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Abstract In this paper, we consider the abc conjecture. Firstly, we give an
elementary proof that c < 3rad2(abc). Secondly, the proof of the abc conjecture
is given for ε ≥ 1, then for ε ∈]0, 1[. We choose the constant K(ε) as K(ε) =

3
e .e

(
1

ε2

)
for 0 < ε < 1 and K(ε) = 3 for ε ≥ 1. Some numerical examples are

presented.
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1 Introduction and notations

Let a positive integer a =
∏
i a
αi
i , ai prime integers and αi ≥ 1 positive

integers. We call radical of a the integer
∏
i ai noted by rad(a). Then a is

written as :

a =
∏
i

aαi
i = rad(a).

∏
i

aαi−1
i (1)

We note:

µa =
∏
i

aαi−1
i =⇒ a = µa.rad(a) (2)
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The abc conjecture was proposed independently in 1985 by David Masser of
the University of Basel and Joseph Œsterlé of Pierre et Marie Curie University
(Paris 6) [1]. It describes the distribution of the prime factors of two integers
with those of its sum. The definition of the abc conjecture is given below:

Conjecture 1 ( abc Conjecture): Let a, b, c positive integers relatively prime
with c = a+ b, then for each ε > 0, there exists a constant K(ε) such that :

c < K(ε).rad(abc)1+ε (3)

K(ε) depending only of ε.

The idea to try to write a paper about this conjecture was born after the
publication of an article in Quanta magazine about the remarks of professors
Peter Scholze of the University of Bonn and Jakob Stix of Goethe University
Frankfurt concerning the proof of Shinichi Mochizuki [2]. The difficulty to find
a proof of the abc conjecture is due to the incomprehensibility how the prime
factors are organized in c giving a, b with c = a + b. So, I will give a simple
proof that can be understood by undergraduate students.

We know that numerically,
Logc

Log(rad(abc))
≤ 1.629912 [1]. A conjecture was

proposed that c < rad2(abc) [3]. It is the key to resolve the abc conjecture. In
my paper, I propose an elementary proof that c < 3rad2(abc), it facilitates the
proof of the abc conjecture. The paper is organized as follows: in the second
section, we give the proof that c < 3rad2(abc). In section three, we present the
proof of the abc conjecture. The numerical examples are discussed in sections
four and five.

2 The Proof of c < 3rad2(abc)

Below is given the definition of the conjecture c < rad2(abc):

Conjecture 2 Let a, b, c positive integers relatively prime with c = a + b, a >
b, b ≥ 2, then:

c < rad2(abc) =⇒ Logc

Log(rad(abc))
< 2 (4)

We note R = rad(abc) in the case c = a + b or R = rad(ac) in the case
c = a+ 1. We announce the theorem:

Theorem 1 Let a, b, c (respectively a, c) positive integers relatively prime with
c = a+ b, a > b, b ≥ 2 (respectively c = a+ 1, a ≥ 2), then:

c < 3R2 =⇒ Logc

Log(R)
< 2 +

Log3

Log(R)
(5)
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2.1 Proof of the Theorem 1: c < 3R2

Proof :
** Case c < R: c < R < 3R2 and the condition (5) is verified.

** Case c = R: case to reject.

** Case c > R:
-(i)- with c < R2 =⇒ c < 3R2, and the condition (5) is verified.
-(ii)- with c > R2. Using the theorem of the Euclidean division, we can

write:

c = mR2 +m′, (m,m′) ∈ N2 and 1 ≤ m′ < R2 (6)

with (m,m′) an unique pair, if m′ = 0 =⇒ a, b, c are not relatively prime, then
1 ≤ m′ < R2. We have also :

c = mR2 +m′ < mR2 +R2 =⇒ mR2 < c < (m+ 1)R2 (7)

-If m = 1, we obtain: R2 < c < 2R2 < 3R2 and the condition (5) is verified.

-If m = 2, we obtain: R2 < 2R2 < c < 3R2 and the condition (5) is verified.

