Definitive Proof of The abc Conjecture

Abdelmajid Ben Hadj Salem

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

Definitive Tentative of a Proof of The $a b c$ Conjecture

Abdelmajid Ben Hadj Salem

Received: date / Accepted: date

Abstract In this paper, we consider the $a b c$ conjecture. Firstly, we give an elementary proof that $c<3 \mathrm{rad}^{2}(a b c)$. Secondly, the proof of the $a b c$ conjecture is given for $\epsilon \geq 1$, then for $\epsilon \in] 0,1[$. We choose the constant $K(\epsilon)$ as $K(\epsilon)=$ $\frac{3}{e} . e^{\left(\frac{1}{\epsilon^{2}}\right)}$ for $0<\epsilon<1$ and $K(\epsilon)=3$ for $\epsilon \geq 1$. Some numerical examples are presented.

Keywords Elementary number theory • real functions of one variable.
Mathematics Subject Classification (2000) 11AXX • 26AXX

To the memory of my Father who taught me arithmetic
To the memory of my colleague and friend Jamel Zaiem (1956-2019)

1 Introduction and notations

Let a positive integer $a=\prod_{i} a_{i}^{\alpha_{i}}, a_{i}$ prime integers and $\alpha_{i} \geq 1$ positive integers. We call radical of a the integer $\prod_{i} a_{i}$ noted by $\operatorname{rad}(a)$. Then a is written as :

$$
\begin{equation*}
a=\prod_{i} a_{i}^{\alpha_{i}}=\operatorname{rad}(a) \cdot \prod_{i} a_{i}^{\alpha_{i}-1} \tag{1}
\end{equation*}
$$

We note:

$$
\begin{equation*}
\mu_{a}=\prod_{i} a_{i}^{\alpha_{i}-1} \Longrightarrow a=\mu_{a} \cdot r a d(a) \tag{2}
\end{equation*}
$$

[^0]The $a b c$ conjecture was proposed independently in 1985 by David Masser of the University of Basel and Joseph Esterlé of Pierre et Marie Curie University (Paris 6) [1]. It describes the distribution of the prime factors of two integers with those of its sum. The definition of the $a b c$ conjecture is given below:

Conjecture 1 ($\boldsymbol{a b c}$ Conjecture): Let a, b, c positive integers relatively prime with $c=a+b$, then for each $\epsilon>0$, there exists a constant $K(\epsilon)$ such that:

$$
\begin{equation*}
c<K(\epsilon) \cdot \operatorname{rad}(a b c)^{1+\epsilon} \tag{3}
\end{equation*}
$$

$K(\epsilon)$ depending only of ϵ.
The idea to try to write a paper about this conjecture was born after the publication of an article in Quanta magazine about the remarks of professors Peter Scholze of the University of Bonn and Jakob Stix of Goethe University Frankfurt concerning the proof of Shinichi Mochizuki [2. The difficulty to find a proof of the $a b c$ conjecture is due to the incomprehensibility how the prime factors are organized in c giving a, b with $c=a+b$. So, I will give a simple proof that can be understood by undergraduate students.

We know that numerically, $\frac{\operatorname{Logc}}{\log (\operatorname{rad}(a b c))} \leq 1.629912$ [1]. A conjecture was proposed that $c<\operatorname{rad}^{2}(a b c)$ [3]. It is the key to resolve the $a b c$ conjecture. In my paper, I propose an elementary proof that $c<3 \operatorname{rad}^{2}(a b c)$, it facilitates the proof of the $a b c$ conjecture. The paper is organized as follows: in the second section, we give the proof that $c<3 \operatorname{rad}^{2}(a b c)$. In section three, we present the proof of the $a b c$ conjecture. The numerical examples are discussed in sections four and five.

