t|[+ |u|[+1 otherwise

So, the balanced size of a term t is the number of applications occurring in t under a balanced context, i.e.
the number of pairs (u,s) such that t = B〈us〉 for some balanced context B. For instance, |(λx.yy)(zz)|[= 3
and |(λx.λx′.yy)(zz)|[= 2. The following lemma can be see as a quantitative version of Lemma 15.

Lemma 20 (Relationship between sizes). Proof p. 30Let t ∈ Λ, k ∈ N and~x = (x1, . . . ,xk) suitable for t.

1. If t is sh[-normal then |t|[= inf{|π| | π B x1 : P1, . . . ,xk : Pk ` t : Q}.
2. If t is a value then |t|[= inf{|π| | π B x1 : P1, . . . ,xk : Pk ` t : Q}= 0.

10 Towards a Semantic Measure of the Execution Time in Call-by-Value lambda-Calculus

Thus, the balanced size of a sh[-normal form n equals the minimal size of the type derivation of n.
Proposition 21 (Exact number of β [

v-steps).Proof p. 31 Let t be a sh[-normalizable term and t0 be its sh[-normal form.
For every reduction sequence d : t→∗

sh[
t0 and every π B t and π0 B t0 such that |π|= inf{|π ′| | π ′ B t}

and |π0|= inf{|π ′0| | π ′0 B t0}, one has

leng
β [

v
(d) = |π|− |t0|[= |π|− |π0| . (2)

If moreover t0 is a value, then leng
β [

v
(d) = |π|.

Prop. 21 could seem slightly disappointinig: it allows us to know the exact number of β [
v-steps of a

sh[-normalizing reduction sequence from t only if we already know the sh[-normal form t0 of t (or the
minimal derivation of t0), which essentially means that we have to perform the reduction sequence in order
to know the exact number of its β [

v-steps. However, Prop. 21 says also that this limitation is circumvented
in the case t sh[-reduces to a value. Moreover, a notable and immediate consequence of Prop. 21 is:
Corollary 22 (Same number of β [

v-steps). Let t be a sh[-normalizable term and t0 be its sh[-normal form.
For all reduction sequences d : t→∗

sh[
t0 and d′ : t→∗

sh[
t0, leng

β [
v
(d) = leng

β [
v
(d′).

Even if sh[-reduction is weak, in the sense that it does not reduce under λ ’s, Cor. 22 is not obvious at
all, since the rewriting theory of sh[-reduction is not quite elegant, in particular it does not enjoy any form
of (quasi-)diamond property because of σ -reduction, as shown by the following example.
Example 23. Let t := (λy.y′)(∆(xI))I: one has u := (λy.y′)(∆(xI))

σ [
1
← t→

σ [
3
(λ z.(λy.y′)(zz))(xI)I =: s

and the only way to join this critical pair is by performing one σ [
3-step from u and two σ [

1-steps from s, so
that u→

σ [
3
(λ z.(λy.y′I)(zz))(xI)

σ [
1
← (λ z.(λy.y′)(zz)I)(xI)

σ [
1
← s. Since each σ [-step can create a new

βv-redex in a balanced context (as shown in Ex. 2), a priori there is no evidence that Cor. 22 should hold.
Cor. 22 allows us to define the following function lengβv

: Λ→ N∪{∞}

leng
β [

v
(t) =

{
leng

β [
v
(d) if there is a sh[-normalizing reduction sequence d from t;

∞ otherwise.

In other words, in λsh we can univocally associate with every term the number of β [
v-steps needed

to reach its sh[-normal form, if any (the infinite is associated with the non-sh[-normalizable terms). The
characterization of sh[-normalization given in Thm. 16 allows us to determine through semantic or logical
means if the value of leng

β [
v
(t) is a finite number or not.

Quantitatively, via Lemma 17 we can simplify the way to compute the number of β [
v-steps to reach the

sh[-normal form of a valuable (i.e. that reduce to a value) term t, using only a specific type derivation of t.
Theorem 24 (Exact number of β [

v-steps for valuables).Proof p. 32 Let t→∗
sh[

v∈Λv. For any~x = (x1, . . . ,xk) suitable
for t, and any π B x1 : [], . . . ,xk : [] ` t : [], one has leng

β [
v
(t) = |π|.

Prop. 18 and Thm. 24 provide a procedure to determine whether a term t sh[-normalizes to a value or
not and, in case, how many β [

v-steps are needed to reach its sh[-normal form (this number does not depend
on the reduction strategy according to Cor. 22), considering only the term t and without performing any
sh[-reduction step:

1. check if there is a derivation π with empty types, i.e. π B x1 : [], . . . ,xk : [] ` t : [];

2. if it is so, compute the size |π|.
Remind that, according to Cor. 4, any closed term either is not sh[-normalizable, or it sh[-normalizes to

a (closed) value. So, this procedure completely determines (qualitatively and quantitatively) the behavior
of closed terms with respect to sh[-reduction.

We do not have any evidence that this procedure is more efficient than effectively computing the
sh[-normal form by performing sh[-reduction steps.

G. Guerrieri 11

6 Conclusions

In order to get a truly semantic measure of the execution time in the shuffling calculus λsh, we should first
be able to give an upper bound to the number of β [

v-steps in a sh[-reduction looking only at the semantics
of terms. Therefore, we need to define a notion of size for the elements of the semantics of terms. The
most natural approach is the following. For every positive type P = [P1 (Q1, . . . ,Pk (Qk] ∈Mf(U)
(with k ∈ N), the size of P is |P|= k+∑

k
i=1(|Pi|+ |Qi|). So, the size of a positive type P is the number

of occurrences of (in P; in particular, |[]| = 0. For any ((P1, . . . ,Pn),Q) ∈Mf(U)k×Mf(U) (with
k ∈ N), the size of ((P1, . . . ,Pk),Q) is |((P1, . . . ,Pk),Q)|= |Q|+∑

k
i=1|Pi|.

The approach of [11, 12] relies on a crucial lemma to find an upper bound (and hence the exact
length) of the execution time: it relates the size of a type derivation to the size of its conclusion,
for a normal term/proof-net. In λsh this lemma should claim that “For every sh-normal form t, if
π B x1 : P1, . . . ,xk : Pk ` t : Q then |π| ≤ |((P1, . . . ,Pk),Q)|”. Unfortunately, in λsh this property is false!

Example 25. Let t := λ z.(λy.(λx.x)(yy))(zz), which is a sh-normal closed value. Consider the derivation

π :=

ax
z : [], y : [], x : [] ` x : []

λ
z : [], y : [] ` λx.x : [[]([]]

... π
[]
y

z : [], y : [[]([]] ` yy : []
@

z : [], y : [[]([]] ` (λx.x)(yy) : []
λ

z : [] ` λy.(λx.x)(yy) : [[[]([]]([]]

... π
[[]([]]
z

z : [[]([[]([]]] ` zz : [[]([]]
@

z : [[]([[]([]]] ` (λy.(λx.x)(yy))(zz) : []
λ` λ z.(λy.(λx.x)(yy))(zz) : [[[]([[]([]]]([]]

where, for any variable x and any positive type P,

π
P
x :=

ax
x : [[](P] ` x : [[](P]

ax
x : [] ` x : []

@
x : [[](P] ` xx : P

.

Then, |π|= 2+ |π []
y |+ |π [[]([]]

z |= 4 > 3 = |[[[]([[]([]]]([]]|.
We conjecture that in order to overcome this counterexample (and to successfully follow the method

of [11, 12] to get a purely semantic measure of the execution time) we should change the syntax and the
operational semantics of our calculus, always remaining in a call-by-value setting equivalent (from the
termination point of view) to λsh and the other ones studied in [2]. Intuitively, in Ex. 25 t contains two
applications — (λx.x)(yy) and (λy.(λx.x)(yy))(zz)— that are stuck β -redexes and are the source of two
“useless” instances of the rule @ in π . The idea for the new calculus is to “fire” a stuck β -redex (λx.t)u
without performing the substitution t{u/x}, but just creating an explicit substitution t[u/x] that removes
the application but “stores” the stuck β -redex.

Since λsh is compatible with Girard’s call-by-value translation of λ -terms into LL proof-nets, it could
seem surprising that some property holds in the general case of untyped LL proof-nets (as proven in [12])
but does not hold in the special case terms of λsh. Actually, there is no contradiction because LL proof-nets
in [12] always require an explicit constructor for dereliction, whereas λsh is outside of this fragment since
variables correspond to exponential axioms (which keep implicit the dereliction).

References
[1] Beniamino Accattoli (2015): Proof nets and the call-by-value λ -calculus. Theor. Comput. Sci. 606, pp. 2–24.

12 Towards a Semantic Measure of the Execution Time in Call-by-Value lambda-Calculus

[2] Beniamino Accattoli & Giulio Guerrieri (2016): Open Call-by-Value. In: APLAS 2016, pp. 206–226.
[3] Beniamino Accattoli & Luca Paolini (2012): Call-by-Value Solvability, revisited. In: FLOPS, pp. 4–16.
[4] Hendrik Pieter Barendregt (1984): The Lambda Calculus – Its Syntax and Semantics. 103, North-Holland.
[5] Erika De Benedetti & Simona Ronchi Della Rocca (2016): A type assignment for λ -calculus complete both

for FPTIME and strong normalization. Inf. Comput. 248, pp. 195–214.
[6] Alexis Bernadet & Stéphane Lengrand (2013): Non-idempotent intersection types and strong normalisation.

Logical Methods in Computer Science 9(4).
[7] Antonio Bucciarelli & Thomas Ehrhard (2001): On phase semantics and denotational semantics: the

exponentials. Ann. Pure Appl. Logic 109(3), pp. 205–241.
[8] Antonio Bucciarelli, Thomas Ehrhard & Giulio Manzonetto (2012): A relational semantics for parallelism

and non-determinism in a functional setting. Ann. Pure Appl. Logic 163(7), pp. 918–934.
[9] Antonio Bucciarelli, Delia Kesner & Daniel Ventura (2017): Non-idempotent intersection types for the

Lambda-Calculus. Logic Journal of the IGPL 25(4), pp. 431–464.
[10] Alberto Carraro & Giulio Guerrieri (2014): A Semantical and Operational Account of Call-by-Value Solvability.

