On the Tractability of Un/Satisfiability

Latif Salum

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

On the Tractability of Un/Satisfiability

Latif Salum (c)
Department of Industrial Engineering, Dokuz Eylül University, Izmir, Turkey
latif.salum@deu.edu.tr \& latif.salum@gmail.com

Abstract

- Abstract

This paper shows $\mathbf{P}=\mathbf{N P}$ via exactly-1 3SAT (X3SAT). $C_{k}=\left(r_{i} \odot r_{j} \odot r_{u}\right)$ denotes a clause, an exactly-1 disjunction \odot of literals, such that $\phi=\bigwedge C_{k}$, an X3SAT formula. $\phi\left(r_{j}\right):=r_{j} \wedge \phi$ denotes that the literal r_{j} is true, $r_{j} \in\left\{x_{j}, \bar{x}_{j}\right\}$. This truth assignment leads to reductions due to \odot of any $C_{k}=\left(r_{j} \odot \bar{x}_{i} \odot x_{u}\right)$ into $c_{k}=r_{j} \wedge x_{i} \wedge \bar{x}_{u}$, and $C_{k}=\left(\bar{r}_{j} \odot r_{u} \odot r_{v}\right)$ into $C_{k^{\prime}}=\left(r_{u} \odot r_{v}\right)$. As a result, $\phi\left(r_{j}\right):=r_{j} \wedge \phi$ transforms into $\phi\left(r_{j}\right)=\psi\left(r_{j}\right) \wedge \phi^{\prime}\left(r_{j}\right)$, unless $\psi\left(r_{j}\right)$ involves $x_{i} \wedge \bar{x}_{i}$, that is, unless $\not \vDash \psi\left(r_{j}\right)$. Then, $\psi\left(r_{j}\right)=\bigwedge\left(c_{k} \wedge C_{k^{\prime}}\right)$ such that $C_{k^{\prime}}=r_{i}$, and $\phi^{\prime}\left(r_{j}\right)=\bigwedge\left(C_{k} \wedge C_{k^{\prime}}\right)$. Thus, $\psi\left(r_{j}\right)$ and $\phi^{\prime}\left(r_{j}\right)$ are disjoint. It is trivial to check if $\not \vDash \psi\left(r_{j}\right)$, and redundant to check if $\not \vDash \phi^{\prime}\left(r_{j}\right)$, in order to verify $\not \vDash \phi\left(r_{j}\right)$. Proof of this redundancy is sketched as follows. $\psi\left(r_{i}\right)$ is true, $\psi\left(r_{i}\right) \models \psi\left(r_{i} \mid r_{j}\right)$ holds, hence $\psi\left(r_{i} \mid r_{j}\right)$ is true for every r_{i}, because each r_{j} such that $\not \vDash \psi\left(r_{j}\right)$ is removed from ϕ. Then, any \bar{r}_{j} consists in ψ so that ϕ transforms into $\psi \wedge \phi^{\prime}$. If ψ involves $x_{j} \wedge \bar{x}_{j}$, then $\nLeftarrow \phi$. Otherwise, ϕ is satisfied, since any $\psi($.$) is disjoint and true, and \psi\left(r_{i_{0}}\right), \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \ldots, \psi\left(r_{i_{n}} \mid r_{i_{m}}\right)$ compose ϕ. Thus, $\phi^{\prime}\left(r_{j}\right)$ is satisfied, since $\left(r_{j} \wedge \phi\right) \equiv\left(\psi\left(r_{j}\right) \wedge \phi^{\prime}\left(r_{j}\right)\right)$. The time complexity is $O\left(m n^{3}\right)$, hence $\mathbf{P}=\mathbf{N P}$.

2012 ACM Subject Classification Theory of computation \rightarrow Complexity theory and logic Keywords and phrases P vs NP, NP-complete, 3SAT, one-in-three SAT, exactly-1 3SAT, X3SAT

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23 Acknowledgements

1 Introduction: Effectiveness of X3SAT in proving $\mathbf{P}=\mathrm{NP}$

\mathbf{P} vs NP is the most notorious problem in theoretical computer science. It is well known that $\mathbf{P}=\mathbf{N P}$, if there exists a polynomial time algorithm for any one of NP-complete problems, since algorithmic efficiency of these problems is equivalent. Nevertheless, some NP-complete problem features algorithmic effectiveness, if it incorporates an effective tool to develop an efficient algorithm. That is, a particular problem can be more effective to prove $\mathbf{P}=\mathbf{N P}$.

This paper shows that one-in-three SAT, which is NP-complete [2], features algorithmic effectiveness to prove $\mathbf{P}=\mathbf{N P}$. This problem is also known as exactly-1 3SAT (X3SAT). X3SAT incorporates "exactly-1 disjunction \odot ", the tool used to develop a polynomial time algorithm. It facilitates checking incompatibility of a literal r_{j} for satisfying some formula ϕ. When every r_{j} incompatible is removed, ϕ becomes un/satisfiable. Thus, each r_{i} becomes compatible to participate in some satisfiable assignment. Then, an assignment is constructed.