2 The Proof of $c<3 \operatorname{rad}^{2}(a b c)$

Below is given the definition of the conjecture $c<\operatorname{rad}^{2}(a b c)$:
Conjecture 2 Let a, b, c positive integers relatively prime with $c=a+b, a>$ $b, b \geq 2$, then:

$$
\begin{equation*}
c<\operatorname{rad}^{2}(a b c) \Longrightarrow \frac{\log c}{\log (\operatorname{rad}(a b c))}<2 \tag{4}
\end{equation*}
$$

We note $R=\operatorname{rad}(a b c)$ in the case $c=a+b$ or $R=\operatorname{rad}(a c)$ in the case $c=a+1$. We announce the theorem:

Theorem 1 Let a, b, c (respectively a, c) positive integers relatively prime with $c=a+b, a>b, b \geq 2$ (respectively $c=a+1, a \geq 2$), then:

$$
\begin{equation*}
c<3 R^{2} \Longrightarrow \frac{\log c}{\log (R)}<2+\frac{\log 3}{\log (R)} \tag{5}
\end{equation*}
$$

2.1 Proof of the Theorem 1 $c<3 R^{2}$

Proof :
** Case $c<R: c<R<3 R^{2}$ and the condition (5) is verified.
** Case $c=R$: case to reject.
** Case $c>R$:
-(i)- with $c<R^{2} \Longrightarrow c<3 R^{2}$, and the condition (5) is verified.
-(ii)- with $c>R^{2}$. Using the theorem of the Euclidean division, we can write:

$$
\begin{equation*}
c=m R^{2}+m^{\prime}, \quad\left(m, m^{\prime}\right) \in \mathbb{N}^{2} \quad \text { and } 1 \leq m^{\prime}<R^{2} \tag{6}
\end{equation*}
$$

with $\left(m, m^{\prime}\right)$ an unique pair, if $m^{\prime}=0 \Longrightarrow a, b, c$ are not relatively prime, then $1 \leq m^{\prime}<R^{2}$. We have also :

$$
\begin{equation*}
c=m R^{2}+m^{\prime}<m R^{2}+R^{2} \Longrightarrow m R^{2}<c<(m+1) R^{2} \tag{7}
\end{equation*}
$$

-If $m=1$, we obtain: $R^{2}<c<2 R^{2}<3 R^{2}$ and the condition (5) is verified.
-If $m=2$, we obtain: $R^{2}<2 R^{2}<c<3 R^{2}$ and the condition (5) is verified.
We suppose that $m \geq 3 \Longrightarrow 3 R^{2} \leq m R^{2}<c<(m+1) R^{2}$.
Then we obtain that c has an upper bound by the natural number ($m+$ 1) R^{2}. We can write $c \leq(m+1) R^{2}-1$, then $\left.\forall \delta^{\prime} \in\right] 0,1[$, we have $c<(m+$ 1) $R^{2}-1+\delta^{\prime} \Longrightarrow c<(m+1) R^{2}-\left(1-\delta^{\prime}\right)$. Let $\delta=1-\delta^{\prime}$ with $\left.\delta \in\right] 0,1[$ and we obtain c is bounded as:

$$
\begin{equation*}
\left.m R^{2}<c<(m+1) R^{2}-\delta, \quad \forall \delta \in\right] 0,1[, m \geq 3 \tag{8}
\end{equation*}
$$

As $m \geq 3$, we write (8) as :

$$
\begin{equation*}
\left.m R^{2}<c<m R^{2}\left(1+\frac{1}{m}-\frac{\delta}{m R^{2}}\right) \quad \forall \delta \in\right] 0,1[, m \geq 3 \tag{9}
\end{equation*}
$$

As $c=m R^{2}+m^{\prime}, m^{\prime}<R^{2}$, but $c>R \Longrightarrow c^{2}>R^{2}$, we obtain also:

$$
\begin{equation*}
c^{2}=l R^{2}+l^{\prime}, \quad l^{\prime}<R^{2} \tag{10}
\end{equation*}
$$

From the above equations, we can write:

$$
\begin{equation*}
\left(m R^{2}+m^{\prime}\right)^{2}=l R^{2}+l^{\prime} \Longrightarrow m^{2} R^{4}+\left(2 m m^{\prime}-l\right) R^{2}+m^{\prime 2}-l^{\prime}=0 \tag{11}
\end{equation*}
$$