In: FOSSACS 2014, pp. 103–118.
[11] Daniel de Carvalho (2009): Execution Time of lambda-Terms via Denotational Semantics and Intersection

Types. CoRR abs/0905.4251.
[12] Daniel de Carvalho, Michele Pagani & Lorenzo Tortora de Falco (2011): A semantic measure of the execution

time in linear logic. Theor. Comput. Sci. 412(20), pp. 1884–1902.
[13] Daniel de Carvalho & Lorenzo Tortora de Falco (2016): A semantic account of strong normalization in linear

logic. Inf. Comput. 248, pp. 104–129.
[14] Mario Coppo & Mariangiola Dezani-Ciancaglini (1978): A new type assignment for λ -terms. Arch. Math.

Log. 19(1), pp. 139–156.
[15] Mario Coppo & Mariangiola Dezani-Ciancaglini (1980): An extension of the basic functionality theory for the

λ -calculus. Notre Dame Journal of Formal Logic 21(4), pp. 685–693.
[16] Alejandro Dı́az-Caro, Giulio Manzonetto & Michele Pagani (2013): Call-by-Value Non-determinism in a

Linear Logic Type Discipline. In: LFCS 2013, Lecture Notes in Computer Science 7734, Springer, pp.
164–178.

[17] Thomas Ehrhard (2012): Collapsing non-idempotent intersection types. In: CSL, pp. 259–273.
[18] Thomas Ehrhard & Giulio Guerrieri (2016): The Bang Calculus: an untyped lambda-calculus generalizing

call-by-name and call-by-value. In: PPDP 2016, ACM, pp. 174–187.
[19] Philippa Gardner (1994): Discovering Needed Reductions Using Type Theory. In: TACS ’94, Lecture Notes in

Computer Science 789, Springer, pp. 555–574.
[20] Jean-Yves Girard (1987): Linear Logic. Theoretical Computer Science 50, pp. 1–102.
[21] Jean-Yves Girard (1988): Normal functors, power series and λ -calculus. Ann. Pure Appl. Logic 37(2), pp.

129–177.
[22] Benjamin Grégoire & Xavier Leroy (2002): A compiled implementation of strong reduction. In: ICFP ’02, pp.

235–246.
[23] Giulio Guerrieri (2015): Head reduction and normalization in a call-by-value lambda-calculus. In: WPTE

2015, pp. 3–17.
[24] Giulio Guerrieri, Luca Paolini & Simona Ronchi Della Rocca (2015): Standardization of a Call-By-Value

Lambda-Calculus. In: TLCA 2015, pp. 211–225.
[25] Giulio Guerrieri, Luca Paolini & Simona Ronchi Della Rocca (2017): Standardization and Conservativity of a

Refined Call-by-Value lambda-Calculus. Logical Methods in Computer Science 13(4).
[26] N. D. Jones, C. K. Gomard & P. Sestoft (1993): Partial Evaluation and Automatic Program Generation.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

G. Guerrieri 13

[27] Delia Kesner & Daniel Ventura (2015): A Resource Aware Computational Interpretation for Herbelin’s Syntax.
In: ICTAC 2015, Lecture Notes in Computer Science 9399, Springer, pp. 388–403.

[28] Delia Kesner & Pierre Vial (2017): Types as Resources for Classical Natural Deduction. In: FSCD 2017,
LIPIcs 84, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 24:1–24:17.

[29] A. J. Kfoury (2000): A linearization of the Lambda-calculus and consequences. J. Log. Comput. 10(3), pp.
411–436.

[30] Jean-Louis Krivine (1993): Lambda-calculus, types and models. Ellis Horwood series, Masson.
[31] Damiano Mazza, Luc Pellissier & Pierre Vial (2018): Polyadic Approximations, Fibrations and Intersection

Types. Proceedings of the ACM on Programming Languages 2(POPL:6).
[32] Peter Møller Neergaard & Harry G. Mairson (2004): Types, potency, and idempotency: why nonlinearity and

amnesia make a type system work. In: ICFP 2004, ACM, pp. 138–149.
[33] Luca Paolini (2002): Call-by-Value Separability and Computability. In: ICTCS, pp. 74–89.
[34] Luca Paolini, Mauro Piccolo & Simona Ronchi Della Rocca (2017): Essential and relational models. Mathe-

matical Structures in Computer Science 27(5), pp. 626–650.
[35] Gordon D. Plotkin (1975): Call-by-Name, Call-by-Value and the lambda-Calculus. Theor. Comput. Sci. 1(2),

pp. 125–159.
[36] Garrel Pottinger (1980): A type assignment for the strongly normalizable λ -terms. In: To HB Curry: essays

on combinatory logic, lambda calculus and formalism, Academic Press, pp. 561–577.
[37] Laurent Regnier (1992): Lambda-calcul et réseaux. PhD thesis, Univ. Paris VII.
[38] Laurent Regnier (1994): Une équivalence sur les lambda-termes. TCS 2(126), pp. 281–292.
[39] Simona Ronchi Della Rocca & Luca Paolini (2004): The Parametric λ -Calculus – A Metamodel for Computa-

tion. Springer.

14 Towards a Semantic Measure of the Execution Time in Call-by-Value lambda-Calculus

A Technical appendix: omitted proofs

The enumeration of propositions, theorems, lemmas already stated in the body of the article is unchanged

A.1 Preliminaries and notations

The set of λ -terms is denoted by Λ. We set I := λx.x and ∆ := λx.xx. Let→r⊆ Λ×Λ.

• The reflexive-transitive closure of→r is denoted by→∗r . The r-equivalence 'r is the reflexive-
transitive and symmetric closure of→r.

• Let t be a term: t is r-normal if there is no term u such that t→r u; t is r-normalizable if there is
a r-normal term u such that t →∗r u, and we then say that u is a r-normal form of t; t is strongly
r-normalizable if it does not exist an infinite sequence of r-reductions starting from t. Finally,→r is
strongly normalizing if every u ∈ Λ is strongly r-normalizable.

• →r is confluent if ∗r← ·→∗r ⊆→∗r · ∗r←. From confluence it follows that: t 'r u iff t→∗r s ∗r← u for
some term s; and any r-normalizable term has a unique r-normal form.

A.2 Omitted proofs and remarks of Section 2

Proposition 3 (Syntactic characterization on sh[-normal forms). Let t be a term:See p. 5

• t is sh[-normal iff t ∈ Λn;

• t is sh[-normal and is neither a value nor a β -redex iff t ∈ Λa.

Proof.

⇒: We prove the left-to-right direction of both statements simultaneously by induction on t ∈ Λ.
If t is a value then t ∈ Λn by definition.
Otherwise t = us for some terms u,s. By simple inspection of the rules of→sh[, one can deduce
that u and s sh[-normal, u is not a β -redex (otherwise t would be a σ1-redex) and if u is of the shape
λx.u′ then u′ is sh[-normal; furthermore t is neither a βv- nor a σ3-redex, hence there are only three
possibilities:

1. u is not a value: by induction hypothesis u ∈ Λa and s ∈ Λn, therefore t ∈ Λa.
2. u is not an abstraction and s is not a β -redex: either u is a variable or u ∈ Λa by induction

hypothesis (since u is neither a value nor a β -redex). If s is not a value then s∈Λa by induction
hypothesis, so t ∈ Λa because t is either of the form xa either of the form a′a (with Λa ⊆ Λn).
Otherwise s is a value, thus t ∈ Λa since t is either of the form xv either of the form av (with
Λv ⊆ Λn).

3. s is neither a value nor a β -redex: by induction hypothesis s ∈Λa; if u is a variable then t ∈Λa

because t is of the form xa; if u is an abstraction then u = λx.u′ where u′ is sh[-normal, so
u′ ∈ Λn by induction hypothesis and thus t ∈ Λn since t is of the form (λx.n)a; finally, if u
is not a value then u ∈ Λa by induction hypothesis, hence t ∈ Λa because t is of the form a′a
(with Λa ⊆ Λn).

⇐: The second statement follows from the first one, since Λa ⊆ Λn and if t ∈ Λa then t is neither a
value nor a β -redex. We prove the first statement by induction on t ∈ Λn.
If t is a value then t is sh[-normal (no rule of→sh[can be applied to t).

G. Guerrieri 15

If t = xv for some variable x and value v then x and v are sh[-normal and xv is not a sh-redex;
therefore t is sh[-normal.
If t = xa for some variable x and term a ∈ Λa ⊆ Λn, then x and (by induction hypothesis) a are
sh[-normal, moreover a is not a β -redex (so t is not a σ3-redex), thus t is sh[-normal.
If t = an or t = (λx.n)a for some a ∈Λa ⊆Λn and n ∈Λn, then a and n are sh[-normal by induction
hypothesis; moreover a is neither a value nor a β -redex, thus t is not a sh-redex; therefore t is
sh[-normal.

Corollary 4 (Syntactic characterization of closed sh[-normal forms). Let t be a closed term: See p. 5t is sh[-
normal iff t is a value iff t = λx.u for some term u with fv(u)⊆ {x}.

Proof. By Prop. 3 and since t is closed, t is sh[-normal iff t is a value (all terms in Λa are open). Since t is
closed and variables are open, t is a value iff t = λx.u for some u with fv(u)⊆ {x}.

A.3 Omitted proofs and remarks of Section 3

Lemma 26 (Free variables in environment). If the judgment Γ ` t : P is derivable then fv(t)⊆ dom(Γ)
and if moreover x ∈ dom(Γ)r fv(t) then Γ(x) = [].

Proof. By straightforward induction on t ∈ Λ.

Remark 27. If t is an application and π B t, then |π|> 0.
Lemma 6 (Judgment decomposition for values). Let See p. 6v ∈ Λv, ∆ be an environment, and P1, . . . ,Pp be
positive types (for some p ∈ N). There is a derivation π B ∆ ` v : P1]·· ·]Pp iff for all 1≤ i≤ p there
are an environment ∆i and a derivation πi B ∆i ` v : Pi such that dom(∆1) = . . .= dom(∆p) = dom(∆)
and ∆ =

⊎p
i=1 ∆i. Moreover, |π|= ∑

p
i=1|πi|.

