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The Riemann Hypothesis

Frank Vega

Abstract. In mathematics, the Riemann Hypothesis is a conjecture that the Riemann
zeta function has its zeros only at the negative even integers and complex numbers

with real part 1
2

. Many consider it to be the most important unsolved problem in pure

mathematics. It is one of the seven Millennium Prize Problems selected by the Clay
Mathematics Institute to carry a US 1,000,000 prize for the first correct solution. In 1915,

Ramanujan proved that under the assumption of the Riemann Hypothesis, the inequality

σ(n) < eγ × n × log logn holds for all sufficiently large n, where σ(n) is the sum-of-
divisors function and γ ≈ 0.57721 is the Euler-Mascheroni constant. In 1984, Guy Robin

proved that the inequality is true for all n > 5040 if and only if the Riemann Hypothesis

is true. In 2002, Lagarias proved that if the inequality σ(n) ≤ Hn + exp(Hn) × logHn
holds for all n ≥ 1, then the Riemann Hypothesis is true, where Hn is the nth harmonic

number. In this work, we show certain properties of these both inequalities that leave
us to a proof of the Riemann Hypothesis which could be checked by computer.

1 Introduction

As usual σ(n) is the sum-of-divisors function of n [1]:∑
d|n

d.

Define f(n) to be σ(n)
n . Say Robins(n) holds provided

f(n) < eγ × log logn.

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant, and log is the
natural logarithm. Let Hn be

∑n
j=1

1
j . Say Lagarias(n) holds provided

σ(n) ≤ Hn + exp(Hn)× logHn.

The importance of these properties is:

Theorem 1.1 If Robins(n) holds for all n > 5040, then the Riemann
Hypothesis is true [4]. If Lagarias(n) holds for all n ≥ 1, then the Riemann
Hypothesis is true [4].

It is known that Robins(n) and Lagarias(n) hold for many classes of numbers
n. We know this:

Lemma 1.2 If Robins(n) holds for some n > 5040, then Lagarias(n)
holds [4].
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We recall that an integer n is said to be square free if for every prime
divisor q of n we have q2 - n [1]. Robins(n) holds for all n > 5040 that are
square free [1]. Let core(n) denotes the square free kernel of a natural number
n [1]. We can show this:

Theorem 1.3 Let π2

6 × log log core(n) ≤ log log n for some n > 5040.
Then Robins(n) holds.

Moreover, we prove our main theorems:

Theorem 1.4 Robins(n) holds for all n > 5040 when a prime number
qm - n for qm ≤ 113.

Theorem 1.5 Let n > 5040 and n = r× qm, where qm ≥ 113 denotes the
largest prime factor of n. We have checked by computer, if Lagarias(r) holds,
then Lagarias(n) holds.

In this way, we finally conclude that

Theorem 1.6 Lagarias(n) holds for all n ≥ 1 and thus, the Riemann
Hypothesis is true.

Proof Every possible counterexample in Lagarias(n) for n > 5040 must
have that its greatest prime factor qm complies with qm ≥ 113 because of
lemma 1.2 and theorem 1.4. In addition, Lagarias(n) has been checked for all
n ≤ 5040 by computer. Moreover, for all n > 5040 we have that Lagarias(n)
has been recursively verified when its greatest prime factor qm complies with
qm ≥ 113 due to theorems 1.4 and 1.5. In conclusion, we show that Lagarias(n)
holds for all n ≥ 1 and therefore, the Riemann Hypothesis is true.

2 Known Results

We use that the following are known:

Lemma 2.1 From the reference [1]:

f(n) <
∏
p|n

p

p− 1
.

Lemma 2.2 From the reference [2]:

∞∏
k=1

1

1− 1
q2k

= ζ(2) =
π2

6
.

Lemma 2.3 From the reference [4]:

log(eγ × (n+ 1)) ≥ Hn ≥ log(eγ × n).
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3 A Central Lemma

Lemma 3.1 Given a natural number

n = qa11 × q
a2
2 × · · · × qamm

such that q1, q2, · · · , qm are prime numbers and a1, a2, · · · , am are natural
numbers, then we obtain the following inequality

f(n) <
π2

6
×

m∏
i=1

qi + 1

qi
.