From the last equation above, R^{2} is the positive root of the polynomial of the second degree:

$$
\begin{equation*}
F(T)=m^{2} T^{2}+\left(2 m m^{\prime}-l\right) T+m^{\prime 2}-l^{\prime}=0 \tag{12}
\end{equation*}
$$

The discriminant of $F(T)$ is:

$$
\begin{equation*}
\Delta=\left(2 m m^{\prime}-l\right)^{2}-4 m^{2}\left(m^{\prime 2}-l^{\prime}\right) \tag{13}
\end{equation*}
$$

As a real root of $F(T)$ exists, and it is an integer, Δ is written as :

$$
\begin{equation*}
\Delta=t^{2} \geq 0, t \in \mathbb{Z}^{+} \tag{14}
\end{equation*}
$$

** - Case $\Delta=0$ and $m^{\prime 2}-l^{\prime} \neq 0$: Then $\left(2 m m^{\prime}-l\right)^{2}=4 m^{2}\left(m^{\prime 2}-l^{\prime}\right) \Longrightarrow$ $m^{\prime 2}-l^{\prime}=\alpha^{2}, \alpha \in \mathbb{N}$. In this case the equation 12 has a double root $T_{1}=T_{2}=\frac{l-2 m m^{\prime}}{2 m^{2}}=R^{2} \Longrightarrow l-2 m m^{\prime}=2 m^{2} R^{2}>0$. But $\left(l-2 m m^{\prime}\right)^{2}=$ $4 m^{4} R^{4}=4 m^{2}\left(m^{\prime 2}-l^{\prime}\right) \Longrightarrow m^{\prime 2}=m^{2} R^{4}+l^{\prime}>R^{4} \Longrightarrow m^{\prime}>R^{2}$. Then the contradiction as $m^{\prime}<R^{2}$. The case $\Delta=0$ and $m^{\prime 2}-l^{\prime} \neq 0$ is impossible.
** - Case $\Delta=0$ and $m^{\prime 2}-l^{\prime}=0$: In this case, $2 m m^{\prime}-l=0 \Longrightarrow R^{2}=0$. Then the contradiction as $R>0$. The case $\Delta=0$ and $m^{\prime 2}-l^{\prime}=0$ is impossible.
** - Case $\Delta>0$ and $m^{\prime 2}-l^{\prime}=0$: The equation 12 becomes:

$$
F(T)=m^{2} T^{2}+\left(2 m m^{\prime}-l\right) T=0 \Longrightarrow\left\{\begin{array}{l}
T_{1}=0 \tag{15}\\
T_{2}=\frac{l-2 m m^{\prime}}{m^{2}}=R^{2}
\end{array}\right.
$$

Then, we have:

$$
l-2 m m^{\prime}=m^{2} R^{2} \Longrightarrow l=2 m m^{\prime}+m^{2} R^{2}
$$

As $m^{\prime}<R^{2} \Longrightarrow l-m^{2} R^{2}<2 m R^{2} \Longrightarrow l<2 m R^{2}+m^{2} R^{2}$, we obtain $l R^{2}<m(2+m) R^{4}$. We deduce that $c^{2}=l R^{2}+l^{\prime}<m(2+m) R^{4}+R^{2}$. As $m \geq 3$, we write the last equation as:

$$
c<m R^{2}\left(1+\frac{2}{m}+\frac{1}{m^{2} R^{2}}\right)^{1 / 2}
$$

We announce that $\forall \delta \in] 0,1[$ we have the inequalities:

$$
\begin{equation*}
m R^{2}<c<m R^{2}\left(1+\frac{1}{m}-\frac{\delta}{m R^{2}}\right)<m R^{2}\left(1+\frac{2}{m}+\frac{1}{m^{2} R^{2}}\right)^{1 / 2} \tag{16}
\end{equation*}
$$

because for $m \geq 3$:

$$
\left(1+\frac{2}{m}+\frac{1}{m^{2} R^{2}}\right)^{1 / 2}=1+\frac{1}{m}+\frac{1}{2 m^{2} R^{2}}+h(m, R) \quad \text { with } h(m, R)>0
$$