We suppose that m ≥ 3 =⇒ 3R2 ≤ mR2 < c < (m+ 1)R2.

Then we obtain that c has an upper bound by the natural number (m +
1)R2. We can write c ≤ (m + 1)R2 − 1, then ∀δ′ ∈]0, 1[, we have c < (m +
1)R2 − 1 + δ′ =⇒ c < (m+ 1)R2 − (1− δ′). Let δ = 1− δ′ with δ ∈]0, 1[ and
we obtain c is bounded as:

mR2 < c < (m+ 1)R2 − δ, ∀ δ ∈]0, 1[,m ≥ 3 (8)

As m ≥ 3, we write (8) as :

mR2 < c < mR2

(
1 +

1

m
− δ

mR2

)
∀ δ ∈]0, 1[,m ≥ 3 (9)

As c = mR2 +m′, m′ < R2, but c > R =⇒ c2 > R2, we obtain also:

c2 = lR2 + l′, l′ < R2 (10)

From the above equations, we can write:

(mR2 +m′)2 = lR2 + l′ =⇒ m2R4 + (2mm′ − l)R2 +m′2 − l′ = 0 (11)

From the last equation above, R2 is the positive root of the polynomial of the
second degree:

F (T ) = m2T 2 + (2mm′ − l)T +m′2 − l′ = 0 (12)
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The discriminant of F (T ) is:

∆ = (2mm′ − l)2 − 4m2(m′2 − l′) (13)

As a real root of F (T ) exists, and it is an integer, ∆ is written as :

∆ = t2 ≥ 0, t ∈ Z+ (14)

** - Case ∆ = 0 and m′2 − l′ 6= 0: Then (2mm′ − l)2 = 4m2(m′2 − l′) =⇒
m′2 − l′ = α2, α ∈ N. In this case the equation (12 has a double root

T1 = T2 =
l − 2mm′

2m2
= R2 =⇒ l − 2mm′ = 2m2R2 > 0. But (l − 2mm′)2 =

4m4R4 = 4m2(m′2 − l′) =⇒ m′2 = m2R4 + l′ > R4 =⇒ m′ > R2. Then the
contradiction as m′ < R2. The case ∆ = 0 and m′2 − l′ 6= 0 is impossible.

** - Case ∆ = 0 and m′2 − l′ = 0: In this case, 2mm′ − l = 0 =⇒ R2 = 0.
Then the contradiction as R > 0. The case∆ = 0 andm′2−l′ = 0 is impossible.

** - Case ∆ > 0 and m′2 − l′ = 0 : The equation (12) becomes:

F (T ) = m2T 2 + (2mm′ − l)T = 0 =⇒

{
T1 = 0

T2 =
l − 2mm′

m2
= R2 (15)

Then, we have:

l − 2mm′ = m2R2 =⇒ l = 2mm′ +m2R2

As m′ < R2 =⇒ l − m2R2 < 2mR2 =⇒ l < 2mR2 + m2R2, we obtain
lR2 < m(2 + m)R4. We deduce that c2 = lR2 + l′ < m(2 + m)R4 + R2. As
m ≥ 3, we write the last equation as:

c < mR2

(
1 +

2

m
+

1

m2R2

)1/2

We announce that ∀δ ∈]0, 1[ we have the inequalities:

mR2 < c < mR2

(
1 +

1

m
− δ

mR2

)
< mR2

(
1 +

2

m
+

1

m2R2

)1/2

(16)

because for m ≥ 3:(
1 +

2

m
+

1

m2R2

)1/2

= 1 +
1

m
+

1

2m2R2
+ h(m,R) with h(m,R) > 0

From (16), we can write for m ≥ 3:(
1 +

2

m
+

1

m2R2

)1/2

> 1 +
1

m
− δ

mR2
=⇒

1 +
2

m
+

1

m2R2
>

(
1 +

1

m
− δ

mR2

)2

=⇒

δ2 − 2R2(m+ 1)δ +R4 −R2 < 0 (17)
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Let Q(X) the polynomial Q(X) = X2 − 2R2(m+ 1)X + R4 − R2. The roots
of Q(X) = 0 are:

X1 = R2(m+ 1) +
√
R4(m2 + 2m) +R2 > X2

X2 = R2(m+ 1)−
√
R4(m2 + 2m) +R2 > 1 > δ (18)

We deduce that Q(δ) > 0 =⇒ δ2 − 2R2(m + 1)δ + R4 − R2 > 0, then the
contradicton with (17), it follows that the case ∆ > 0 and m′2 − l′ = 0 is
impossible in the case c > mR2,m ≥ 3.

** - Case ∆ > 0 and m′2− l′ > 0: We have: ∆ = (2mm′− l)2− 4m2(m′2−
l′) = t2 =⇒ t2 < (2mm′ − l)2. Let the case |2mm′ − l| = 2mm′ − l =⇒ t <
2mm′ − l. The expression of the two roots are:

T1 =
l − 2mm′ + t

2m2
< 0

T2 =
l − 2mm′ − t

2m2
< 0

(19)

As R2 > 0 is a root of F (T ) = 0, then the contradiction. It follows that the
case ∆ > 0 and m′2 − l′ > 0 is impossible in the case c > mR2,m ≥ 3.

** - Case ∆ > 0 and m′2−l′ < 0: From m′2 < l′ =⇒ (c−mR2)2 < c2−lR2,
it gives m2R2 + l − 2mc < 0 =⇒ m2R2 + l < 2mc < 2m(m+ 1)R2. Then we
obtain l < m2R2 + 2mR2 =⇒ lR2 < m(m + 2)R4 =⇒ c2 = lR2 + l′ <
m(m + 2)R4 + R2. We use the same methodology as for the case ∆ > 0 and
m′2 − l′ = 0 seen above. It follows that the case ∆ > 0 and m′2 − l′ < 0 is
impossible in the case c > mR2,m ≥ 3.

All the cases for the resolution of the equation (12) have given contradic-
tions with the hypothesis c > mR2,m ≥ 3. Then we obtain that c < mR2,m ≥
3 =⇒ c < 3R2. Hence the condition (5) is verified.

3 The Proof of the abc conjecture

3.1 Case : ε ≥ 1

Using the result that c < 3R2, we have ∀ε ≥ 1:

c < 3R2 ≤ 3R1+ε ≤ K(ε).R1+ε, with K(ε) = 3, ε ≥ 1 (20)

Then the abc conjecture is true.
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3.2 Case: ε < 1

3.2.1 Case: c < R

In this case, we can write :

c < R < R1+ε < K(ε).R1+ε, with K(ε) =
3

e
e

(
1

ε2

)
, ε < 1 (21)

here also K(ε) > 1 for ε < 1 and the abc conjecture is true.

3.2.2 Case: c > R

In this case, we confirm that :

c < K(ε).R1+ε, with K(ε) =
3

e
e

(
1

ε2

)
, 0 < ε < 1 (22)

If not, then ∃ε0 ∈]0, 1[, so that the triple (a, b, c) checking c > R and:

c ≥ R1+ε0 .K(ε0) (23)

are in finite number. We have:

c ≥ R1+ε0 .K(ε0) =⇒ R1−ε0 .c ≥ R1−ε0 .R1+ε0 .K(ε0) =⇒

R1−ε0 .c ≥ R2.K(ε0) >
c

3
K(ε0) =⇒ R1−ε0 >

1

3
K(ε0) (24)

As c > R, we obtain:

c1−ε0 > R1−ε0 > K(ε0) =⇒

c1−ε0 >
1

3
K(ε0) =⇒ c >

(
1

3
K(ε0)

)( 1

1− ε0

)
(25)

We deduce that it exists an infinity of triples (a, b, c) verifying (23), hence the
contradiction. Then the proof of the abc conjecture is finished. We obtain that
∀ε > 0, c = a+ b with a, b, c relatively coprime:

c < K(ε).rad(abc)1+ε with


K(ε) = 3, ε ≥ 1

K(ε) =
3

e
e

(
1

ε2

)
, 0 < ε < 1

(26)