Proof. Both directions are proved by cases, depending on whether v is a variable or an abstraction.
⇒: If v = y, then the last rule of π is ax and thus ∆ = x1 : [], . . . ,xm : [],y : P1] ·· ·]Pp. So, for all

1≤ i≤ p, there are an environment ∆i = x1 : [], . . . ,xm : [],y : Pi and a derivation

πi =
ax

∆i ` v : Pi

with
⊎p

i=1 ∆i = ∆ and |π|= 0 = ∑
p
i=1|πi|.

If v = λx.t then the last rule of π is λ , so there are n ∈ N, positive types Q1,Q′1, . . . ,Qn,Q′n,
environments Γ1, . . . ,Γn such that ∆ =

⊎n
j=1Γj,

⊎p
i=1Pi = [Q1(Q′1, . . . ,Qn(Q′n] and

π =

...π ′1
Γ1,x : Q1 ` t : Q′1 n. . .

...π ′n
Γn,x : Qn ` t : Q′n

λ
∆ ` v : [Q1 (Q′1, . . . ,Qn (Q′n]

Thus, up to renumbering the Qi’s and Q′i’s, there are environments ∆1, . . . ,∆p, derivations π1, . . . ,πp

and integers k1 = 1≤ k2 ≤ ·· · ≤ kp ≤ kp+1 = p, such that, for all 1≤ i≤ p, Pi =
⊎ki+1

j=ki
[Q j (Q′j]

and

πi =

...π ′ki

Γki ,x : Qki ` t : Q′ki
ki+1−ki. . .

...π ′ki+1

Γki+1 ,x : Qki+1 ` t : Q′ki+1
λ

∆i ` v : Pi

with ∆i =
ki+1⊎
j=ki

Γ j

16 Towards a Semantic Measure of the Execution Time in Call-by-Value lambda-Calculus

where |πi|= ∑
ki+1
j=ki
|π ′j|, hence |π|= ∑

n
j=1|π ′j|= ∑

p
i=1 ∑

ki+1
j=ki
|π ′j|= ∑

n
i=1|πi|.

⇐: If v = y then, for all 1 ≤ i ≤ p, the last rule of πi is ax, so ∆i = x1 : [], . . . ,xn : [],y : Pi and |πi| = 0.
Since ∆ =

⊎p
i=1 ∆i = x1 : [], . . . ,xn : [],y :

⊎p
i=1 Pi, there is a derivation

π = ax
∆ ` v :

⊎p
i=1 Pi

where |π|= 0 = ∑
p
i=1|πi|.

If v = λx.t then, for all 1 ≤ i ≤ p, the last rule of πi is λ , so there are ki ∈ N, environments
∆i1, . . . ,∆iki , positive types Qi1,Q′i1, . . . ,Qiki ,Q

′
iki

and derivations πi1, . . . ,πiki such that Pi =
⊎ki

j=1[Qi j (

Q′i j], ∆i =
⊎ki

j=1 ∆i j and

πi =

...πi1

∆i1,x : Qi1 ` t : Q′i1
ki. . .

...πiki

∆iki ,x : Qiki ` t : Q′iki
λ

∆i ` v : Pi

where |πi|=
ki

∑
j=1
|πi j|.

Since ∆ =
⊎p

i=1 ∆i and
⊎p

i=1 Pi =
⊎p

i=1
⊎ki

j=1[Qi j (Q′i j], there is a derivation π =

...π11

∆11,x : Q11` t : Q′11
k1. . .

...π1k1

∆1k1 ,x : Q1k1 ` t : Q′1k1
p. . .

...πp1

∆p1,x : Qp1` t : Q′p1
kp. . .

...πpkp

∆pkp ,x : Qpkp ` t : Q′pkp
λ

∆ ` v :
⊎p

i=1 Pi

where |π|= ∑
p
i=1 ∑

ki
j=1|πi j|= ∑

p
i=1|πi| because |πi|= ∑

ki
j=1|πi j|.

Corollary 28 (Minimal derivation for values). For any v ∈ Λv and any pairwise distinct variables
x1, . . . ,xn with fv(v)⊆ {x1, . . . ,xn}, there is π B x1 : [], . . . ,xn : [] ` v : [] with |π|= 0.

Proof. Apply the right-to-left direction of Lemma 6 taking p = 0.

Lemma 29 (Weakening). Let t ∈ Λ and Γ be an environment such that x /∈ dom(Γ).

1. Adding weakening: If π B Γ ` t : P then there is π ′ B Γ,x : [] ` t : P such that |π|= |π ′|.

2. Removing weakening: If π ′ B Γ,x : [] ` t : P and x /∈ fv(t), then there exists π B Γ ` t : P such that
|π|= |π ′|.

Proof. Both points are proved by straightforward induction on t ∈ Λ.

Lemma 29 means that, given two judgments Γ ` t : P and ∆ ` u : Q, we can suppose without loss
of generality that dom(Γ) = dom(∆). In Lemma 29.1 the hypothesis x /∈ dom(Γ) implies x /∈ fv(t), by
Lemma 26. Lemma 29.2 — a weakened converse of Lemma 29.1 — fails when x ∈ fv(t), indeed the
judgment x : [] ` x : [] is derivable but the judgment ` x : [] is not.

Lemma 7 (Substitution). LetSee p. 6 t ∈ Λ and v ∈ Λv. If π B Γ,x : P ` t : Q and π ′ B ∆ ` v : P where dom(Γ) =
dom(∆), then there exists π ′′ B Γ]∆ ` t{v/x} : Q such that |π ′′|= |π|+ |π ′|.

G. Guerrieri 17

Proof. By induction on t ∈ Λ.
If t = x, then t{v/x}= v and the last rule of π is ax with P = Q and Γ = y1 : [], . . . ,yn : [] (yi 6= x for

all 1≤ i≤ n), whence Γ]∆ = ∆ and |π|= 0. We conclude by setting π ′′ = π ′.
If t = y 6= x, then t{v/x} = y and the last rule of π is ax with P = [] (since x 6= y), whence |π| = 0

and Γ = z1 : [], . . . ,zk : [],y : Q. By Lemma 6, from ∆ ` v : [] it follows that |π ′|= 0 and (since dom(Γ) =
dom(∆)) ∆ = z1 : [], . . . ,zk : [],y : [], therefore Γ]∆ = Γ. So, the derivation

π
′′ = ax

Γ ` y : Q

has conclusion Γ]∆ ` t{v/x} : Q and is such that |π ′′|= 0 = |π|+ |π ′|.
If t = us, then t{v/x}= u{v/x}s{v/x} and

π =

...π1

Γ1,x : P1 ` u : [Q2 (Q]

...π2

Γ2,x : P2 ` s : Q2
@

Γ,x : P ` t : Q

with |π|= |π1|+ |π2|+1, Γ = Γ1]Γ2 and P = P1]P2. According to Lemma 6, there are environments
∆1,∆2 and derivations π ′1 B ∆1 ` v : P1 and π ′2 B ∆2 ` v : P2 such that ∆ = ∆1]∆2 and |π ′|= |π ′1|+ |π ′2|.
By induction hypothesis, there are derivations π ′′1 and π ′′2 with conclusion Γ1]∆1 ` u{v/x} : [Q2 (Q]
and Γ2]∆2 ` s{v/x} : Q2, respectively, such that |π ′′1 | = |π1|+ |π ′1| and |π ′′2 | = |π2|+ |π ′2|. As Γ]∆ =
Γ1]∆1]Γ2]∆2, there is a derivation

π
′′ =

...π ′′1
Γ1]∆1 ` u{v/x} : [Q2 (Q]

...π ′′2
Γ2]∆2 ` s{v/x} : Q2

@
Γ]∆ ` t{v/x} : Q

where |π ′′|= |π ′′1 |+ |π ′′2 |+1 = |π1|+ |π ′1|+ |π2|+ |π ′2|+1 = |π|+ |π ′|+1.
If t = λy.u, then we can suppose without loss of generality that y /∈ fv(v)∪{x}∪dom(∆), therefore

t{v/x}= λy.u{v/x} and there are n∈N, environments Γ1, . . . ,Γn, positive types P1,Q1,Q′1, . . . ,Pn,Qn,Q′n
such that Γ =

⊎n
i=1 Γi, P =

⊎n
i=1 Pi, Q =

⊎n
i=1[Qi (Q′i] and

π =

...π1

Γ1,y : Q1,x : P1 ` u : Q′1 n. . .

...πn

Γn,y : Qn,x : Pn ` u : Q′n
λ

Γ,x : P ` t : Q

with |π|= ∑
n
i=1|πi|. According to Lemma 29.1, since y /∈ dom(∆), there is a derivation π ′0 with conclusion

∆,y : [] ` v : P such that |π ′0|= |π ′|. By applying Lemma 6 to π ′0 (as P =
⊎n

i=1 Pi), for all 1≤ i≤ n there
are an environment ∆i and a derivation π ′i B ∆i,y : [] ` v : Pi such that ∆ =

⊎n
i=1 ∆i and |π ′0|= ∑

n
i=1|π ′i |. By

induction hypothesis, for all 1 ≤ i ≤ n, there is a derivation π ′′i B Γi]∆i,y : Qi ` u{v/x} : Q′i such that
|π ′′i |= |πi|+ |π ′i |. Since Γ]∆ =

⊎n
i=1 Γi]∆i, there is a derivation

π
′′ =

...π ′′1
Γ1]∆1,y : Q1 ` u{v/x} : Q′1 n. . .

...π ′′n
Γn]∆n,y : Qn ` u{v/x} : Q′n

λ
Γ]∆ ` t{v/x} : Q

where |π ′′|= ∑
n
i=1|π ′′i |= ∑

n
i=1|πi|+∑

n
i=1|π ′i |= |π|+ |π ′0|= |π|+ |π ′|.

18 Towards a Semantic Measure of the Execution Time in Call-by-Value lambda-Calculus

Proposition 8 (Quantitative balanced subject reduction). LetSee p. 6 t, t ′ ∈ Λ and π B Γ ` t : Q.

1. Shrinkage under β [
v-step: If t→

β [
v

t ′ then |π|> 0 and there exists a derivation π ′ with conclusion
Γ ` t ′ : Q such that |π ′|= |π|−1.