The truth assignment $r_{j}=\mathbf{T}$ (or r_{j}) is incompatible if $\phi\left(r_{j}\right)$ is unsatisfiable, denoted by $\not \vDash \phi\left(r_{j}\right)$, where $\phi\left(r_{j}\right):=r_{j} \wedge \phi$, and $r_{j} \in\left\{x_{j}, \bar{x}_{j}\right\}$. Then, the ϕ scan algorithm, introduced below, "scans" ϕ by checking incompatibility of every r_{i}, and removing each r_{j} incompatible.

Let $\phi=C_{1} \wedge \cdots \wedge C_{m}$ be any X3SAT formula such that a clause $C_{k}=\left(r_{i} \odot r_{j} \odot r_{u}\right)$ is an exactly-1 disjunction \odot of literals r_{i}, hence satisfied iff exactly one of $\left\{r_{i}, r_{j}, r_{u}\right\}$ is true. Note that a clause $\left(r_{i} \vee r_{j} \vee r_{u}\right)$ in a 3SAT formula is satisfied iff at least one of them is true.

Incompatibility of r_{j} is checked by a deterministic chain of reductions of any C_{k} in $\phi\left(r_{j}\right)$, which is constructed via \odot. This chain is initiated by $r_{j}=\mathbf{T}$, and followed by $\neg \bar{r}_{j}$, because $r_{j} \Rightarrow \neg \bar{r}_{j}$. That is, each $\left(r_{j} \odot \bar{x}_{i} \odot x_{u}\right)$ collapses to $\left(r_{j} \wedge x_{i} \wedge \bar{x}_{u}\right)$ due to $r_{j} \Rightarrow r_{j} \wedge \neg \bar{x}_{i} \wedge \neg x_{u}$, since there exists exactly one true literal in any clause C_{k} by the definition of X3SAT. Also, each $\left(\bar{r}_{j} \odot \bar{x}_{u} \odot x_{v}\right)$ shrinks to $\left(\bar{x}_{u} \odot x_{v}\right)$ due to $\neg \bar{r}_{j}$. Thus, r_{j} transforms $\phi\left(r_{j}\right):=r_{j} \wedge \phi$ into $\phi\left(r_{j}\right)=r_{j} \wedge x_{i} \wedge \bar{x}_{u} \wedge \phi^{*}$, and $x_{i} \wedge \bar{x}_{u}$ proceeds the reductions in ϕ^{*}, which involves $\left(\bar{x}_{u} \odot x_{v}\right)$.

The reductions over $\phi_{s}\left(r_{j}\right)$ terminate iff $r_{j} \wedge \phi_{s}$ transforms into $\psi_{s}\left(r_{j}\right) \wedge \phi_{s}^{\prime}\left(r_{j}\right)$ such that $\psi_{s}\left(r_{j}\right)$ and $\phi_{s}^{\prime}\left(r_{j}\right)$ are disjoint, where s denotes the current scan, and $\psi_{s}\left(r_{j}\right)$ is a conjunction of literals that are true. They are interrupted iff $\psi_{s}\left(r_{j}\right)$ involves $x_{i} \wedge \bar{x}_{i}$, thus $\not \vDash \phi_{s}\left(r_{j}\right)$, that is, r_{j} is incompatible. By assumption, $\not \models \phi_{s}\left(r_{j}\right)$ is verified solely via $\not \models \psi_{s}\left(r_{j}\right)$ (see Figure 1).

The reductions over ϕ terminate iff ϕ transforms into $\psi \wedge \phi^{\prime}$ such that ψ and ϕ^{\prime} are disjoint, where $\psi=\bar{x}_{i} \wedge x_{u} \wedge \cdots \wedge \bar{x}_{v}$ (see Figure 1). Then, ϕ is updated, that is, $\phi \leftarrow \phi^{\prime}$. The ϕ_{s} scan is interrupted iff ψ_{s} involves $x_{i} \wedge \bar{x}_{i}$ for some s and i, thus $\not \models \phi$, that is, ϕ is unsatisfiable.

Figure 1 The ϕ_{s} scan: $\not \vDash \phi_{s}\left(r_{j}\right)$ is verified solely by $\not \vDash \psi_{s}\left(r_{j}\right)$, and whether $\not \vDash \phi_{s}^{\prime}\left(r_{j}\right)$ is ignored
\triangleright Claim 1. It is redundant to check if $\not \models \phi_{s}^{\prime}\left(r_{j}\right)$, thus $\not \models \phi\left(r_{j}\right)$ iff $\not \models \phi_{s}\left(r_{j}\right)$ iff $\not \models \psi_{s}\left(r_{j}\right)$ for some s. As a result, $\phi\left(r_{i}\right)$ reduces to $\psi\left(r_{i}\right)$ from $\phi\left(r_{i}\right)=\psi\left(r_{i}\right) \wedge \phi^{\prime}\left(r_{i}\right)$, thus $\psi\left(r_{i}\right) \equiv \phi\left(r_{i}\right)$. Therefore, ϕ is satisfiable iff any truth assignment $\psi\left(r_{i}\right)$ holds (the scan terminates).