From (16), we can write for $m \geq 3$:

$$
\begin{array}{r}
\left(1+\frac{2}{m}+\frac{1}{m^{2} R^{2}}\right)^{1 / 2}>1+\frac{1}{m}-\frac{\delta}{m R^{2}} \Longrightarrow \\
1+\frac{2}{m}+\frac{1}{m^{2} R^{2}}>\left(1+\frac{1}{m}-\frac{\delta}{m R^{2}}\right)^{2} \Longrightarrow \\
\delta^{2}-2 R^{2}(m+1) \delta+R^{4}-R^{2}<0 \tag{17}
\end{array}
$$

Let $Q(X)$ the polynomial $Q(X)=X^{2}-2 R^{2}(m+1) X+R^{4}-R^{2}$. The roots of $Q(X)=0$ are:

$$
\begin{array}{r}
X_{1}=R^{2}(m+1)+\sqrt{R^{4}\left(m^{2}+2 m\right)+R^{2}}>X_{2} \\
X_{2}=R^{2}(m+1)-\sqrt{R^{4}\left(m^{2}+2 m\right)+R^{2}}>1>\delta \tag{18}
\end{array}
$$

We deduce that $Q(\delta)>0 \Longrightarrow \delta^{2}-2 R^{2}(m+1) \delta+R^{4}-R^{2}>0$, then the contradicton with (17), it follows that the case $\Delta>0$ and $m^{\prime 2}-l^{\prime}=0$ is impossible in the case $c>m R^{2}, m \geq 3$.
${ }^{* *}$ - Case $\Delta>0$ and $m^{\prime 2}-l^{\prime}>0$: We have: $\Delta=\left(2 m m^{\prime}-l\right)^{2}-4 m^{2}\left(m^{\prime 2}-\right.$ $\left.l^{\prime}\right)=t^{2} \Longrightarrow t^{2}<\left(2 m m^{\prime}-l\right)^{2}$. Let the case $\left|2 m m^{\prime}-l\right|=2 m m^{\prime}-l \Longrightarrow t<$ $2 \mathrm{~mm}^{\prime}-l$. The expression of the two roots are:

$$
\left\{\begin{array}{l}
T_{1}=\frac{l-2 m m^{\prime}+t}{2 m^{2}}<0 \tag{19}\\
T_{2}=\frac{l-2 m m^{\prime}-t}{2 m^{2}}<0
\end{array}\right.
$$

As $R^{2}>0$ is a root of $F(T)=0$, then the contradiction. It follows that the case $\Delta>0$ and $m^{\prime 2}-l^{\prime}>0$ is impossible in the case $c>m R^{2}, m \geq 3$.
${ }^{* *}$ - Case $\Delta>0$ and $m^{\prime 2}-l^{\prime}<0$: From $m^{\prime 2}<l^{\prime} \Longrightarrow\left(c-m R^{2}\right)^{2}<c^{2}-l R^{2}$, it gives $m^{2} R^{2}+l-2 m c<0 \Longrightarrow m^{2} R^{2}+l<2 m c<2 m(m+1) R^{2}$. Then we obtain $l<m^{2} R^{2}+2 m R^{2} \Longrightarrow l R^{2}<m(m+2) R^{4} \Longrightarrow c^{2}=l R^{2}+l^{\prime}<$ $m(m+2) R^{4}+R^{2}$. We use the same methodology as for the case $\Delta>0$ and $m^{\prime 2}-l^{\prime}=0$ seen above. It follows that the case $\Delta>0$ and $m^{\prime 2}-l^{\prime}<0$ is impossible in the case $c>m R^{2}, m \geq 3$.

All the cases for the resolution of the equation 12 have given contradictions with the hypothesis $c>m R^{2}, m \geq 3$. Then we obtain that $c<m R^{2}, m \geq$ $3 \Longrightarrow c<3 R^{2}$. Hence the condition (5) is verified.