2. Size invariance under σ [-step: If t→
σ [t ′ then |π|> 0 and there exists a derivation π ′ with conclusion

Γ ` t ′ : Q such that |π ′|= |π|.

Proof. 1. Since t is not βv-normal, t is not a value and thus |π| > 0 according to Remark 27. The
proof that there exists a derivation π ′ B Γ ` t ′ : Q such that |π ′|= |π|−1 is by induction on t ∈ Λ.
Cases:
• Step at the root, i.e. t = (λx.u)v 7→βv u{v/x}= t ′: then,

π =

...π1

Γ1,x : P ` u : Q
λ

Γ1 ` λx.u : [P (Q]

...π2

Γ2 ` v : P
@

Γ ` t : Q

where dom(Γ) = dom(Γ1) = dom(Γ2), Γ = Γ1]Γ2 and |π|= |π1|+ |π2|+1. By the substi-
tution lemma (Lemma 7), there exists a derivation π ′ B Γ ` t ′ : Q such that |π ′|= |π1|+ |π2|=
|π|−1.
• Application Left, i.e. t = us→

β [
v

u′s = t ′ with u→
β [

v
u′: then,

π =

...π1

Γ1 ` u : [P (Q]

...π2

Γ2 ` s : P
@

Γ ` t : Q

where dom(Γ) = dom(Γ1) = dom(Γ2), Γ = Γ1]Γ2 and |π|= |π1|+ |π2|+1. By induction
hypothesis, there exists a derivation π ′1 B Γ1 ` u′ : [P(Q] such that |π ′1|= |π1|−1. Therefore,
there exists a derivation

π
′ =

...π ′1
Γ1 ` u′ : [P (Q]

...π2

Γ2 ` s : P
@

Γ ` t ′ : Q

where |π ′|= |π ′1|+ |π2|+1 = |π1|+ |π2|+1−1 = |π|−1.
• Application Right, i.e. t = us→

β [
v

us′ = t ′ with s→
β [

v
s′: then,

π =

...π1

Γ1 ` u : [P (Q]

...π2

Γ2 ` s : P
@

Γ ` t : Q

where dom(Γ) = dom(Γ1) = dom(Γ2), Γ = Γ1]Γ2 and |π|= |π1|+ |π2|+1. By induction
hypothesis, there is a derivation π ′2 B Γ2 ` u′ : Q such that |π ′2|= |π2|−1. Therefore, there
exists a derivation

π
′ =

...π1

Γ1 ` u : [P (Q]

...π ′2
Γ2 ` s′ : P

@
Γ ` t ′ : Q

where |π ′|= |π1|+ |π ′2|+1 = |π1|+ |π2|+1−1 = |π|−1.

G. Guerrieri 19

• Step inside a β -redex, i.e. t = (λx.u)s→
β [

v
(λx.u′)s = t ′ with u→

β [
v

u′: then,

π =

...π1

Γ1,x : P ` u : Q
λ

Γ1 ` λx.u : [P (Q]

...π2

Γ2 ` s : P
@

Γ ` t : Q

where dom(Γ)= dom(Γ1)= dom(Γ2), Γ=Γ1]Γ2 and |π|= |π1|+|π2|+1> 0. By induction
hypothesis, there exists a derivation π ′1 B Γ1 ` u′ : [P(Q] such that |π ′1|= |π1|−1. Therefore,
there is a derivation

π
′ =

...π ′1
Γ1,x : P ` u′ : Q

λ
Γ1 ` λx.u′ : [P (Q]

...π2

Γ2 ` s : P
@

Γ ` t ′ : Q

where |π ′|= |π ′1|+ |π2|+1 = |π1|+ |π2|+1−1 = |π|−1.

2. Since t is not σ -normal, t is not a value and thus |π|> 0 according to Remark 27. The proof that
there exists a derivation π ′ with conclusion Γ ` t ′ : Q such that |π ′|= |π| is by induction con t ∈ Λ.
Cases:
• Step at the root: there are two sub-cases:

– t = (λx.u)sr 7→σ1 (λx.ur)s = t ′ with x /∈ fv(r): then,

π =

...π1

Γ1,x : P ` u : [Q′(Q]
λ

Γ1 ` λx.u : [P ([Q′(Q]]

...π2

Γ2 ` s : P
@

Γ1]Γ2 ` t : [Q′(Q]

...π3

Γ3 ` r : Q′
@

Γ ` t : Q

with dom(Γ) = dom(Γ1) = dom(Γ2) = dom(Γ3), Γ = Γ1] Γ2] Γ3 and |π| = |π1|+
|π2|+ |π3|+ 2. According to Lemma 26 and Lemma 29.2, we can suppose without
loss of generality that x /∈ dom(Γ3), since x /∈ fv(r). By Lemma 29.1, there exists
π ′3 B Γ3,x : [] ` r : Q′ such that |π ′3|= |π3|. Therefore, there is a derivation

π
′ =

...π1

Γ1,x : P ` u : [Q′(Q]

...π ′3
Γ3,x : [] ` r : Q′

@
Γ1]Γ3,x : P ` ur : Q

λ
Γ1]Γ3 ` λx.ur : [P (Q]

...π2

Γ2 ` s : P
@

Γ ` t ′ : Q

where |π ′|= |π1|+ |π ′3|+1+ |π2|+1 = |π1|+ |π3|+1+ |π2|+1 = |π|.
– t = v((λx.u)s) 7→σ3 (λx.vu)s = t ′ with x /∈ fv(v): then,

π = ...π1

Γ1 ` v : [Q′(Q]

...π2

Γ2,x : P ` u : Q′
λ

Γ2 ` λx.u : [P (Q′]

...π3

Γ3 ` s : P
@

Γ2]Γ3 ` (λx.u)s : Q′
@

Γ ` t : Q

20 Towards a Semantic Measure of the Execution Time in Call-by-Value lambda-Calculus

with dom(Γ) = dom(Γ1) = dom(Γ2) = dom(Γ3), Γ = Γ1] Γ2] Γ3 and |π| = |π1|+
|π2|+ |π3|+ 2. According to Lemma 26 and Lemma 29.2, we can suppose without
loss of generality that x /∈ dom(Γ1), since x /∈ fv(v). By Lemma 29.1, there exists
π ′1 B Γ1,x : [] ` v : [Q′(Q] such that |π ′1|= |π1|. So, there is a derivation

π
′ =

...π ′1
Γ1,x : [] ` v : [Q′(Q]

...π3

Γ3,x : P ` u : Q′
@

Γ1]Γ3,x : P ` vu : Q
λ

Γ1]Γ3 ` λx.ur : [P (Q]

...π2

Γ2 ` s : P
@

Γ ` t ′ : Q

where |π ′|= |π ′1|+ |π3|+1+ |π2|+1 = |π1|+ |π3|+1+ |π2|+1 = |π|.
• Application Left, i.e. t = us→

σ [u′s = t ′ with u→
σ [u′: then,

π =

...π1

Γ1 ` u : [P (Q]

...π2

Γ2 ` s : P
@

Γ ` t : Q

where dom(Γ) = dom(Γ1) = dom(Γ2), Γ = Γ1]Γ2 and |π|= |π1|+ |π2|+1. By induction
hypothesis, there exists a derivation π ′1 B Γ1 ` u′ : [P (Q] such that |π ′1|= |π1|. Therefore,
there exists a derivation

π
′ =

...π ′1
Γ1 ` u′ : [P (Q]

...π2

Γ2 ` s : P
@

Γ ` t ′ : Q

where |π ′|= |π ′1|+ |π2|+1 = |π1|+ |π2|+1 = |π|.
• Application Right, i.e. t = us→

σ [us′ = t ′ with s→
σ [s′: then,

π =

...π1

Γ1 ` u : [P (Q]

...π2

Γ2 ` s : P
@

Γ ` t : Q

where dom(Γ) = dom(Γ1) = dom(Γ2), Γ = Γ1]Γ2 and |π|= |π1|+ |π2|+1. By induction
hypothesis, there exists a derivation π ′2 B Γ2 ` u′ : Q such that |π ′2|= |π2|. Therefore, there
exists a derivation

π
′ =

...π1

Γ1 ` u : [P (Q]

...π ′2
Γ2 ` s′ : P

@
Γ ` t ′ : Q

where |π ′|= |π1|+ |π ′2|+1 = |π1|+ |π2|+1 = |π|.
• Step inside a β -redex, i.e. t = (λx.u)s→

σ [(λx.u′)s = t ′ with u→
σ [u′: then,

π =

...π1

Γ1,x : P ` u : Q
λ

Γ1 ` λx.u : [P (Q]

...π2

Γ2 ` s : P
@

Γ ` t : Q

G. Guerrieri 21

where dom(Γ) = dom(Γ1) = dom(Γ2), Γ = Γ1]Γ2 and |π|= |π1|+ |π2|+1. By induction
hypothesis, there exists a derivation π ′1 B Γ1 ` u′ : [P (Q] such that |π ′1|= |π1|. Therefore,
there is a derivation

π
′ =

...π ′1
Γ1,x : P ` u′ : Q

λ
Γ1 ` λx.u′ : [P (Q]

...π2

Γ2 ` s : P
@

Γ ` t ′ : Q

where |π ′|= |π ′1|+ |π2|+1 = |π1|+ |π2|+1 = |π|.

Lemma 9 (Abstraction commutation). See p. 7

1. Abstraction vs. abstraction: Let n ∈ N. If π B ∆ ` λy.(λx.t)v :
⊎n

i=1[P
′
i (Pi] and y /∈ fv(v), then

there is π ′ B ∆ ` (λx.λy.t)v :
⊎n

i=1[P
′
i (Pi] such that |π ′|= |π|+1−n.

2. Application vs. abstraction: If π B ∆ ` ((λx.t)v)((λx.u)v) : P then there exists a derivation π ′ B
∆ ` (λx.tu)v : P such that |π ′|= |π|−1.