Sketch of proof. $\psi\left(r_{i}\right) / \psi\left(r_{i} \mid r_{j}\right)$ is constructed over $\phi / \phi^{\prime}\left(r_{j}\right)$, thus $\psi\left(r_{i}\right)$ covers $\psi\left(r_{i} \mid r_{j}\right)$, hence $\psi\left(r_{i}\right) \models \psi\left(r_{i} \mid r_{j}\right)$ holds. Because $\psi\left(r_{j}\right)$ and $\phi^{\prime}\left(r_{j}\right)$ are disjoint, $\psi\left(r_{j}\right)$ and $\psi\left(r_{i} \mid r_{j}\right)$ are disjoint (see Figure 2). Therefore, $\psi\left(r_{i_{0}}\right), \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \psi\left(r_{i_{2}} \mid r_{i_{0}}, r_{i_{1}}\right)$, and $\psi\left(r_{i_{3}} \mid r_{i_{0}}, r_{i_{1}}, r_{i_{2}}\right)$ form disjoint minterms $\psi()=.\bigwedge r_{i}$ over ϕ such that $\psi\left(r_{i_{0}}\right), \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \psi\left(r_{i_{2}} \mid r_{i_{0}}, r_{i_{1}}\right)$, and $\psi\left(r_{i_{3}} \mid r_{i_{0}}, r_{i_{1}}, r_{i_{2}}\right)$ are true, because $\psi\left(r_{i}\right)$ is true for every r_{i} (the ϕ scan terminates), and $\psi\left(r_{i}\right) \models \psi\left(r_{i} \mid\right.$.) holds. Thus, ϕ is composed of $\psi($.$) that are disjoint and true (see Figure 3), hence \phi$ is satisfied. \triangleleft

Figure 2 Since $\psi\left(r_{i}\right)=\bigwedge r_{i}$ is true and $\psi\left(r_{i}\right) \supseteq \psi\left(r_{i} \mid r_{j}\right), \psi\left(r_{i} \mid r_{j}\right)$ is true, hence $\psi\left(r_{i}\right) \models \psi\left(r_{i} \mid r_{j}\right)$
A satisfiable assignment α is constructed by composing $\psi($.$) that are disjoint and true.$ For example, $\alpha=\left\{\psi, \psi\left(r_{i_{0}}\right), \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \psi\left(r_{i_{2}} \mid r_{i_{0}}, r_{i_{1}}\right), \psi\left(r_{i_{3}} \mid r_{i_{0}}, r_{i_{1}}, r_{i_{2}}\right)\right\}$ (see Figure 3).

Figure $3 \psi\left(r_{i_{1}}\right) \models \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \psi\left(r_{i_{2}}\right) \models \psi\left(r_{i_{2}} \mid r_{i_{0}}, r_{i_{1}}\right)$, and $\psi\left(r_{i_{3}}\right) \models \psi\left(r_{i_{3}} \mid r_{i_{0}}, r_{i_{1}}, r_{i_{2}}\right)$

2 Basic Definitions

A literal r_{i} is a variable x_{i} or its negation \bar{x}_{i}, i.e., $r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$. A clause $C_{k}=\left(r_{i} \odot r_{j} \odot r_{u}\right)$, or $C_{k}=\left(r_{i k} \odot r_{j k} \odot r_{u k}\right)$, is an exactly- 1 disjunction \odot of literals that are assumed to be true.

- Definition 2 (Minterm). $c_{k}=\bigwedge r_{i}$ is a conjunction of literals that are true, hence c_{k} is true.
- Definition 3 (X3SAT formula). $\varphi=\psi \wedge \phi$ such that $\psi=\bigwedge c_{k}$ and $\phi=\bigwedge C_{k}$.

Any r_{i} in ψ denotes a conjunct, which is necessary $\left(r_{i}=\mathbf{T}\right)$ for satisfying φ, since $c_{k}=\mathbf{T}$ by definition. If r_{i} is necessary, then \bar{r}_{i} is incompatible/removed from ϕ, i.e., $r_{i} \Rightarrow \neg \bar{r}_{i}$, while r_{i} is incompatible/removed if the assumption $r_{i}=\mathbf{T}$ cannot hold. That is, if $r_{i} \Rightarrow x_{j} \wedge \bar{x}_{j}$, hence $\neg x_{j} \vee \neg \bar{x}_{j} \Rightarrow \neg r_{i}$, then r_{i} is removed from ϕ and \bar{r}_{i} is necessary ($\bar{r}_{i}=\mathbf{T}$), i.e., $\neg r_{i} \Rightarrow \bar{r}_{i}$.