3 The Proof of the $a b c$ conjecture

3.1 Case : $\epsilon \geq 1$

Using the result that $c<3 R^{2}$, we have $\forall \epsilon \geq 1$:

$$
\begin{equation*}
c<3 R^{2} \leq 3 R^{1+\epsilon} \leq K(\epsilon) \cdot R^{1+\epsilon}, \text { with } K(\epsilon)=3, \epsilon \geq 1 \tag{20}
\end{equation*}
$$

Then the $a b c$ conjecture is true.
3.2 Case: $\epsilon<1$

3.2.1 Case: $c<R$

In this case, we can write :

$$
\begin{equation*}
c<R<R^{1+\epsilon}<K(\epsilon) \cdot R^{1+\epsilon}, \text { with } K(\epsilon)=\frac{3}{e} e^{\left(\frac{1}{\epsilon^{2}}\right)}, \epsilon<1 \tag{21}
\end{equation*}
$$

here also $K(\epsilon)>1$ for $\epsilon<1$ and the $a b c$ conjecture is true.

3.2.2 Case: $c>R$

In this case, we confirm that :

$$
\begin{equation*}
c<K(\epsilon) \cdot R^{1+\epsilon}, \quad \text { with } K(\epsilon)=\frac{3}{e} e^{\left(\frac{1}{\epsilon^{2}}\right)}, 0<\epsilon<1 \tag{22}
\end{equation*}
$$

If not, then $\left.\exists \epsilon_{0} \in\right] 0,1[$, so that the triple (a, b, c) checking $c>R$ and:

$$
\begin{equation*}
c \geq R^{1+\epsilon_{0}} \cdot K\left(\epsilon_{0}\right) \tag{23}
\end{equation*}
$$

are in finite number. We have:

$$
\begin{align*}
c \geq & R^{1+\epsilon_{0}} \cdot K\left(\epsilon_{0}\right) \Longrightarrow R^{1-\epsilon_{0}} \cdot c \geq R^{1-\epsilon_{0}} \cdot R^{1+\epsilon_{0}} \cdot K\left(\epsilon_{0}\right) \Longrightarrow \\
& R^{1-\epsilon_{0}} \cdot c \geq R^{2} \cdot K\left(\epsilon_{0}\right)>\frac{c}{3} K\left(\epsilon_{0}\right) \Longrightarrow R^{1-\epsilon_{0}}>\frac{1}{3} K\left(\epsilon_{0}\right) \tag{24}
\end{align*}
$$

As $c>R$, we obtain:

$$
\begin{array}{r}
c^{1-\epsilon_{0}}>R^{1-\epsilon_{0}}>K\left(\epsilon_{0}\right) \Longrightarrow \\
c^{1-\epsilon_{0}}>\frac{1}{3} K\left(\epsilon_{0}\right) \Longrightarrow c>\left(\frac{1}{3} K\left(\epsilon_{0}\right)\right)^{\left(\frac{1}{1-\epsilon_{0}}\right)} \tag{25}
\end{array}
$$

We deduce that it exists an infinity of triples (a, b, c) verifying (23), hence the contradiction. Then the proof of the $a b c$ conjecture is finished. We obtain that $\forall \epsilon>0, c=a+b$ with a, b, c relatively coprime:

$$
c<K(\epsilon) \cdot \operatorname{rad}(a b c)^{1+\epsilon} \text { with }\left\{\begin{array}{l}
K(\epsilon)=3, \quad \epsilon \geq 1 \tag{26}\\
K(\epsilon)=\frac{3}{e} e
\end{array}\right.
$$

Q.E.D

In the two following sections, we are going to verify some numerical examples.