Proof. 1. We can suppose without loss of generality that x,y /∈ dom(∆). Therefore, there are deriva-
tions π1

1 ,π
2
1 , . . . ,π

1
n ,π

2
n , environments Γ1,∆1, . . . ,Γn,∆n (with dom(∆) = dom(Γi) = dom(∆i) for

all 1≤ i≤ n) and positive types Qi, . . . ,Qn such that

π =

...π1
i

Γi,y : P′i ,x : Qi ` t : Pi
λ

Γi,y : P′i ` λx.t : [Qi (Pi]

...π2
i

∆i ` v : Qi
@

Γi]∆i,y : P′i ` (λx.t)v : Pi (for all 1≤ i≤ n)
λ

∆ ` λy.(λx.t)v :
⊎n

i=1[P
′
i (Pi]

where ∆ =
⊎n

i=1 Γi]∆i and |π| = ∑
n
i=1(|π1

i |+ |π2
i |+ 1) = n+∑

n
i=1(|π1

i |+ |π2
i |). According to

Lemma 6, there exists π2 B ∆′ ` v :
⊎n

i=1 Qi with ∆′ =
⊎n

i=1 ∆i (whence ∆ = ∆′]
⊎n

i=1 Γi) and
|π2|= ∑

n
i=1|π2

i |, thus one has

π
′ =

...π1
i

Γi,y : P′i ,x : Qi ` t : Pi (for all 1≤ i≤ n)
λ⊎n

i=1 Γi,x :
⊎n

i=1 Qi ` λy.t :
⊎n

i=1[P
′
i (Pi]

λ⊎n
i=1 Γi ` λx.λy.t : [

⊎n
i=1 Qi (

⊎n
i=n[P

′
i (Pi]]

...π2

∆′ ` v :
⊎n

i=1 Qi
@

∆ ` (λx.λy.t)v :
⊎n

i=n[P
′
i (Pi]

where |π ′|= |π2|+1+∑
n
i=1|π1

i |= 1+∑
n
i=1(|π1

i |+ |π2
i |) = |π|+1−n.

2. We can suppose without loss of generality that x /∈ dom(∆). Therefore, there are environments
∆1,∆2,∆3,∆4, positive types Q,P1,P2 and derivations π1,π2,π3,π4 such that

π =

...π3

∆3,x : P1 ` t : [Q (P]
λ

∆3 ` λx.u : [P1 ([Q (P]]

...π1

∆1 ` v : P1
@

∆3]∆1 ` (λx.t)v : [Q (P]

...π4

∆4,x : P2 ` u : Q
λ

∆4 ` λx.u : [P2 (Q]

...π2

∆2 ` v : P2
@

∆4]∆2 ` (λx.u)v : Q
@

∆ ` ((λx.t)v)((λx.u)v) : P

22 Towards a Semantic Measure of the Execution Time in Call-by-Value lambda-Calculus

where ∆ = ∆1]∆2]∆3]∆4 and |π|= |π1|+ |π2|+ |π3|+ |π4|+3. According to Lemma 6, there
is π0 B ∆1]∆2 ` v : P1]P2 such that |π0|= |π1|+ |π2|, thus there exists

π
′ =

...π3

∆3,x : P1 ` t : [Q (P]

...π4

∆4,x : P2 ` u : Q
@

∆3]∆4,x : P1]P2 ` tu : P
λ

∆3]∆4 ` λx.tu : [P1]P2 (P]

...π0

∆1]∆2 ` v : P1]P2
@

∆ ` (λx.tu)v : P

where |π ′|= |π0|+ |π3|+ |π4|+2 = |π1|+ |π2|+ |π3|+ |π4|+2 = |π|−1.

Proposition 10 (Quantitative balanced subject expansion).See p. 7 Let t, t ′ ∈ Λ and π ′ B Γ ` t ′ : Q.

1. Enlargement under anti-β [
v-step: If t→

β [
v

t ′ then there is π B Γ ` t : Q with |π|= |π ′|+1.

2. Size invariance under anti-σ [-step: If t→
σ [t ′ then |π ′|> 0 and there exists π B Γ ` t : Q such that

|π|= |π ′|.

Proof. 1. By induction on t ∈ Λ. Cases:

• Step at the root, i.e. t = (λx.u)v 7→βv u{v/x}= t ′. We proceed by induction on u ∈ Λ.
– If u = x, then t ′ = v and π ′ B Γ ` v : Q, while t = (λx.x)v. Setting Γ0 = x1 : [], . . . ,xn : []

where dom(Γ0) = dom(Γ), we have the derivation

π =

ax
Γ0,x : Q ` x : Q

λ
Γ0 ` λx.x : [Q (Q]

...π ′

Γ ` v : Q
@

Γ ` t : Q

with |π|= |π ′|+1.
– If u = y 6= x (we can suppose without loss of generality that x /∈ fv(v)), then t ′ = y and

π ′ = ax
Γ0,y : Q ` y : Q with Γ = Γ0,y : Q and Γ0 = x1 : [], . . . ,xn : [] (where dom(Γ0) =

fv(v)r{y}), while t = (λx.y)v. Notice that |π ′|= 0. We have:

π =

ax
Γ0,x : [],y : Q ` y : Q

λ
Γ0,y : Q ` λx.y : [[](Q]

λ
Γ0,y : [] ` v : []

@
Γ ` t : Q

(notice that the rule λ in π has 0 premises) with |π|= 1 = |π ′|+1.
– If u = λy.s (we can suppose without loss of generality that y /∈ fv(v) ∪ {x}), then

t ′ = λy.s{v/x} and t = (λx.λy.s)v. As π ′ B Γ ` t ′ : Q, there are n ∈ N, positive types
P1,Q1, . . . ,Pn,Qn, environments Γ1, . . . ,Γn with dom(Γ) = dom(Γ1) = · · · = dom(Γn),
and derivations π ′1, . . . ,π

′
n such that Q = [P1 (Q1, . . . ,Pn (Qn] and

π
′ =

...π ′1
Γ1,y : P1 ` s{v/x} : Q1

n∈N. . .

...π ′n
Γn,y : Pn ` s{v/x} : Qn

λ
Γ ` t ′ : Q

G. Guerrieri 23

where Γ =
⊎n

i=1 Γi and |π ′|= ∑
n
i=1|π ′i |. Let 1≤ i≤ n: since (λx.s)v 7→βv s{v/x}, then by

i.h. there is πi B Γi,y : Pi ` (λx.s)v : Qi with |πi|= |π ′i |+1. So, we set

π
′′ =

...π1

Γ1,y : P1 ` ({s/x})v : Q1
n∈N. . .

...πn

Γn,y : Pn ` (λx.s)v : Qn
λ

Γ ` λy.(λx.s)v : Q

where |π ′′| = ∑
n
i=1|πi| = ∑

n
i=1|π ′i |+ n = |π ′|+ n. According to Lemma 9.1, there is a

derivation π B Γ ` t : Q where |π|= |π ′′|−n+1 = |π ′|+1.
– Finally, if u = sr, then t ′ = s{v/x}r{v/x} and t = (λx.sr)v. Since π ′ B Γ ` t ′ : Q, there

are derivations π ′1 and π ′2, a positive type P, environments Γ1 and Γ2 (where dom(Γ) =
dom(Γ1) = dom(Γ2) and Γ = Γ1]Γ2) such that

π
′ =

...π ′1
Γ1 ` s{v/x} : [P (Q]

...π ′2
Γ2 ` r{v/x} : P

@
Γ ` t ′ : Q

where |π ′|= |π ′1|+ |π ′2|+1. Since (λx.s)v 7→βv s{v/x} and (λx.r)v 7→βv r{v/x}, then by
i.h. there are π1 B Γ1 ` (λx.s)v : [P (Q] and π2 B Γ2 ` (λx.r)v : P with |π1|= |π ′1|+1
and |π2|= |π ′2|+1. So, we set

π
′′ =

...π1

Γ1 ` (λx.s)v : [P (Q]

...π2

Γ2 ` (λx.r)v : P
@

Γ ` ((λx.s)v)((λx.r)v) : Q

where |π ′′|= |π1|+ |π2|+1 = |π ′1|+ |π ′2|+3 = |π ′|+2. According to Lemma 9.2, there
is a derivation π B Γ ` t : Q with |π|= |π ′′|−1 = |π ′|+1.

• Application Left, i.e. t = us→
β [

v
u′s = t ′ with u→

β [
v

u′: then,

π
′ =

...π ′1
Γ1 ` u′ : [P (Q]

...π2

Γ2 ` s : P
@

Γ ` t ′ : Q

where dom(Γ) = dom(Γ1) = dom(Γ2), Γ = Γ1]Γ2 and |π ′|= |π ′1|+ |π2|+1. By induction
hypothesis, there is π1 B Γ ` u : [P (Q] with |π1|= |π ′1|+1. So, there is

π =

...π1

Γ1 ` u : [P (Q]

...π2

Γ2 ` s : P
@

Γ ` t : Q

where |π|= |π1|+ |π2|+1 = |π ′1|+1+ |π2|+1 = |π ′|+1.
• Application Right, i.e. t = us→

β [
v

us′ = t ′ with s→
β [

v
s′: then,

π
′ =

...π1

Γ1 ` u : [P (Q]

...π ′2
Γ2 ` s′ : P

@
Γ ` t ′ : Q

24 Towards a Semantic Measure of the Execution Time in Call-by-Value lambda-Calculus

where dom(Γ) = dom(Γ1) = dom(Γ2), Γ = Γ1]Γ2 and |π ′|= |π1|+ |π ′2|+1. By induction
hypothesis, there exists π2 B Γ2 ` s : P with |π2|= |π ′2|+1. So, there is

π =

...π1

Γ1 ` u : [P (Q]

...π2

Γ2 ` s : P
@

Γ ` t : Q

where |π|= |π1|+ |π2|+1 = |π1|+ |π ′2|+1+1 = |π ′|+1.
• Step inside a β -redex, i.e. t = (λx.u)s→

β [
v
(λx.u′)s = t ′ with u→

β [
v

u′: then,

π
′ =

...π ′1
Γ1,x : P ` u′ : Q

λ
Γ1 ` λx.u′ : [P (Q]

...π2

Γ2 ` s : P
@

Γ ` t ′ : Q

where dom(Γ) = dom(Γ1) = dom(Γ2), Γ = Γ1]Γ2 and |π ′|= |π ′1|+ |π2|+1. By induction
hypothesis, there exists π1 B Γ1,x : P ` u : Q with |π1|= |π ′1|+1. So, there is

π =

...π1

Γ1,x : P ` u : Q
λ

Γ1 ` λx.u : [P (Q]

...π2

∆ ` s : P
@

Γ ` t : Q

where |π|= |π1|+ |π2|+1 = |π ′1|+1+ |π2|+1 = |π ′|+1.