Where appropriate, C_{k}, as well as ψ, is denoted by a set. Thus, $\varphi=\psi \wedge \phi$ the formula, that is, $\varphi=\psi \wedge C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$, is denoted by $\varphi=\left\{\psi, C_{1}, C_{2}, \ldots, C_{m}\right\}$ the family of sets.
$\mathfrak{L}=\{1,2, \ldots, n\}$ denotes the index set of the literals r_{i} in φ, and $\mathfrak{C}=\{1,2, \ldots, m\}$ is an index set of the clauses C_{k} in ϕ, while $\mathfrak{C}^{r_{i}}=\left\{k \in \mathfrak{C} \mid r_{i} \in C_{k}\right\}$ denotes C_{k} that contain r_{i}.

- Example 4. Let $\hat{\varphi}=\left(x_{11} \odot \bar{x}_{31}\right) \wedge\left(x_{12} \odot \bar{x}_{22} \odot x_{32}\right) \wedge\left(x_{23} \odot \bar{x}_{33} \odot \bar{x}_{43}\right) \wedge \bar{x}_{4}$. Note that $C_{3}=\left(x_{2} \odot \bar{x}_{3} \odot \bar{x}_{4}\right)$, and that \bar{x}_{4} is a conjunct, thus $\bar{x}_{4}=\mathbf{T}$ is necessary for satisfying $\hat{\varphi}$. Also, $\mathfrak{C}=\{1,2,3\}, \mathfrak{C}^{x_{1}}=\{1,2\}$, and $\mathfrak{C}^{\bar{x}_{4}}=\{3\}$. Let $\varphi=\left(x_{1} \odot \bar{x}_{3}\right) \wedge\left(x_{1} \odot \bar{x}_{4} \odot x_{2}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right) \wedge x_{4}$. Then, $\mathfrak{C}^{x_{4}}=\emptyset$, and $C_{1}=\left\{x_{1}, \bar{x}_{3}\right\}, C_{2}=\left\{x_{1}, \bar{x}_{4}, x_{2}\right\}$ and $C_{3}=\left\{x_{2}, \bar{x}_{3}\right\}$, while $\psi=\left\{x_{4}\right\}$ in φ.
- Definition 5 (Collapse). A clause $C_{k}=\left(r_{i} \odot x_{j} \odot \bar{x}_{u}\right)$ is said to collapse to the minterm $c_{k}=\left(r_{i} \wedge \bar{x}_{j} \wedge x_{u}\right)$, thus $r_{i} \notin C_{k}$, if r_{i} is necessary, denoted by $\left(r_{i} \odot x_{j} \odot \bar{x}_{u}\right) \searrow\left(r_{i} \wedge \bar{x}_{j} \wedge x_{u}\right)$.
- Definition 6 (Shrinkage). A clause $C_{k}=\left(r_{i} \odot r_{j} \odot r_{u}\right)$ is said to shrink to another clause $C_{k^{\prime}}=\left(r_{j} \odot r_{u}\right)$, if $\neg r_{i}\left(r_{i}\right.$ the incompatible is removed), denoted by $\left(r_{i} \odot r_{j} \odot r_{u}\right) \mapsto\left(r_{j} \odot r_{u}\right)$.
- Definition 7 (Truth assignment $r_{i}=\mathbf{T}$ over ϕ). $\phi\left(r_{i}\right)=r_{i} \wedge \phi$ for any $r_{i} \in C_{k}$ and $C_{k} \in \phi$.
- Note 8. r_{i} is necessary for $\phi\left(r_{i}\right)$, hence \bar{r}_{i} is removed, i.e., $r_{i} \Rightarrow \neg \bar{r}_{i}$. Then, by the definition of X3SAT, $r_{i} \Rightarrow r_{i} \wedge \neg x_{j} \wedge \neg \bar{x}_{u}$ to satisfy a clause $\left(r_{i} \odot x_{j} \odot \bar{x}_{u}\right)$. As a result, $\neg x_{j} \Rightarrow \bar{x}_{j}$ and $\neg \bar{x}_{u} \Rightarrow x_{u}$, thus \bar{x}_{j} and x_{u} become necessary. Therefore, the truth assignment $\phi\left(r_{i}\right)$ results in $\left(r_{i} \odot x_{j} \odot \bar{x}_{u}\right) \searrow\left(r_{i} \wedge \bar{x}_{j} \wedge x_{u}\right)$ and $\left(\bar{r}_{i} \odot r_{v} \odot r_{y}\right) \mapsto\left(r_{v} \odot r_{y}\right)$ due to Definition 5 and 6.
- Remark (Reduction). The collapse or shrinkage of any clause C_{k} denotes its reduction, which in turn reduces φ_{s}, denoted by $\varphi_{s} \rightarrow \varphi_{s+1}$. Then, the number of $C_{k} \in \phi_{s+1}$ is less than the number of $C_{k} \in \phi_{s}$, or the number of literals in some $C_{k} \in \phi_{s+1}$ is less than that in some $C_{k} \in \phi_{s}$. Also, a collapse reduces nondeterminism to construct a satisfiable assignment.
- Definition 9. ϕ denotes a general formula if $\left\{x_{i}, \bar{x}_{i}\right\} \nsubseteq C_{k}$ for any $i \in \mathfrak{L}$ and $k \in \mathfrak{C}$, hence $\mathfrak{C}^{x_{i}} \cap \mathfrak{C}^{\bar{x}_{i}}=\emptyset . \phi$ denotes a special formula if $\left\{x_{i}, \bar{x}_{i}\right\} \subseteq C_{k}$ for some k, hence $\mathfrak{C}^{x_{i}} \cap \mathfrak{C}^{\bar{x}_{i}}=\{k\}$.