4 Examples : Case $c=a+1$
4.1 Example 1

The example is given by:

$$
\begin{equation*}
1+5 \times 127 \times(2 \times 3 \times 7)^{3}=19^{6} \tag{27}
\end{equation*}
$$

$a=5 \times 127 \times(2 \times 3 \times 7)^{3}=47045880 \Rightarrow \mu_{a}=2 \times 3 \times 7=42$ and $\operatorname{rad}(a)=$ $2 \times 3 \times 5 \times 7 \times 127$, in this example, $\mu_{a}<\operatorname{rad}(a)$.
$c=19^{6}=47045880 \Rightarrow \operatorname{rad}(c)=19$. Then $\operatorname{rad}(a c)=\operatorname{rad}(a c)=2 \times 3 \times 5 \times$ $7 \times 19 \times 127=506730$.
We have $c>\operatorname{rad}(a c)$ but $3 \times \operatorname{rad}^{2}(a c)=3 \times 506730^{2}=256775292900>c=$ 47045880.

4.1.1 Case $\epsilon=0.01$

$c<K(\epsilon) \cdot \operatorname{rad}(a c)^{1+\epsilon} \Longrightarrow 47045880 \stackrel{?}{<} \frac{3}{e} \cdot e^{10000} .506730^{1.01}$. The expression of $K(\epsilon)$ becomes:
$K(0.01)=\frac{3}{e} . e^{\frac{1}{0.0001}}=\frac{3}{e} . e^{10000}=\frac{3}{e} \times 8.7477777149120053120152473488653 e+4342$
We deduce that $c \ll K(0.01) .506730^{1.01}$ and the equation 26 is verified.
4.1.2 Case $\epsilon=0.1$
$K(0.1)=\frac{3}{e} \cdot e^{\frac{1}{0.01}}=\frac{3}{e} \cdot e^{100}=\frac{3}{e} \times 2.6879363309671754205917012128876 e+$ $43 \Longrightarrow c<K(0.1) \times 506730^{1.01}$, and the equation 26 is verified.

4.1.3 Case $\epsilon=1$

$K(1)=3 \Longrightarrow c=47045880<3 \cdot \operatorname{rad}^{2}(a c)=3 \times 506730^{2}=3 \times 256775292900=$ 770325878700 and the equation (26) is verified.
4.1.4 Case $\epsilon=100$

$$
\begin{aligned}
& K(100)=3 \Longrightarrow c=47045880 \stackrel{?}{<} 3 \times 506730^{101}= \\
& 3 \times 1.5222350248607608781853142687284 e+576
\end{aligned}
$$

and the equation 26 is verified.

4.2 Example 2

We give here the example 2 from https://nitaj.users.lmno.cnrs.fr:

$$
\begin{equation*}
3^{7} \times 7^{5} \times 13^{5} \times 17 \times 1831+1=2^{30} \times 5^{2} \times 127 \times 353 \tag{29}
\end{equation*}
$$

$a=3^{7} \times 7^{5} \times 13^{5} \times 17 \times 1831=424808316456140799 \Rightarrow \operatorname{rad}(a)=3 \times 7 \times$ $13 \times 17 \times 1831=8497671 \Longrightarrow \mu_{a}>\operatorname{rad}(a)$,
$b=1, \operatorname{rad}(c)=2 \times 5 \times 127 \times 353$ Then $\operatorname{rad}(a c)=849767 \times 448310=$ $3809590886010<c$, and $\operatorname{rad}^{2}(a c)=14512982718770456813720100>c$, then $c \leq 3 \mathrm{rad}^{2}(a c)$. For example, we take $\epsilon=0.5$, the expression of $K(\epsilon)$ becomes:

$$
\begin{equation*}
K(\epsilon)=K(0.5)=\frac{3}{e} . e^{1 / 0.25}=\frac{3}{e} . e^{4}=60.256489174366656 \tag{30}
\end{equation*}
$$

Let us verify 26):

$$
\begin{gather*}
c \stackrel{?}{<} K(\epsilon) \cdot \operatorname{rad}(a c)^{1+\epsilon} \Longrightarrow c=424808316456140800 \stackrel{?}{<} K(0.5) \times(3809590886010)^{1.5} \\
\Longrightarrow 424808316456140800<448044687923509378550,01980095551 \tag{31}
\end{gather*}
$$

Hence (26) is verified.