Proof From the lemma 2.1, we know

f(n) <

m∏
i=1

qi
qi − 1

.

We can easily prove

m∏
i=1

qi
qi − 1

=

m∏
i=1

1

1− q−2i
×

m∏
i=1

qi + 1

qi
.

However, we know
m∏
i=1

1

1− q−2i
<

∞∏
j=1

1

1− q−2j

where qj is the jth prime number and

∞∏
j=1

1

1− q−2j
=
π2

6

as a consequence of lemma 2.2. Consequently, we obtain

m∏
i=1

qi
qi − 1

<
π2

6
×

m∏
i=1

qi + 1

qi

and thus,

f(n) <
π2

6
×

m∏
i=1

qi + 1

qi
.

4 A Particular Case

We prove the Robin’s inequality for this specific case:

Lemma 4.1 Given a natural number

n = 2a1 × 3a2 × 5a3 × 7a4 > 5040

such that a1, a2, a3, a4 ≥ 0 are integers, then Robins(n) holds for n > 5040.
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Proof Given a natural number n = qa11 × q
a2
2 × · · · × qamm > 5040 such that

q1, q2, · · · , qm are prime numbers and a1, a2, · · · , am are natural numbers, we
need to prove

f(n) < eγ × log log n

that is true when
m∏
i=1

qi
qi − 1

≤ eγ × log log n

according to the lemma 2.1. Given a natural number n = 2a1×3a2×5a3 > 5040
such that a1, a2, a3 ≥ 0 are integers, we have

m∏
i=1

qi
qi − 1

≤ 2× 3× 5

1× 2× 4
= 3.75 < eγ × log log(5040) ≈ 3.81.

However, we know for n > 5040

eγ × log log(5040) < eγ × log log n

and therefore, the proof is completed for that case. Hence, we only need to
prove the Robin’s inequality is true for every natural number n = 2a1 × 3a2 ×
5a3 ×7a4 > 5040 such that a1, a2, a3 ≥ 0 and a4 ≥ 1 are integers. In addition,
we know the Robin’s inequality is true for every natural number n > 5040
such that 7k | n and 77 - n for some integer 1 ≤ k ≤ 6 [3]. Therefore, we need
to prove this case for those natural numbers n > 5040 such that 77 | n. In
this way, we have

m∏
i=1

qi
qi − 1

≤ 2× 3× 5× 7

1× 2× 4× 6
= 4.375 < eγ × log log(77) ≈ 4.65.

However, we know for n > 5040 and 77 | n such that

eγ × log log(77) ≤ eγ × log log n

and as a consequence, the proof is completed.

5 A Condition on core(n)

Theorem 5.1 Let π2

6 × log log core(n) ≤ log log n for some n > 5040.
Then Robins(n) holds.

Proof We will check the Robin’s inequality for a natural number n =
qa11 × qa22 × · · · × qamm > 5040 such that q1, q2, · · · , qm are prime numbers
and a1, a2, · · · , am are natural numbers. We need to prove

f(n) < eγ × log log n

that is true when

π2

6
×

m∏
i=1

qi + 1

qi
≤ eγ × log log n
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according to the lemma 3.1. We obtain that will be equivalent to

π2

6
× σ(n′)

n′
≤ eγ × log log n

where n′ = q1×· · ·×qm is the core(n) [1]. However, Robins(n′) has been proved
for all the square free integers n′ /∈ {2, 3, 5, 6, 10, 30} [1]. In addition, due to
the lemma 4.1, we know Robins(n) holds for all n > 5040 when core(n) ∈
{2, 3, 5, 6, 10, 30}. In this way, we have

σ(n′)

n′
< eγ × log log n′

and therefore, it is enough to prove

π2

6
× eγ × log log n′ ≤ eγ × log log n

which is the same as
π2

6
× log log n′ ≤ log log n

and thus, the proof is completed.

6 A Better Upper Bound

Lemma 6.1 For x ≥ 11, we have∑
q≤x

1

q
< log log x+ γ − 0.12

where q ≤ x means all the primes lesser than or equal to x.