Q.E.D

In the two following sections, we are going to verify some numerical examples.
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4 Examples : Case c = a + 1

4.1 Example 1

The example is given by:

1 + 5× 127× (2× 3× 7)3 = 196 (27)

a = 5× 127× (2× 3× 7)3 = 47 045 880⇒ µa = 2× 3× 7 = 42 and rad(a) =
2× 3× 5× 7× 127, in this example, µa < rad(a).

c = 196 = 47 045 880 ⇒ rad(c) = 19. Then rad(ac) = rad(ac) = 2 × 3 × 5 ×
7× 19× 127 = 506 730.

We have c > rad(ac) but 3× rad2(ac) = 3× 506 7302 = 256 775 292 900 > c =
47 045 880.

4.1.1 Case ε = 0.01

c < K(ε).rad(ac)1+ε =⇒ 47 045 880
?
< 3

e .e
10000.506 7301.01. The expression of

K(ε) becomes:

K(0.01) =
3

e
.e

1
0.0001 =

3

e
.e10000 =

3

e
×8.7477777149120053120152473488653e+4342

(28)
We deduce that c� K(0.01).506 7301.01 and the equation (26) is verified.

4.1.2 Case ε = 0.1

K(0.1) = 3
e .e

1
0.01 = 3

e .e
100 = 3

e × 2.6879363309671754205917012128876e +
43 =⇒ c < K(0.1)× 506 7301.01, and the equation (26) is verified.

4.1.3 Case ε = 1

K(1) = 3 =⇒ c = 47 045 880 < 3.rad2(ac) = 3×506 7302 = 3×256 775 292 900 =
770 325 878 700 and the equation (26) is verified.

4.1.4 Case ε = 100

K(100) = 3 =⇒ c = 47 045 880
?
< 3× 506 730101 =

3× 1.5222350248607608781853142687284e+ 576

and the equation (26) is verified.
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4.2 Example 2

We give here the example 2 from https : //nitaj.users.lmno.cnrs.fr:

37 × 75 × 135 × 17× 1831 + 1 = 230 × 52 × 127× 353 (29)

a = 37 × 75 × 135 × 17 × 1831 = 424 808 316 456 140 799 ⇒ rad(a) = 3 × 7 ×
13× 17× 1831 = 8497671 =⇒ µa > rad(a),
b = 1, rad(c) = 2 × 5 × 127 × 353 Then rad(ac) = 849767 × 448310 =
3 809 590 886 010 < c, and rad2(ac) = 14 512 982 718 770 456 813 720 100 > c,
then c ≤ 3rad2(ac). For example, we take ε = 0.5, the expression of K(ε)
becomes:

K(ε) = K(0.5) =
3

e
.e1/0.25 =

3

e
.e4 = 60.256489174366656 (30)

Let us verify (26):

c
?
< K(ε).rad(ac)1+ε =⇒ c = 424808316456140800

?
< K(0.5)× (3 809 590 886 010)1.5

=⇒ 424808316456140800 < 448044687923509378550, 01980095551 (31)

Hence (26) is verified.

5 Examples : Case c = a + b

5.1 Example 1

We give here the example of Eric Reyssat [1], it is given by:

310 × 109 + 2 = 235 = 6436343 (32)

a = 310.109⇒ µa = 39 = 19683 and rad(a) = 3× 109,
b = 2⇒ µb = 1 and rad(b) = 2,
c = 235 = 6436343⇒ rad(c) = 23. Then rad(abc) = 2× 3× 109× 23 = 15042.
For example, we take ε = 0.01, the expression of K(ε) becomes:

K(ε) = K(0.01) =
3

e
.e9999.99 =

K(0.01) = 1.078050× 8.7477777149120053120152473488653e+ 4342 (33)