5 Examples: Case $c=a+b$

5.1 Example 1

We give here the example of Eric Reyssat [1], it is given by:

$$
\begin{equation*}
3^{10} \times 109+2=23^{5}=6436343 \tag{32}
\end{equation*}
$$

$a=3^{10} .109 \Rightarrow \mu_{a}=3^{9}=19683$ and $\operatorname{rad}(a)=3 \times 109$,
$b=2 \Rightarrow \mu_{b}=1$ and $\operatorname{rad}(b)=2$,
$c=23^{5}=6436343 \Rightarrow \operatorname{rad}(c)=23$. Then $\operatorname{rad}(a b c)=2 \times 3 \times 109 \times 23=15042$.
For example, we take $\epsilon=0.01$, the expression of $K(\epsilon)$ becomes:

$$
K(\epsilon)=K(0.01)=\frac{3}{e} . e^{9999.99}=
$$

$$
K(0.01)=1.078050 \times 8.7477777149120053120152473488653 e+4342
$$

Let us verify 26):

$$
\begin{gather*}
c \stackrel{?}{<} K(\epsilon) \cdot r a d(a b c)^{1+\epsilon} \Longrightarrow c=6436343 \stackrel{?}{<} K(0.01) \times(3 \times 109 \times 2 \times 23)^{1.01} \Longrightarrow \\
6436343 \ll K(0.01) \times 15042^{1.01} \tag{34}
\end{gather*}
$$

Hence (26) is verified.

5.2 Example 2

The example of Nitaj about the ABC conjecture [1] is:

$$
\begin{array}{r}
a=11^{16} .13^{2} .79=613474843408551921511 \Rightarrow \operatorname{rad}(a)=11.13 .79 \\
b=7^{2} .41^{2} .311^{3}=2477678547239 \Rightarrow \operatorname{rad}(b)=7.41 .311 \\
c=2.3^{3} .5^{23} .953=613474845886230468750 \Rightarrow \operatorname{rad}(c)=2.3 .5 .953 \\
\operatorname{rad}(a b c)=2.3 .5 .7 .11 .13 .41 .79 .311 .953=28828335646110
\end{array}
$$

5.2.1 Case 1

we take $\epsilon=100$ we have:

$$
\begin{aligned}
& \qquad c \stackrel{?}{<} K(\epsilon) \cdot r a d(a b c)^{1+\epsilon} \Longrightarrow \\
& 613474845886230468750 \stackrel{?}{<} 3 \cdot(2.3 \cdot 5 \cdot 7 \cdot 11 \cdot 13.41 \cdot 79.311 .953)^{101} \Longrightarrow \\
& 613474845886230468750<3 \times 2.7657949971494838920022381186039 e+1359 \\
& \text { then (26) is verified. }
\end{aligned}
$$

5.2.2 Case 2

We take $\epsilon=0.5$, then:

$$
\begin{equation*}
c \stackrel{?}{<} K(\epsilon) \cdot \operatorname{rad}(a b c)^{1+\epsilon} \Longrightarrow \tag{39}
\end{equation*}
$$

$613474845886230468750 \stackrel{?}{<} \frac{3}{e} e^{4} \cdot(2.3 .5 \cdot 7.11 .13 .41 .79 .311 .953)^{1.5} \Longrightarrow$

$$
613474845886230468750<1.078050 \times 8450961319227998887403.99
$$

We obtain that (26) is verified.

5.2.3 Case 3

We take $\epsilon=1$, then

$$
\begin{gathered}
c \stackrel{?}{<} K(\epsilon) \cdot \operatorname{rad}(a b c)^{1+\epsilon} \Longrightarrow \\
613474845886230468750 \stackrel{?}{<} 3 \cdot(2.3 \cdot 5 \cdot 7 \cdot 11.13 .41 .79 .311 .953)^{2} \Longrightarrow \\
613474845886230468750<2493218808374329413474396300
\end{gathered}
$$