The φ scan algorithm accepts a general formula ϕ. Recall that $\varphi=\psi \wedge \phi$.

- Lemma 10 (Conversion of a special formula). Each clause $C_{k}=\left(r_{j} \odot x_{i} \odot \bar{x}_{i}\right)$ is replaced by the conjunct \bar{r}_{j} so that $\mathfrak{C}^{x_{i}} \cap \mathfrak{C}^{\bar{x}_{i}}=\emptyset$ for any $i \in \mathfrak{L}$, if $\phi=\bigwedge C_{k}$ is a special formula.
Proof. ϕ is unsatisfiable due to $r_{j} \Rightarrow \bar{x}_{i} \wedge x_{i}$. Then, $x_{i} \vee \bar{x}_{i} \Rightarrow \bar{r}_{j}$. That is, \bar{r}_{j} is necessary for satisfying $C_{k}=\left(r_{j} \odot x_{i} \odot \bar{x}_{i}\right)$, which is sufficient also, thus \bar{r}_{j} is equivalent to C_{k}. Therefore, each clause $C_{k}=\left(r_{j} \odot x_{i} \odot \bar{x}_{i}\right)$ is replaced by the conjunct \bar{r}_{j} so that $\mathfrak{C}^{x_{i}} \cap \mathfrak{C}^{\bar{x}_{i}}=\emptyset$.
- Example 11. $\phi=\left(x_{1} \odot \bar{x}_{2} \odot x_{2}\right) \wedge\left(x_{1} \odot \bar{x}_{3} \odot x_{4}\right) \wedge\left(x_{2} \odot \bar{x}_{1}\right)$ denotes a special formula due to $C_{1}=\left\{x_{1}, \bar{x}_{2}, x_{2}\right\}$. Note that $\mathfrak{C}^{\bar{x}_{2}} \cap \mathfrak{C}^{x_{2}}=\{1\}$. As a result, ϕ is converted by replacing the clause C_{1} with the conjunct \bar{x}_{1}. Therefore, $\phi \leftarrow \bar{x}_{1} \wedge\left(x_{1} \odot \bar{x}_{3} \odot x_{4}\right) \wedge\left(x_{2} \odot \bar{x}_{1}\right)$. Likewise, if $\phi=\left(x_{1} \odot \bar{x}_{2} \odot x_{2}\right) \wedge\left(x_{1} \odot \bar{x}_{1} \odot \bar{x}_{4}\right) \wedge\left(x_{2} \odot \bar{x}_{1}\right)$, then $\phi \leftarrow \bar{x}_{1} \wedge x_{4} \wedge\left(x_{2} \odot \bar{x}_{1}\right)$. On the other hand, if ϕ involves $\left(x_{u} \odot \bar{x}_{i} \odot x_{i}\right) \wedge\left(\bar{x}_{u} \odot x_{j} \odot \bar{x}_{j}\right)$, then ϕ is unsatisfiable due to $\bar{x}_{u} \wedge x_{u}$.