Proof For x > 1, we have∑
q≤x

1

q
< log log x+B +

1

log2 x

where

B = 0.2614972128 · · ·
is the (Meissel-)Mertens constant, since this is a proven result from the article
reference [5]. This is the same as∑

q≤x

1

q
< log log x+ γ − (C − 1

log2 x
)

where γ − B = C > 0.31, because of γ > B. If we analyze (C − 1
log2 x

), then

this complies with

(C − 1

log2 x
) > (0.31− 1

log2 11
) > 0.12

for x ≥ 11 and thus, we finally prove∑
q≤x

1

q
< log log x+ γ − (C − 1

log2 x
) < log log x+ γ − 0.12.
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7 On a Square Free Number

Theorem 7.1 Given a square free number

n = q1 × · · · × qm
such that q1, q2, · · · , qm are odd prime numbers, the greatest prime divisor of
n is greater than 7 and 3 - n, then we obtain the following inequality

π2

6
× 3

2
× σ(n) ≤ eγ × n× log log(219 × n).

Proof This proof is very similar with the demonstration in theorem 1.1
from the article reference [1]. By induction with respect to ω(n), that is the
number of distinct prime factors of n [1]. Put ω(n) = m [1]. We need to prove
the assertion for those integers with m = 1. From a square free number n, we
obtain

(7.1) σ(n) = (q1 + 1)× (q2 + 1)× · · · × (qm + 1)

when n = q1 × q2 × · · · × qm [1]. In this way, for every prime number qi ≥ 11,
then we need to prove

(7.2)
π2

6
× 3

2
× (1 +

1

qi
) ≤ eγ × log log(219 × qi).

For qi = 11, we have

π2

6
× 3

2
× (1 +

1

11
) ≤ eγ × log log(219 × 11)

is actually true. For another prime number qi > 11, we have

(1 +
1

qi
) < (1 +

1

11
)

and

log log(219 × 11) < log log(219 × qi)
which clearly implies that the inequality (7.2) is true for every prime number
qi ≥ 11. Now, suppose it is true for m−1, with m ≥ 2 and let us consider the
assertion for those square free n with ω(n) = m [1]. So let n = q1 × · · · × qm
be a square free number and assume that q1 < · · · < qm for qm ≥ 11.

Case 1: qm ≥ log(219 × q1 × · · · × qm−1 × qm) = log(219 × n).
By the induction hypothesis we have

π2

6
×3

2
×(q1+1)×· · ·×(qm−1+1) ≤ eγ×q1×· · ·×qm−1×log log(219×q1×· · ·×qm−1)

and hence

π2

6
× 3

2
× (q1 + 1)× · · · × (qm−1 + 1)× (qm + 1) ≤

eγ × q1 × · · · × qm−1 × (qm + 1)× log log(219 × q1 × · · · × qm−1)
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when we multiply the both sides of the inequality by (qm + 1). We want to
show

eγ × q1 × · · · × qm−1 × (qm + 1)× log log(219 × q1 × · · · × qm−1) ≤
eγ×q1×· · ·×qm−1×qm×log log(219×q1×· · ·×qm−1×qm) = eγ×n×log log(219×n).

Indeed the previous inequality is equivalent with

qm×log log(219×q1×· · ·×qm−1×qm) ≥ (qm+1)×log log(219×q1×· · ·×qm−1)

or alternatively

qm × (log log(219 × q1 × · · · × qm−1 × qm)− log log(219 × q1 × · · · × qm−1))

log qm
≥

log log(219 × q1 × · · · × qm−1)

log qm
.

From the reference [1], we have if 0 < a < b, then

(7.3)
log b− log a

b− a
=

1

(b− a)

∫ b

a

dt

t
>

1

b
.

We can apply the inequality (7.3) to the previous one just using b = log(219×
q1 × · · · × qm−1 × qm) and a = log(219 × q1 × · · · × qm−1). Certainly, we have

log(219 × q1 × · · · × qm−1 × qm)− log(219 × q1 × · · · × qm−1) =

log
219 × q1 × · · · × qm−1 × qm

219 × q1 × · · · × qm−1
= log qm.