We obtain that (26) is verified.
5.3 Example 3

It is of Ralf Bonse about the ABC conjecture [3]

$$
\begin{gather*}
2543^{4} .182587 .2802983 .85813163+2^{15} .3^{77} .11 .173=5^{56} .245983 \tag{41}\\
a=2543^{4} .182587 .2802983 .85813163 \\
b=2^{15} .3^{77} .11 .173 \\
c=5^{56} .245983
\end{gather*}
$$

$\operatorname{rad}(a b c)=2.3 .5 .11 .173 .2543 .182587 .245983 .2802983 .85813163$ $\operatorname{rad}(a b c)=1.5683959920004546031461002610848 e+33$

5.3.1 Case 1

For example, we take $\epsilon=10$, the expression of $K(\epsilon)$ becomes:

$$
K(\epsilon)=K(10)=3
$$

Let us verify 26):

$$
\begin{gather*}
c \stackrel{?}{<} K(\epsilon) \cdot \operatorname{rad}(a b c)^{1+\epsilon} \Rightarrow c=5^{56} \cdot 245983 \stackrel{?}{<} \\
3 .(2.3 .5 \cdot 11 \cdot 173.2543 .182587 .245983 .2802983 .85813163)^{11} \\
\Longrightarrow 3.4136998783296235160378273576498 e+44< \\
4,2377391100613958689159759468244 e+365 \tag{43}
\end{gather*}
$$

The equation 26 is verified.

5.3.2 Case 2

We take $\epsilon=0.4 \Longrightarrow K(\epsilon)=K(0.4)=13.13332629824440724356000075041$, then: The

$$
\begin{gather*}
c \stackrel{?}{<} K(\epsilon) \cdot \operatorname{rad}(a b c)^{1+\epsilon} \Rightarrow c=5^{56} \cdot 245983 \stackrel{?}{<} \\
\frac{3}{e} \cdot e^{6.25} \cdot(2.3 .5 \cdot 11.173 .2543 .182587 .245983 .2802983 .85813163)^{1.4} \\
\Longrightarrow 3.4136998783296235160378273576498 e+44< \\
1.07805 \times 3.6255465680011453642792720569685 e+47 \tag{44}
\end{gather*}
$$

And the equation (26) is verified.
Ouf, end of the mystery!

6 Conclusion

We have given an elementary proof of the $a b c$ conjecture, confirmed by some numerical examples. We can announce the important theorem:

Theorem 2 (David Masser, Joseph Esterlé \mathfrak{E} Abdelmajid Ben Hadj Salem; 2019) Let a, b, c positive integers relatively prime with $c=a+b$, then for each $\epsilon>0$, there exists $K(\epsilon)$ such that :

$$
\begin{equation*}
c<K(\epsilon) \cdot \operatorname{rad}(a b c)^{1+\epsilon} \tag{45}
\end{equation*}
$$

where $K(\epsilon)$ is a constant depending of ϵ proposed as :

$$
\left\{\begin{array}{l}
K(\epsilon)=3, \quad \epsilon \geq 1 \\
K(\epsilon)=\frac{3}{e} e^{\left(\frac{1}{\epsilon^{2}}\right)} \quad 0<\epsilon<1
\end{array}\right.
$$

Acknowledgements The author is very grateful to Professors Mihăilescu Preda and Gérald Tenenbaum for their comments about errors found in previous manuscripts concerning proofs proposed of the $a b c$ conjecture.

References

1. Waldschmidt, M.: On the abc Conjecture and some of its consequences presented at The 6th World Conference on 21st Century Mathematics, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore (Pakistan), March 6-9, 2013. (2013)
2. Klaus Kremmerz, K.: Quanta Magazine. Titans of Mathematics Clash Over Epic Proof of ABC Conjecture. The Quanta Newsletter, 20 September 2018. www.quantamagazine.org. (2018).
3. Mihăilescu, P.: Around ABC. European Mathematical Society Newsletter N ${ }^{\circ}$ 93, September 2014. 29-34, (2014)

[^0]: Abdelmajid Ben Hadj Salem
 Tunis, Tunisia
 E-mail: abenhadjsalem@gmail.com
 Orcid.ID:0000-0002-9633-3330