3 The φ Scan

This section addresses the φ scan. Section 3.2 introduces the core algorithms. Section 3.3 tackles satisfiability of φ, and Section 3.4 tackles construction of a satisfiable assignment.
φ_{s} denotes the current formula at the $s^{\text {th }}$ scan/step, if $\neg r_{j}$ (an incompatible r_{j} is removed). Note that $\varphi:=\varphi_{1}$ and $\varphi_{s} \equiv \varphi$. Then, $\phi_{s}^{r_{i}}=\left(r_{i k_{1}} \odot r_{u_{1} k_{1}} \odot r_{u_{2} k_{1}}\right) \wedge \cdots \wedge\left(r_{i k_{r}} \odot r_{v_{1} k_{r}} \odot r_{v_{2} k_{r}}\right)$ denotes the formula over clauses $C_{k} \ni r_{i}$ in ϕ_{s}, where $r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$. Hence, $\mathfrak{C}_{s}^{r_{i}}=\left\{k_{1}, \ldots, k_{r}\right\}$.
$\models_{\alpha} \varphi$ denotes that the assignment $\alpha=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ satisfies φ, and $\not \vDash \varphi$ denotes φ is unsatisfiable, while $\psi \models \psi^{\prime}$ denotes ψ^{\prime} is the logical consequence of $\psi-$ as $\psi=\mathbf{T}, \psi^{\prime}=\mathbf{T}$.
$\tilde{\psi}_{s}\left(r_{i}\right)$ is called the local effect of r_{i} and $\tilde{\phi}_{s}\left(\neg r_{i}\right)$ is the effect of $\neg r_{i}$. $\tilde{\varphi}_{s}\left(r_{i}\right)$ denotes its overall effect such that $\tilde{\varphi}_{s}\left(r_{i}\right)=\tilde{\psi}_{s}\left(r_{i}\right) \wedge \tilde{\phi}_{s}\left(\neg \bar{r}_{i}\right)$, specified below. Also, $\tilde{\psi}_{s}\left(r_{i}\right)=\bigwedge\left(c_{k} \wedge C_{k}\right)$ such that $\left|C_{k}\right|=1$. Moreover, $\tilde{\phi}_{s}\left(\neg r_{i}\right)=\bigwedge C_{k}$ such that $\left|C_{k}\right|>1$, or $\tilde{\phi}_{s}\left(\neg r_{i}\right)$ is empty.

3.1 Introduction: Incompatibility and Reductions

Example 12 and 13 introduces incompatibility and reductions, which drive the φ scan.

- Example 12. Consider $\phi\left(x_{1}\right)$ over $\varphi=\phi=\left(x_{1} \odot \bar{x}_{3}\right) \wedge\left(x_{1} \odot \bar{x}_{2} \odot x_{3}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right)$. Thus, x_{1} is necessary (see Note 8), hence $x_{1} \models \tilde{\psi}\left(x_{1}\right)$ such that $\tilde{\psi}\left(x_{1}\right)=\left(x_{1} \wedge x_{3}\right) \wedge\left(x_{1} \wedge x_{2} \wedge \bar{x}_{3}\right)$. That is, $x_{1} \Rightarrow \neg \bar{x}_{3}$ holds for $C_{1}=\left(x_{1} \odot \bar{x}_{3}\right)$, hence $\neg \bar{x}_{3} \Rightarrow x_{3}$. Likewise, $x_{1} \Rightarrow \neg \bar{x}_{2} \wedge \neg x_{3}$ holds for $C_{2}=\left(x_{1} \odot \bar{x}_{2} \odot x_{3}\right)$, hence $\neg \bar{x}_{2} \Rightarrow x_{2}$ and $\neg x_{3} \Rightarrow \bar{x}_{3}$. Thus, $\tilde{\varphi}\left(x_{1}\right)=\tilde{\psi}\left(x_{1}\right) \wedge \tilde{\phi}\left(\neg \bar{x}_{1}\right)$ becomes the overall effect, where $\tilde{\phi}\left(\neg \bar{x}_{1}\right)$ is empty. Then, the reductions initiated by x_{1} are to proceed due to x_{2}. Nevertheless, they are interrupted by $x_{3} \wedge \bar{x}_{3}$ due to $\tilde{\psi}\left(x_{1}\right)$, hence $\not \vDash \phi\left(x_{1}\right)$, where $\phi\left(x_{1}\right)=\tilde{\varphi}\left(x_{1}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right)$. Therefore, x_{1} is incompatible and removed from ϕ, thus $\neg x_{1} \Rightarrow \bar{x}_{1}$.
- Example 13. \bar{x}_{1} initiates reductions over φ (see Note 8). Then, $\tilde{\psi}\left(\bar{x}_{1}\right)=\bar{x}_{1} \wedge \bar{x}_{3}, \tilde{\phi}\left(\neg x_{1}\right)=$ $\left(\bar{x}_{2} \odot x_{3}\right)$, and $\tilde{\varphi}\left(\bar{x}_{1}\right)=\tilde{\psi}\left(\bar{x}_{1}\right) \wedge \tilde{\phi}\left(\neg x_{1}\right)$ such that $\varphi_{2}=\tilde{\varphi}\left(\bar{x}_{1}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right)$. Note that $\left(x_{2} \odot \bar{x}_{3}\right)$ is beyond $\tilde{\varphi}\left(\bar{x}_{1}\right)$ the overall effect. Note also that $\left\{\bar{x}_{3}\right\} \notin \tilde{\phi}\left(\neg x_{1}\right)$, while $\bar{x}_{3} \in \tilde{\psi}\left(\bar{x}_{1}\right)$, because $C_{1} \longmapsto c_{1}$, since $\tilde{\phi}\left(\neg x_{1}\right)$ contains no singleton. Then, φ_{2} is the current formula due to the first reduction by \bar{x}_{1} over φ. Thus, $\varphi \rightarrow \varphi_{2}$ due to $\left(x_{1} \odot \bar{x}_{3}\right) \mapsto\left(\bar{x}_{3}\right)$ and $\left(x_{1} \odot \bar{x}_{2} \odot x_{3}\right) \mapsto\left(\bar{x}_{2} \odot x_{3}\right)$. As a result, $\varphi_{2}=\bar{x}_{1} \wedge \bar{x}_{3} \wedge\left(\bar{x}_{2} \odot x_{3}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right)$, in which $\psi_{2}=\left\{\bar{x}_{1}, \bar{x}_{3}\right\}$ denotes the conjuncts, and $C_{1}=\left\{\bar{x}_{2}, x_{3}\right\}$ and $C_{2}=\left\{x_{2}, \bar{x}_{3}\right\}$ denote the clauses. Note that $\mathfrak{C}_{\sim_{\sim}^{x}}^{x_{3}}=\{1\}$ and $\mathfrak{C}_{2}^{\bar{x}_{3}}=\{2\}$. Then, \bar{x}_{3} leads to the next reduction over $\varphi_{2}: \tilde{\psi}_{2}\left(\bar{x}_{3}\right)=\left(\bar{x}_{2} \wedge \bar{x}_{3}\right), \tilde{\phi}_{2}\left(\neg x_{3}\right)$ is empty, and $\tilde{\varphi}_{2}\left(\bar{x}_{3}\right)=\tilde{\psi}_{2}\left(\bar{x}_{3}\right) \wedge \tilde{\phi}_{2}\left(\neg x_{3}\right)$. Thus, $\varphi_{2} \rightarrow \varphi_{3}$ due to $\left(x_{2} \odot \bar{x}_{3}\right) \searrow\left(\bar{x}_{2} \wedge \bar{x}_{3}\right)$ and $\left(\bar{x}_{2} \odot x_{3}\right) \mapsto\left(\bar{x}_{2}\right)$. Then, $\varphi_{3}=\tilde{\varphi}\left(\bar{x}_{1}\right) \wedge \tilde{\varphi}_{2}\left(\bar{x}_{3}\right)=\bar{x}_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}$, which denotes the cumulative effects of \bar{x}_{1} and \bar{x}_{3}.