In this way, we obtain

qm × (log log(219 × q1 × · · · × qm−1 × qm)− log log(219 × q1 × · · · × qm−1))

log qm
>

qm
log(219 × q1 × · · · × qm)

.

Using this result we infer that the original inequality is certainly satisfied if
the next inequality is satisfied

qm
log(219 × q1 × · · · × qm)

≥ log log(219 × q1 × · · · × qm−1)

log qm

which is trivially true for qm ≥ log(219 × q1 × · · · × qm−1 × qm) [1].
Case 2: qm < log(219 × q1 × · · · × qm−1 × qm) = log(219 × n).
We need to prove

π2

6
× 3

2
× σ(n)

n
≤ eγ × log log(219 × n).

We know 3
2 < 1.503 < 4

2.66 . Nevertheless, we could have

3

2
× σ(n)

n
× π2

6
<

4× σ(n)

3× n
× π2

2× 2.66

and therefore, we only need to prove

σ(3× n)

3× n
× π2

5.32
≤ eγ × log log(219 × n)
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where this is possible because of 3 - n. If we apply the logarithm to the both
sides of the inequality, then we obtain

log(
π2

5.32
)+(log(3+1)−log 3)+

m∑
i=1

(log(qi+1)−log qi) ≤ γ+log log log(219×n).

From the reference [1], we note

log(q1 + 1)− log q1 =

∫ q1+1

q1

dt

t
<

1

q1
.

In addition, note log( π2

5.32 ) < 1
2 + 0.12. However, we know

γ + log log qm < γ + log log log(219 × n)

since qm < log(219 × n) and therefore, it is enough to prove

0.12 +
1

2
+

1

3
+

1

q1
+ · · ·+ 1

qm
≤ 0.12 +

∑
q≤qm

1

q
≤ γ + log log qm

where qm ≥ 11. In this way, we only need to prove∑
q≤qm

1

q
≤ γ + log log qm − 0.12

which is true according to the lemma 6.1 when qm ≥ 11. In this way, we
finally show the theorem is indeed satisfied.

8 Robin’s Divisibility

Theorem 8.1 Robins(n) holds for all n > 5040 when 3 - n. More precisely:
every possible counterexample n > 5040 of the Robin’s inequality must comply
with (220 × 313) | n.

Proof We will check the Robin’s inequality is true for every natural number
n = qa11 × q

a2
2 × · · · × qamm > 5040 such that q1, q2, · · · , qm are prime numbers,

a1, a2, · · · , am are natural numbers and 3 - n. We know this is true when the
greatest prime divisor of n > 5040 is lesser than or equal to 7 according to the
lemma 4.1. Therefore, the remaining case is when the greatest prime divisor
of n > 5040 is greater than 7. We need to prove

σ(n)

n
< eγ × log log n

that is true when
π2

6
×

m∏
i=1

qi + 1

qi
≤ eγ × log log n

according to the lemma 3.1. Using the formula (7.1), we obtain that will be
equivalent to

π2

6
× σ(n′)

n′
≤ eγ × log log n
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where n′ = q1 × · · · × qm is the core(n) [1]. However, the Robin’s inequality
has been proved for all integers n not divisible by 2 (which are bigger than
10) [1]. Hence, we only need to prove the Robin’s inequality is true when
2 | n′. In addition, we know the Robin’s inequality is true for every natural
number n > 5040 such that 2k | n and 220 - n for some integer 1 ≤ k ≤ 19
[3]. Consequently, we only need to prove the Robin’s inequality is true for all
n > 5040 such that 220 | n and thus,

eγ × n′ × log log(219 × n′

2
) < eγ × n′ × log log n

because of 219 × n′

2 ≤ n when 220 | n and 2 | n′. In this way, we only need to
prove

π2

6
× σ(n′) ≤ eγ × n′ × log log(219 × n′

2
).