2. Since→
σ [cannot reduce to a value, t ′ is not a value and thus |π ′|> 0 according to Remark 27. The

proof that there exists π B Γ ` t : Q with |π|= |π ′| is by induction con t ∈ Λ. Cases:
• Step at the root: there are two sub-cases:

– t = (λx.u)sr 7→σ1 (λx.ur)s = t ′ with x /∈ fv(r). We can suppose without loss of generality
that x /∈ dom(Γ). So,

π
′ =

...π1

Γ1,x : P ` u : [Q′(Q]

...π ′3
Γ3,x : [] ` r : Q′

@
Γ1]Γ3,x : P ` ur : Q

λ
Γ1]Γ3 ` λx.ur : [P (Q]

...π2

Γ2 ` s : P
@

Γ ` t ′ : Q

with dom(Γ) = dom(Γ1) = dom(Γ2) = dom(Γ3), Γ = Γ1]Γ2]Γ3 and |π ′| = |π1|+
|π2|+ |π ′3|+2. According to Lemma 29.2, since x /∈ fv(r), there is a derivation π3 B Γ3 `
r : Q′ such that |π3|= |π ′3|. Therefore, there is a derivation

π =

...π1

Γ1,x : P ` u : [Q′(Q]
λ

Γ1 ` λx.u : [P ([Q′(Q]]

...π2

Γ2 ` s : P
@

Γ1]Γ2 ` t : [Q′(Q]

...π3

Γ3 ` r : Q′
@

Γ ` t : Q

where |π|= |π1|+ |π3|+ |π2|+2 = |π1|+ |π ′3|+ |π2|+2 = |π ′|.

G. Guerrieri 25

– t = v((λx.u)s) 7→σ3 (λx.vu)s = t ′ with x /∈ fv(v). We can suppose without loss of gener-
ality that x /∈ dom(Γ). Therefore,

π
′ =

...π ′1
Γ1,x : [] ` v : [Q′(Q]

...π3

Γ3,x : P ` u : Q′
@

Γ1]Γ3,x : P ` vu : Q
λ

Γ1]Γ3 ` λx.ur : [P (Q]

...π2

Γ2 ` s : P
@

Γ ` t ′ : Q

with dom(Γ) = dom(Γ1) = dom(Γ2) = dom(Γ3), Γ = Γ1]Γ2]Γ3 and |π ′| = |π1|+
|π2|+ |π3|+2. According to Lemma 29.2, since x /∈ fv(v), there is a derivation π1 B Γ1 `
v : [Q′(Q] such that |π1|= |π ′1|. Thus, there is a derivation

π = ...π1

Γ1 ` v : [Q′(Q]

...π2

Γ2,x : P ` u : Q′
λ

Γ2 ` λx.u : [P (Q′]

...π3

Γ3 ` s : P
@

Γ2]Γ3 ` (λx.u)s : Q′
@

Γ ` t : Q

where |π|= |π1|+ |π3|+ |π2|+2 = |π1|+ |π ′3|+ |π2|+2 = |π ′|.
• Application Left, i.e. t = us→

σ [u′s = t ′ with u→
σ [u′: then,

π
′ =

...π ′1
Γ1 ` u′ : [P (Q]

...π2

Γ2 ` s : P
@

Γ ` t ′ : Q

where dom(Γ) = dom(Γ1) = dom(Γ2), Γ = Γ1]Γ2 and |π ′|= |π ′1|+ |π2|+1. By induction
hypothesis, there exists π1 B Γ1 ` u′ : [P (Q] with |π1|= |π ′1|. So, there is

π =

...π1

Γ1 ` u : [P (Q]

...π2

Γ2 ` s : P
@

Γ ` t : Q

where |π|= |π1|+ |π2|+1 = |π ′1|+ |π2|+1 = |π ′|.
• Application Right, i.e. t = us→

σ [us′ = t ′ with s→
σ [s′: then,

π
′ =

...π1

Γ1 ` u : [P (Q]

...π ′2
Γ2 ` s′ : P

@
Γ ` t ′ : Q

where dom(Γ) = dom(Γ1) = dom(Γ2), Γ = Γ1]Γ2 and |π ′|= |π1|+ |π ′2|+1. By induction
hypothesis, there exists π2 B Γ2 ` s : P such that |π2|= |π ′2|. So, there is

π =

...π1

Γ1 ` u : [P (Q]

...π2

Γ2 ` s : P
@

Γ ` t : Q

where |π|= |π1|+ |π2|+1 = |π1|+ |π ′2|+1 = |π ′|.

26 Towards a Semantic Measure of the Execution Time in Call-by-Value lambda-Calculus

• Step inside a β -redex, i.e. t = (λx.u)s→
σ [(λx.u′)s = t ′ with u→

σ [u′: then,

π
′ =

...π ′1
Γ1,x : P ` u′ : Q

λ
Γ1 ` λx.u′ : [P (Q]

...π2

Γ2 ` s : P
@

Γ ` t ′ : Q

where dom(Γ) = dom(Γ1) = dom(Γ2), Γ = Γ1]Γ2 and |π ′|= |π1|+ |π2|+1. By induction
hypothesis, there exists π1 B Γ1,x : P ` u : Q with |π1|= |π ′1|. So, there is

π =

...π1

Γ1,x : P ` u : Q
λ

Γ1 ` λx.u : [P (Q]

...π2

Γ2 ` s : P
@

Γ ` t : Q

where |π|= |π1|+ |π2|+1 = |π ′1|+ |π2|+1 = |π ′|.

Lemma 11 (Subject reduction).See p. 7 Let t, t ′ ∈ Λ and π B Γ ` t : Q.

1. Shrinkage under βv-step: If t→βv t ′ then there is π ′ B Γ ` t ′ : Q with |π| ≥ |π ′|.

2. Size invariance under σ -step: If t→σ t ′ then there is π ′ B Γ ` t ′ : Q such that |π|= |π ′|.

Proof. Analogous to the proofs of Prop. 8.1-2, paying attention that now the induction hypothesis is
weaker. The only novelty is the presence of the following case, since→sh reduces under λ ’s:

• Abstraction, i.e. t = λx.u→r λx.u′ = t ′ with u→r u′ and r ∈ {βv,σ}: then,

π =

...π1

Γ1,x : P1 ` u : Q1
n∈N. . .

...πn

Γn,x : Pn ` u : Qn
λ

Γ ` t : [P1 (Q1, . . . ,Pn (Qn]

where dom(Γ) = dom(Γ1) = · · ·= dom(Γn), Γ =
⊎n

i=1 Γi and |π|= ∑
n
i=1|πi|. By induction hypoth-

esis, for all 1≤ i≤ n there is π ′i B Γi,x : Pi ` u′ : Qi with |πi| ≥ |π ′i | if r= βv, and |πi|= |π ′i | if r= σ .
So, there is

π
′ =

...π ′1
Γ1,x : P1 ` u′ : Q1 . . .

...π ′n
Γn,x : Pn ` u′ : Qn

λ
Γ ` t ′ : [P1 (Q1, . . . ,Pn (Qn]

where |π ′|= ∑
n
i=1|π ′i |. Therefore, |π| ≥ |π ′| if r = βv, and |π|= |π ′| if r = σ .

Lemma 12 (Subject expansion).See p. 7 Let t, t ′ ∈ Λ and π ′ B Γ ` t ′ : Q.

1. Enlargement under anti-βv-step: If t→βv t ′ then there is π B Γ ` t : Q with |π| ≥ |π ′|.

2. Size invariance under anti-σ -step: If t→σ t ′ then there is π B Γ ` t : Q such that |π|= |π ′|.

Proof. Analogous to the proofs of Prop. 10.1-2, paying attention that now the induction hypothesis is
weaker. The only novelty is the presence of the following case, since→sh reduces under λ ’s:

G. Guerrieri 27

• Abstraction, i.e. t = λx.u→r λx.u′ = t ′ with u→r u′ and r ∈ {βv,σ}: then,

π
′ =

...π ′1
Γ1,x : P1 ` u′ : Q1

n∈N. . .

...π ′n
Γn,x : Pn ` u′ : Qn

λ
Γ ` t ′ : [P1 (Q1, . . . ,Pn (Qn]

where dom(Γ) = dom(Γ1) = · · · = dom(Γn), Γ =
⊎n

i=1 Γi and |π ′| = ∑
n
i=1|π ′i |. By induction hy-

pothesis, for all 1≤ i≤ n there is πi B Γi,x : Pi ` u : Qi with |πi| ≥ |π ′i | if r = βv, and |πi|= |π ′i | if
r = σ . So, there is

π =

...π1

Γ1,x : P1 ` u : Q1 . . .

...πn

Γn,x : Pn ` u : Qn
λ

Γ ` t : [P1 (Q1, . . . ,Pn (Qn]

where |π|= ∑
n
i=1|πi|. Therefore, |π| ≥ |π ′| if r = βv, and |π|= |π ′| if r = σ .

A.4 Omitted proofs and remarks of Section 4

Theorem 14 (Invariance under sh-equivalence). See p. 8Let t,u ∈ Λ, let n ∈ N and let ~x = (x1, . . . ,xn) be a
suitable list of variables for t and u. If t 'sh u then JtK~x = JuK~x.

Proof. Since t 'sh u, there exist k ∈ N and t0, . . . , tk such that t = t0, u = tk and ti→sh ti+1 or ti+1→sh ti,
for all 0≤ i < k. Using subject reduction (Lemma 11) and subject expansion (Lemma 12), it is immediate
to prove by induction on k ∈ N that JtK~x = JuK~x.

Lemma 15 (Semantics of sh[-normal forms). See p. 8Let t be a term, let k ∈N and let~x = (x1, . . . ,xk) be a list of
variables suitable for t.