3.2 The Core Algorithms: Scope and Scan

This section specifies Scope and Scan, which incorporate the overall effect $\tilde{\varphi}_{s}\left(r_{j}\right)$, defined below. Recall that \bar{r}_{j} is removed, if r_{j} is necessary for satisfying some formula, i.e., $r_{j} \Rightarrow \neg \bar{r}_{j}$. Note that $\phi_{s}^{r_{j}}=\left(r_{j k_{1}} \odot r_{i_{1} k_{1}} \odot r_{i_{2} k_{1}}\right) \wedge \cdots \wedge\left(r_{j k_{r}} \odot r_{u_{1} k_{r}} \odot r_{u_{2} k_{r}}\right)$ for Lemma 14 and 15 below. - Lemma 14. $r_{j} \models \tilde{\psi}_{s}\left(r_{j}\right)$ such that $\tilde{\psi}_{s}\left(r_{j}\right)=r_{j} \wedge \bar{r}_{i_{1}} \wedge \bar{r}_{i_{2}} \wedge \cdots \wedge \bar{r}_{u_{1}} \wedge \bar{r}_{u_{2}}$, unless $\not \vDash \tilde{\psi}_{s}\left(r_{j}\right)$. Proof. Follows from Definition 5. That is, $r_{j} \Rightarrow\left(r_{j} \wedge \bar{r}_{i_{1}} \wedge \bar{r}_{i_{2}}\right) \wedge \cdots \wedge\left(r_{j} \wedge \bar{r}_{u_{1}} \wedge \bar{r}_{u_{2}}\right)$. Hence, $r_{j} \Rightarrow r_{j} \wedge \bar{r}_{i_{1}} \wedge \bar{r}_{i_{2}} \wedge \cdots \wedge \bar{r}_{u_{1}} \wedge \bar{r}_{u_{2}}$.

- Lemma 15. If $\neg r_{j}$, then $\tilde{\phi}_{s}\left(\neg r_{j}\right)$ holds such that $\tilde{\phi}_{s}\left(\neg r_{j}\right)=\left(r_{i_{1}} \odot r_{i_{2}}\right) \wedge \cdots \wedge\left(r_{u_{1}} \odot r_{u_{2}}\right)$. Proof. Follows from Definition 6. $\tilde{\phi}_{s}\left(\neg r_{j}\right)=\{\{ \}\}$, or $\left|C_{k}\right|>1$ for any C_{k} in $\tilde{\phi}_{s}\left(\neg r_{j}\right)$.
- Lemma 16 (Overall effect of r_{j}). $r_{j} \models \tilde{\varphi}_{s}\left(r_{j}\right)$ such that $\tilde{\varphi}_{s}\left(r_{j}\right)=\tilde{\psi}_{s}\left(r_{j}\right) \wedge \tilde{\phi}_{s}\left(\neg \bar{r}_{j}\right)$.