According to the formula (7.1) and 2 | n′, we have

π2

6
× 3× σ(

n′

2
) ≤ eγ × 2× n′

2
× log log(219 × n′

2
)

which is the same as

π2

6
× 3

2
× σ(

n′

2
) ≤ eγ × n′

2
× log log(219 × n′

2
)

that is true according to the theorem 7.1 when 3 - n
′

2 . In addition, we know
the Robin’s inequality is true for every natural number n > 5040 such that
3k | n and 313 - n for some integer 1 ≤ k ≤ 12 [3]. Consequently, we only need
to prove the Robin’s inequality is true for all n > 5040 such that 220 | n and
313 | n. To sum up, the proof is completed.

Theorem 8.2 Robins(n) holds for all n > 5040 when 5 - n or 7 - n.

Proof We need to prove

f(n) < eγ × log log n

when (220 × 313) | n. Suppose that n = 2a × 3b ×m, where a ≥ 20, b ≥ 13,
2 - m, 3 - m and 5 - m or 7 - m. Therefore, we need to prove

f(2a × 3b ×m) < eγ × log log(2a × 3b ×m).

We know

f(2a × 3b ×m) = f(3b)× f(2a ×m)

since f is multiplicative [6]. In addition, we know f(3b) < 3
2 for every natural

number b [6]. In this way, we have

f(3b)× f(2a ×m) <
3

2
× f(2a ×m).

Now, consider

3

2
× f(2a ×m) =

9

8
× f(3)× f(2a ×m) =

9

8
× f(2a × 3×m)
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where f(3) = 4
3 since f is multiplicative [6]. Nevertheless, we have

9

8
× f(2a × 3×m) < f(5)× f(2a × 3×m) = f(2a × 3× 5×m)

and

9

8
× f(2a × 3×m) < f(7)× f(2a × 3×m) = f(2a × 3× 7×m)

where 5 - m or 7 - m, f(5) = 6
5 and f(7) = 8

7 . However, we know the Robin’s
inequality is true for 2a × 3 × 5 ×m and 2a × 3 × 7 ×m when a ≥ 20, since
this is true for every natural number n > 5040 such that 3k | n and 313 - n
for some integer 1 ≤ k ≤ 12 [3]. Hence, we would have

f(2a × 3× 5×m) < eγ × log log(2a × 3× 5×m) < eγ × log log(2a × 3b ×m)

and

f(2a × 3× 7×m) < eγ × log log(2a × 3× 7×m) < eγ × log log(2a × 3b ×m)

when b ≥ 13.

Theorem 8.3 Robins(n) holds for all n > 5040 when a prime number
qm - n for 11 ≤ qm ≤ 47.

Proof We know the Robin’s inequality is true for every natural number
n > 5040 such that 7k | n and 77 - n for some integer 1 ≤ k ≤ 6 [3]. We need
to prove

f(n) < eγ × log log n

when (220 × 313 × 77) | n. Suppose that n = 2a × 3b × 7c ×m, where a ≥ 20,
b ≥ 13, c ≥ 7, 2 - m, 3 - m, 7 - m, qm - m and 11 ≤ qm ≤ 47. Therefore, we
need to prove

f(2a × 3b × 7c ×m) < eγ × log log(2a × 3b × 7c ×m).

We know

f(2a × 3b × 7c ×m) = f(7c)× f(2a × 3b ×m)

since f is multiplicative [6]. In addition, we know f(7c) < 7
6 for every natural

number c [6]. In this way, we have

f(7c)× f(2a × 3b ×m) <
7

6
× f(2a × 3b ×m).

However, that would be equivalent to

49

48
× f(7)× f(2a × 3b ×m) =

49

48
× f(2a × 3b × 7×m)

where f(7) = 8
7 since f is multiplicative [6]. In addition, we know

49

48
×f(2a×3b×7×m) < f(qm)×f(2a×3b×7×m) = f(2a×3b×7×qm×m)

where qm - m, f(qm) = qm+1
qm

and 11 ≤ qm ≤ 47. Nevertheless, we know the

Robin’s inequality is true for 2a × 3b × 7× qm ×m when a ≥ 20 and b ≥ 13,
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since this is true for every natural number n > 5040 such that 7k | n and
77 - n for some integer 1 ≤ k ≤ 6 [3]. Hence, we would have

f(2a×3b×7×qm×m) < eγ×log log(2a×3b×7×qm×m) < eγ×log log(2a×3b×7c×m)

when c ≥ 7 and 11 ≤ qm ≤ 47.