1. If t ∈ Λa then for every positive type Q there exist positive types P1, . . . ,Pk and a derivation
π B x1 : P1, . . . ,xk : Pk ` t : Q.

2. If t ∈ Λn then there are positive types Q,P1, . . . ,Pk and a derivation π B x1 : P1, . . . ,xk : Pk ` t : Q.

3. If t is sh[-normal then JtK~x 6= /0.

Proof. Point 3 is an immediate consequence of Point 2 via the syntactic characterization of sh[-normal
forms (Prop. 3).

We prove simultaneously Points 1-2 by mutual induction on t ∈ Λa∪Λn.
Cases for t ∈ Λa:

• t = xv for some variable x and value v: since~x is suitable for t, one has x = xi for some 1≤ i≤ k.
According to Cor. 28 there exists a derivation π ′ B x1 : [], . . . ,xk : [] ` v : [], so for any positive type
Q there exists the derivation

π = ax
x1 : [], . . . ,xi : [[](Q], . . . ,xk : [] ` xi : [[](Q]

...π ′

x1 : [], . . . ,xk : [] ` v : []
@

x1 : [], . . . ,xi : [[](Q], . . . ,xk : [] ` t : Q

28 Towards a Semantic Measure of the Execution Time in Call-by-Value lambda-Calculus

• t = xa for some variable x and a ∈ Λa: since~x is suitable for t, one has x = xi for some 1≤ i≤ k.
By i.h., there exists a derivation π ′ B x1 : P1, . . . ,xk : Pk ` a : [] for some positive types P1, . . . ,Pk. So,
for any positive type Q there exists a derivation

π = ax
x1 : [], . . . ,xi : [[](Q], . . . ,xk : [] ` xi : [[](Q]

...π ′

x1 : P1, . . . ,xk : Pk ` a : []
@

x1 : P1, . . . ,xi : [[](Q]]Pi, . . . ,xk : Pk ` t : Q

• t = an for some a∈Λa and n∈Λn: by i.h. applied to n, there is a derivation π ′′B x1 : P1, . . . ,xk : Pk `
n : P for some positive types P,P1, . . . ,Pk. Given a positive type Q, by i.h. applied to a, there exists
a derivation π ′ B x1 : P′1, . . . ,xk : P′k ` a : [P (Q] for some positive types P′1, . . . ,P

′
k. So, there is a

derivation

π =

...π ′

x1 : P′1, . . . ,xk : P′k ` a : [P (Q]

...π ′′

x1 : P1, . . . ,xk : Pk ` n : P
@

x1 : P1]P′1, . . . ,xk : Pk]P′k ` t : Q

.

Cases for t ∈ Λn:

• t ∈ Λa: see above.

• t is a value: the statement follows from Cor. 28.

• t = (λx.n)a for some n ∈ Λn and a ∈ Λa: by i.h. applied to n, there exists a derivation π ′ B
x1 : P′1, . . . ,xk : P′k,x : P ` n : Q for some positive types P′1, . . . ,P

′
k,P,Q. By i.h. applied to a, there

exists a derivation π ′′ B x1 : P1, . . . ,xk : Pk ` a : P for some positive types P1, . . . ,Pk. Therefore, there
is a derivation

π =

...π ′

x1 : P′1, . . . ,xk : P′k,x : P ` n : Q
λ

x1 : P′1, . . . ,xk : P′k ` λx.n : [P (Q]

...π ′′

x1 : P1, . . . ,xk : Pk ` a : P
@

x1 : P1]P′1, . . . ,xk : Pk]P′k ` t : Q

.

Theorem 16 (Semantic and logic characterization of sh[-normalization).See p. 8 Let t ∈ Λ and let~x = (x1, . . . ,xn)
be a suitable list of variables for t. The following are equivalent:

1. t is sh[-normalizable;

2. t 'sh u for some sh[-normal u ∈ Λ;

3. JtK~x 6= /0;

4. there exists a derivation π B x1 : P1, . . . ,xn : Pn ` t : Q for some positive types P1, . . . ,Pn,Q;

5. t is strongly sh[-normalizable.

Proof. (1)⇒(2): Trivial, since→sh[⊆'sh.

(2)⇒(3): First, note that we can suppose without loss of generality that ~x is suitable also for u. By
Lemma 15, JuK~x 6= /0. By invariance of relational semantics (Thm. 14), JtK~x = JuK~x.

G. Guerrieri 29

(3)⇒(4) Trivial, according to Definition 13.

(4)⇒(5): If there is a derivation π B x1 : P1, . . . ,xn : Pn ` t : Q for some positive types P1, . . . ,Pn,Q, then
every sh[-reduction sequence from t has at most |π| ∈ N β [

v-reduction steps by the quantitative
subject reduction (Prop. 8.1-2). As there is no sh[-reduction sequence from t with infinitely many
β [

v-reduction steps, then every infinite sh[-reduction sequence from t would have infinitely many
σ [-reduction steps, but this is impossible since→

σ [is strongly normalizing. Therefore, there is no
infinite sh[-reduction sequence from t, which means that t is strongly sh[-normalizable.

(5)⇒(1): Trivial.

Lemma 17 (Uniqueness of the derivation with empty types; Logic and semantic characterization of
values). See p. 9Let t ∈ Λ be sh[-normal and~x = (x1, . . . ,xk) be suitable for t.

1. For every π B x1 : [], . . . ,xk : [] ` t : [] and π ′ B x1 : [], . . . ,xk : [] ` t : [], one has t ∈ Λv, |π|= 0 and
π = π ′. More precisely, π consists only of the rule ax if t is a variable, otherwise t is an abstraction
and π consists only of a 0-ary rule λ .

2. The following are equivalent:

(a) t is a value;
(b) (([], k. . . , []), []) ∈ JtK~x;

(c) there is π B x1 : [], . . . ,xk : [] ` t : [];
(d) there is π B t such that |π|= 0.

Proof. 1. According to Prop. 3, t ∈ Λn since t is sh[-normal, so there are only three cases.
If t is a value, then |π|= 0 by the left-to-right direction of Lemma 6 (take p = 0). Moreover, if t is a
variable, then t = xi for some 1≤ i≤ k, and the only derivation with conclusion x1 : [], . . . ,xk : [] `
t : [] is

π = ax
x1 : [], . . . ,xk : [] ` xi : [] ;

otherwise, t = λx.u and the only derivation with conclusion x1 : [], . . . ,xk : [] ` t : [] is

π = λ
x1 : [], . . . ,xk : [] ` λx.u : [] .

If t ∈ Λa then t /∈ Λv and it is impossible that π B x1 : [], . . . ,xk : [] ` t : [] by Lemma 30.
Finally, if t ∈ Λn r (Λv∪Λa), then t = (λx.n)a for some n ∈ Λn and a ∈ Λa. By necessity,

π =

...π ′

x1 : [], . . . ,xk : [] ` λx.n : P ([]

...π ′′

x1 : [], . . . ,xk : [] ` a : P
@

x1 : [], . . . ,xk : [] ` t : []

but it is impossible that π B x1 : [], . . . ,xk : [] ` a : P, according to Lemma 30. Therefore, it is
impossible that π B x1 : [], . . . ,xk : [] ` t : [].

2. The equivalence (2b)⇔(2c) follows immediately from Definition 13. From Lemma 17.1 it follows
that (2c)⇒(2d). By Cor. 28, the implication (2a)⇒(2c) holds. In order to prove that (2d)⇒(2a), it
is enough to notice that there is no instance of the rule @ in π B t since |π| = 0, so t is either a
variable or an abstraction, i.e. a value.

Proposition 18 (Logic and semantic characterization of valuability). See p. 9Let t be a term and~x = (x1, . . . ,xk)
be suitable for t. The following are equivalent:

30 Towards a Semantic Measure of the Execution Time in Call-by-Value lambda-Calculus

1. t is sh[-normalizable and the sh[-normal form of t is a value;

2. (([], k. . . , []), []) ∈ JtK~x;

3. there exists π B x1 : [], . . . ,xk : [] ` t : [].

Proof. The equivalence (2)⇔(3) follows immediately from Definition 13. In order to prove the equiva-
lence (1)⇔(2), let us consider the two possible cases:
• either t is not sh[-normalizable, and then JtK~x = /0 according to the semantic characterization of

sh[-normalization (Thm. 16), in particular (([], k. . . , []), []) /∈ JtK~x;

• or t is sh[-normalizable; let t0 be its sh[-normal form; according to the semantic characterization
of values (Lemma 17.2), (([], k. . . , []), []) ∈ Jt0K~x iff t0 is a value; by invariance of the semantics
(Thm. 14), JtK~x = Jt0K~x; therefore, (([], k. . . , []), []) ∈ JtK~x iff t0 is a value.

A.5 Omitted proofs and remarks of Section 5

Lemma 20 (Relationship between sizes).See p. 9 Let t ∈ Λ, k ∈ N and~x = (x1, . . . ,xk) suitable for t.

1. If t is sh[-normal then |t|[= inf{|π| | π B x1 : P1, . . . ,xk : Pk ` t : Q}.
2. If t is a value then |t|[= inf{|π| | π B x1 : P1, . . . ,xk : Pk ` t : Q}= 0.

Proof. 1. By Prop. 3, since t is sh[-normal, we can proceed by induction on t ∈ Λn. Moreover, for
t ∈Λa we prove also that for any positive type Q there exist positive types P1, . . . ,Pk and a derivation
π B x : P1, . . . ,xk : Pk ` t : Q such that |t|[= |π|: this stronger statement is required to handle the
case where t is a sh[-normal β -redex.
If t is a value, then |t|[= 0 by definition, and there is a derivation π B x1 : [], . . . ,xk : [] ` t : [] such
that |π|= 0, according to Cor. 28. Thus, |t|[= inf{|π| | π B x1 : P1, . . . ,xk : Pk ` t : Q}.
If t ∈ Λa, then there are three cases:
• t = xv for some variable x and value v: |t|[= 1, k > 0 and x = xi for some 1≤ i≤ k. According

to Cor. 28, there exists a derivation π ′ B x1 : [], . . . ,xk : [] ` v : [] such that |π ′|= 0, so for any
positive type Q there exists the derivation

π = ax
x1 : [], . . . ,xi : [[](Q], . . . ,xk : [] ` xi : [[](Q]

...π ′

x1 : [], . . . ,xk : [] ` v : []
@

x1 : [], . . . ,xi : [[](Q], . . . ,xk : [] ` t : Q

where |π| = |π ′|+ 1 = 1 = |t|[. The last rule of any derivation π ′′ B x1 : P1, . . . ,xk : Pk ` t : Q is by
necessity @, thus |π ′′| ≥ 1 and hence inf{|π ′′| | π ′′ B x1 : P1, . . . ,xk : Pk ` t : Q}= 1 = |t|[.