Let us verify (26):

c
?
< K(ε).rad(abc)1+ε =⇒ c = 6436343

?
< K(0.01)× (3× 109× 2× 23)1.01 =⇒

6436343� K(0.01)× 150421.01 (34)

Hence (26) is verified.
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5.2 Example 2

The example of Nitaj about the ABC conjecture [1] is:

a = 1116.132.79 = 613 474 843 408 551 921 511⇒ rad(a) = 11.13.79 (35)

b = 72.412.3113 = 2 477 678 547 239⇒ rad(b) = 7.41.311 (36)

c = 2.33.523.953 = 613 474 845 886 230 468 750⇒ rad(c) = 2.3.5.953 (37)

rad(abc) = 2.3.5.7.11.13.41.79.311.953 = 28 828 335 646 110 (38)

5.2.1 Case 1

we take ε = 100 we have:

c
?
< K(ε).rad(abc)1+ε =⇒

613 474 845 886 230 468 750
?
< 3.(2.3.5.7.11.13.41.79.311.953)101 =⇒

613 474 845 886 230 468 750 < 3× 2.7657949971494838920022381186039e+ 1359

then (26) is verified.

5.2.2 Case 2

We take ε = 0.5, then:

c
?
< K(ε).rad(abc)1+ε =⇒ (39)

613 474 845 886 230 468 750
?
< 3

ee
4.(2.3.5.7.11.13.41.79.311.953)1.5 =⇒

613 474 845 886 230 468 750 < 1.078050× 8 450 961 319 227 998 887 403.99

We obtain that (26) is verified.

5.2.3 Case 3

We take ε = 1, then

c
?
< K(ε).rad(abc)1+ε =⇒

613 474 845 886 230 468 750
?
< 3.(2.3.5.7.11.13.41.79.311.953)2 =⇒

613 474 845 886 230 468 750 < 2 493 218 808 374 329 413 474 396 300 (40)

We obtain that (26) is verified.
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5.3 Example 3

It is of Ralf Bonse about the ABC conjecture [3] :

25434.182587.2802983.85813163 + 215.377.11.173 = 556.245983 (41)

a = 25434.182587.2802983.85813163

b = 215.377.11.173

c = 556.245983

rad(abc) = 2.3.5.11.173.2543.182587.245983.2802983.85813163

rad(abc) = 1.5683959920004546031461002610848e+ 33 (42)

5.3.1 Case 1

For example, we take ε = 10, the expression of K(ε) becomes:

K(ε) = K(10) = 3

Let us verify (26):

c
?
< K(ε).rad(abc)1+ε ⇒ c = 556.245983

?
<

3.(2.3.5.11.173.2543.182587.245983.2802983.85813163)11

=⇒ 3.4136998783296235160378273576498e+ 44 <

4, 2377391100613958689159759468244e+ 365 (43)

The equation (26) is verified.

5.3.2 Case 2

We take ε = 0.4 =⇒ K(ε) = K(0.4) = 13.13332629824440724356000075041,
then: The

c
?
< K(ε).rad(abc)1+ε ⇒ c = 556.245983

?
<

3
e .e

6.25.(2.3.5.11.173.2543.182587.245983.2802983.85813163)1.4

=⇒ 3.4136998783296235160378273576498e+ 44 <

1.07805× 3.6255465680011453642792720569685e+ 47 (44)

And the equation (26) is verified.

Ouf, end of the mystery!
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6 Conclusion

We have given an elementary proof of the abc conjecture, confirmed by some
numerical examples. We can announce the important theorem:

Theorem 2 (David Masser, Joseph Œsterlé & Abdelmajid Ben Hadj Salem;
2019) Let a, b, c positive integers relatively prime with c = a+ b, then for each
ε > 0, there exists K(ε) such that :

c < K(ε).rad(abc)1+ε (45)

where K(ε) is a constant depending of ε proposed as :
K(ε) = 3, ε ≥ 1

K(ε) =
3

e
e

(
1

ε2

)
0 < ε < 1
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