Theorem 8.4 Robins(n) holds for all n > 5040 when a prime number
qm - n for 53 ≤ qm ≤ 113.

Proof We know the Robin’s inequality is true for every natural number
n > 5040 such that 11k | n and 116 - n for some integer 1 ≤ k ≤ 5 [3]. We
need to prove

f(n) < eγ × log log n

when (220×313×116) | n. Suppose that n = 2a×3b×11c×m, where a ≥ 20,
b ≥ 13, c ≥ 6, 2 - m, 3 - m, 11 - m, qm - m and 53 ≤ qm ≤ 113. Therefore, we
need to prove

f(2a × 3b × 11c ×m) < eγ × log log(2a × 3b × 11c ×m).

We know
f(2a × 3b × 11c ×m) = f(11c)× f(2a × 3b ×m)

since f is multiplicative [6]. In addition, we know f(11c) < 11
10 for every

natural number c [6]. In this way, we have

f(11c)× f(2a × 3b ×m) <
11

10
× f(2a × 3b ×m).

However, that would be equivalent to

121

120
× f(11)× f(2a × 3b ×m) =

121

120
× f(2a × 3b × 11×m)

where f(11) = 12
11 since f is multiplicative [6]. In addition, we know

121

120
×f(2a×3b×11×m) < f(qm)×f(2a×3b×11×m) = f(2a×3b×11×qm×m)

where qm - m, f(qm) = qm+1
qm

and 53 ≤ qm ≤ 113. Nevertheless, we know the

Robin’s inequality is true for 2a × 3b × 11× qm ×m when a ≥ 20 and b ≥ 13,
since this is true for every natural number n > 5040 such that 11k | n and
116 - n for some integer 1 ≤ k ≤ 5 [3]. Hence, we would have

f(2a×3b×11×qm×m) < eγ×log log(2a×3b×11×qm×m) < eγ×log log(2a×3b×11c×m)

when c ≥ 6 and 53 ≤ qm ≤ 113.

9 Proof of Main Theorems

Theorem 9.1 Robins(n) holds for all n > 5040 when a prime number
qm - n for qm ≤ 113.

Proof This is a compendium of the results from the Theorems 8.1, 8.2, 8.3
and 8.4.
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Theorem 9.2 Let n > 5040 and n = r× qm, where qm ≥ 113 denotes the
largest prime factor of n. We have checked by computer, if Lagarias(r) holds,
then Lagarias(n) holds.

Proof We need to prove

σ(n) ≤ Hn + exp(Hn)× logHn.

We have that
σ(r) ≤ Hr + exp(Hr)× logHr

since Lagarias(r) holds. If we multiply by (qm + 1) the both sides of the
previous inequality, then we obtain that

σ(r)× (qm + 1) ≤ (qm + 1)×Hr + (qm + 1)× exp(Hr)× logHr.

We know that σ is submultiplicative (that is σ(n) = σ(qm × r) ≤ σ(qm) ×
σ(r)) [1]. Moreover, we know that σ(qm) = (qm + 1). In this way, we obtain
that

σ(n) = σ(qm × r) ≤ (qm + 1)×Hr + (qm + 1)× exp(Hr)× logHr.

Hence, it is enough to prove that

(qm + 1)×Hr + (qm + 1)× exp(Hr)× logHr

≤ Hn + exp(Hn)× logHn

= Hqm×r + exp(Hqm×r)× logHqm×r.

If we apply the lemma 2.3 to the previous inequality, then we could only need
to analyze that

(qm + 1)× log(eγ × (r + 1)) + (qm + 1)× eγ × (r + 1)× log log(eγ × (r + 1))

≤ log(eγ × qm × r) + eγ × qm × r × log log(eγ × qm × r).
This has been checked by computer when the prime qm is the largest prime
factor of n and complies with qm ≥ 113. Indeed, we note by computer that the
behavior of the subtraction between the both sides of this previous inequality
is monotonically increasing as much as qm and r become larger.
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