• t = xa for some variable x and a ∈ Λa: |t|[= |a|[+ 1, k > 0 and x = xi for some 1 ≤ i ≤ k. By i.h.,
|a|[= inf{|π ′| | π ′ B x1 : P1, . . . ,xk : Pk ` a : []} and there exists a derivation π ′ B x1 : P1, . . . ,xk : Pk `
a : [] for some positive types P1, . . . ,Pk such that |a|[= |π ′|. Therefore, for any positive type Q there
exists a derivation

π = ax
x1 : [], . . . ,xi : [[](Q], . . . ,xk : [] ` xi : [[](Q]

...π ′

x1 : P1, . . . ,xk : Pk ` a : []
@

x1 : P1, . . . ,xi : [[](Q]]Pi, . . . ,xk : Pk ` t : Q

where |π| = |π ′|+ 1 = |a|[+ 1 = |t|[. The last rule of any derivation π ′′ B x1 : P1, . . . ,xk : Pk `
t : Q is by necessity @ having a derivation typing a as a premise, thus |π ′′| ≥ |a|[+ 1 and hence
inf{|π ′′| | π ′′ B x1 : P1, . . . ,xk : Pk ` t : Q}= |a|[+1 = |t|[.

G. Guerrieri 31

• t = an with a∈Λa and n∈Λn: by i.h. applied to n, inf{|π ′′| | π ′′ B x1 : P1, . . . ,xk : Pk ` n : Q}= |n|[, in
particular there is a derivation π ′′ B x1 : P1, . . . ,xk : Pk ` n : P for some positive types P,P1, . . . ,Pk such
that |π|= |n|[. For any positive type Q, by i.h. applied to a, there are positive types P′1, . . . ,P

′
k and a

derivation π ′ B x1 : P′1, . . . ,xk : P′k ` a : [P(Q] such that |a|[= |π ′|= inf{|π ′| | π ′ B x1 : P′1, . . . ,xk : P′k `
a : [P (Q]}. So, there is a derivation

π =

...π ′

x1 : P′1, . . . ,xk : P′k ` a : [P (Q]

...π ′′

x1 : P1, . . . ,xk : Pk ` n : P
@

x1 : P1]P′1, . . . ,xk : Pk]P′k ` t : Q

where |π| = |π ′|+ |π ′′|+ 1 = |a|[+ |n|[+ 1 = |t|[(the last equation holds since a is not an ab-
straction, see Prop. 3). The last rule of any derivation π ′′′ B x1 : P1, . . . ,xk : Pk ` t : Q is by ne-
cessity @ having derivations typing a and n as premises, thus |π ′′′| ≥ |a|[+ |n|[+ 1 and hence
inf{|π ′′′| | π ′′′ B x1 : P1, . . . ,xk : Pk ` t : Q}= |a|[+ |n|[+1 = |t|[.

Finally, if t = (λx.n)a for some a ∈ Λa and n ∈ Λn, then |t|[= |n|[+ |a|[+ 1 by definition. By
i.h., applied to n, there is a derivation π ′ B x1 : P′1, . . . ,xk : P′k,x : P ` n : Q for some positive types
P′1, . . . ,P

′
k,P,Q such that |n|[= |π ′|= inf{|π ′| | π ′ B x1 : P′1, . . . ,xk : P′k ` n : Q}. By i.h. applied to a,

there exists a derivation π ′′ B x1 : P1, . . . ,xk : Pk ` a : P for some positive types P1, . . . ,Pk such that
|a|[= |π ′′|= inf{|π ′′| | π ′′ B x1 : P1, . . . ,xk : Pk ` a : P}. Therefore, there is a derivation

π =

...π ′

x1 : P′1, . . . ,xk : P′k,x : P ` n : Q
λ

x1 : P′1, . . . ,xk : P′k ` λx.n : [P (Q]

...π ′′

x1 : P1, . . . ,xk : Pk ` a : P
@

x1 : P1]P′1, . . . ,xk : Pk]P′k ` t : Q

.

where |π|= |π ′|+ |π ′′|+1 = |n|[+ |a|[+1 = |t|[. Given a derivation π ′′′ B x1 : P1, . . . ,xk : Pk ` t : Q,
its last rule is by necessity @ having derivations typing a and λx.n as premises (the last rule of the
latter is necessarily λ having a derivation typing n as unique premise), thus |π ′′′| ≥ |a|[+ |n|[+1
and hence inf{|π ′′′| | π ′′′ B x1 : P1, . . . ,xk : Pk ` t : Q}= |a|[+ |n|[+1 = |t|[.

2. By definition, |t|[= 0. According to Cor. 28, there is a derivation π B x1 : [], . . . ,xk : [] ` t : [] such
that |π|= 0, hence infJtK~x = |(([], . . . , []), [])|= 0.

Proposition 21 (Exact number of β [
v-steps). See p. 10Let t be a sh[-normalizable term and t0 be its sh[-normal form.

For every reduction sequence d : t→∗
sh[

t0 and every π B t and π0 B t0 such that |π|= inf{|π ′| | π ′ B t}
and |π0|= inf{|π ′0| | π ′0 B t0}, one has

leng
β [

v
(d) = |π|− |t0|[= |π|− |π0| . (3)

If moreover t0 is a value, then leng
β [

v
(d) = |π|.

Proof. The statement concerning the case where t0 is a value is an immediate consequence of Eq. (3) and
Lemma 20.2. The second identity in Eq. (3) follows immediately from Lemma 20.1. We prove the first
identity in Eq. (3) by induction on n = leng(d) ∈ N.

If n = 0 then leng
β [

v
(d) = 0 and t = t0 (thus π = π0), hence |π|= |t|[= |t0|[according to Lemma 20.1,

and therefore Eq. (2) holds.
If n > 0 then d has the form t→sh[t ′→n−1

sh[
t0 for some term t ′; let d′ be the sub-reduction sequence

t ′→n−1
sh[

t0 in d. There are two cases:

32 Towards a Semantic Measure of the Execution Time in Call-by-Value lambda-Calculus

• A βv-step at the beginning of d, i.e. t→
β [

v
t ′: according to the quantitative subject reduction for→

β [
v

(Prop. 8.1), there is a derivation π ′ B t ′ such that |π ′|= |π|−2. According to the quantitative subject
expansion for→

β [
v

(Prop. 10.1), for any derivation π ′′ B t ′ there exists a derivation π ′′′ B t such that
|π ′′|= |π ′′′|−2. Therefore, from the minimality of |π| follows the minimality of |π ′| (among the
derivations π ′′ B t ′). We can then apply the i.h. to d′, so that leng

β [
v
(d′) = |π ′|−|t0|[= |π|−1−|t0|[

and hence leng
β [

v
(d) = leng

β [
v
(d′)+1 = |π|− |t0|[.

• A σ -step at the beginning of d, i.e. t→
σ [t ′: according to the quantitative subject reduction for→

σ [

(Prop. 8.2), there is a derivation π ′ B t ′ such that |π ′|= |π|. According to the quantitative subject
expansion for→

σ [(Prop. 10.2), for any derivation π ′′ B t ′ there exists a derivation π ′′′ B t such
that |π ′′|= |π ′′′|. Therefore, from the minimality of |π| follows the minimality of |π ′| (among the
derivations π ′′ B t ′). We can then apply the i.h. to d′, so that leng

β [
v
(d) = leng

β [
v
(d′) = |π ′|− |t0|[=

|π|− |t0|[.

Lemma 30. Let t ∈ Λa. For all π B x1 : P1, . . . ,xk : Pk ` t : Q there is 1≤ i≤ k with Pi 6= [].

Proof. By induction on t ∈ Λa.
If t = xu where u ∈ Λv∪Λa, then x = xi for some 1≤ i≤ k, and hence

π = ax
x1 : P′1, . . . ,xi : [P (Q], . . . ,xk : P′k ` x : [P (Q]

...π ′′

x1 : P′′1 , . . . ,xk : P′′k ` u : P
@

x1 : P1, . . . ,xk : Pk ` t : Q

where Pj = P′j]P′′j for all 1≤ j ≤ k such that j 6= i, and Pi = [P (Q]]P′′i 6= [].
If t = an for some a ∈ Λa and n ∈ Λn, then

π =

...π ′

x1 : P′1, . . . ,xk : P′k ` a : [P (Q]

...π ′′

x1 : P′′1 , . . . ,xk : P′′k ` n : P
@

x1 : P1, . . . ,xk : Pk ` t : Q

where Pj = P′j]P′′j for all 1≤ j≤ k. By i.h., there is 1≤ i≤ k such that P′i 6= [], thus Pi = P′i]P′′i 6= [].

Theorem 24 (Exact number of β [
v-steps for valuables).See p. 10 Let t→∗

sh[
v∈Λv. For any~x = (x1, . . . ,xk) suitable

for t, and any π B x1 : [], . . . ,xk : [] ` t : [], one has leng
β [

v
(t) = |π|.

Proof. Given π B x1 : [], . . . ,xk : [] ` t : [], there is π0 B x1 : [], . . . ,xk : [] ` v : [] with |π|= |π0|+ leng
β [

v
(t)

by the quantitative subject reduction (Prop. 8.1-2). According to Lemma 17.1, |π0|= 0.

	Introduction
	The shuffling calculus
	A non-idempotent intersection type system
	Relational semantics: qualitative results
	The quantitative side of type derivations
	Conclusions
	References
	Technical appendix: omitted proofs
	Preliminaries and notations
	Omitted proofs and remarks of Section 2
	Omitted proofs and remarks of Section 3
	Omitted proofs and remarks of Section 4
	Omitted proofs and remarks of Section 5