Proof. Follows from $r_{j} \models r_{j} \wedge \neg \bar{r}_{j}$, as well as from Lemma 14, and Lemma 15 via $\phi_{s}^{\bar{r}_{j}}$.

L. Salum

The algorithm OvrlEft $\left(r_{j}, \phi_{*}\right)$ below constructs the overall effect $\tilde{\varphi}_{*}\left(r_{j}\right)$ by means of the local effect $\tilde{\psi}_{*}\left(r_{j}\right)$ (see Lines 1-6, or L:1-6), as well as of the local effect $\tilde{\phi}_{*}\left(\neg \bar{r}_{j}\right)$ (L:7-10).

```
```

Algorithm 1 OvrlEft $\left(r_{j}, \phi_{*}\right) \quad \triangleright$ Construction of the overall effect $\tilde{\varphi}_{*}\left(r_{j}\right)$ due to r_{j} over ϕ_{*}

```
```

Algorithm 1 OvrlEft $\left(r_{j}, \phi_{*}\right) \quad \triangleright$ Construction of the overall effect $\tilde{\varphi}_{*}\left(r_{j}\right)$ due to r_{j} over ϕ_{*}
for all $k \in \mathfrak{C}_{*}^{r_{j}}$ over ϕ_{*} do \triangleright Construction of the local effect $\tilde{\psi}_{*}\left(r_{j}\right)$ due to r_{j} (Lemma 14)
for all $k \in \mathfrak{C}_{*}^{r_{j}}$ over ϕ_{*} do \triangleright Construction of the local effect $\tilde{\psi}_{*}\left(r_{j}\right)$ due to r_{j} (Lemma 14)
for all $r_{i} \in\left(C_{k}-\left\{r_{j}\right\}\right)$ do $\triangleright \tilde{\psi}_{*}\left(r_{j}\right)$ gets r_{j} via r_{e} (see Scope L:4), or via \bar{r}_{j} (Remove L:2)
for all $r_{i} \in\left(C_{k}-\left\{r_{j}\right\}\right)$ do $\triangleright \tilde{\psi}_{*}\left(r_{j}\right)$ gets r_{j} via r_{e} (see Scope L:4), or via \bar{r}_{j} (Remove L:2)
$c_{k} \leftarrow c_{k} \cup\left\{\bar{r}_{i}\right\} ; \triangleright\left(r_{j k} \odot r_{i_{1} k} \odot r_{i_{2} k}\right) \searrow\left(\bar{r}_{i_{1} k} \wedge \bar{r}_{i_{2} k}\right)$. That is, $C_{k} \searrow c_{k}$ (see Definition 2/5)
$c_{k} \leftarrow c_{k} \cup\left\{\bar{r}_{i}\right\} ; \triangleright\left(r_{j k} \odot r_{i_{1} k} \odot r_{i_{2} k}\right) \searrow\left(\bar{r}_{i_{1} k} \wedge \bar{r}_{i_{2} k}\right)$. That is, $C_{k} \searrow c_{k}$ (see Definition 2/5)
end for
end for
$\tilde{\psi}_{*}\left(r_{j}\right) \leftarrow \tilde{\psi}_{*}\left(r_{j}\right) \cup c_{k} ; \quad \triangleright c_{k}$ consists in $\psi_{s}\left(r_{j}\right)$ (see Scope L:4), or in ψ_{s} (see Remove L:2)
$\tilde{\psi}_{*}\left(r_{j}\right) \leftarrow \tilde{\psi}_{*}\left(r_{j}\right) \cup c_{k} ; \quad \triangleright c_{k}$ consists in $\psi_{s}\left(r_{j}\right)$ (see Scope L:4), or in ψ_{s} (see Remove L:2)
end for \triangleright L:1-6 are independent from L:7-10, since $\mathfrak{C}_{*}^{r_{j}} \cap \mathfrak{C}_{*}^{\bar{r}_{j}}=\emptyset$, i.e., $\mathfrak{C}_{*}^{x_{j}} \cap \mathfrak{C}_{*}^{\bar{x}_{j}}=\emptyset$ (Lemma 10)
end for \triangleright L:1-6 are independent from L:7-10, since $\mathfrak{C}_{*}^{r_{j}} \cap \mathfrak{C}_{*}^{\bar{r}_{j}}=\emptyset$, i.e., $\mathfrak{C}_{*}^{x_{j}} \cap \mathfrak{C}_{*}^{\bar{x}_{j}}=\emptyset$ (Lemma 10)
for all $k \in \mathfrak{C}_{*}^{\bar{r}_{j}}$ over ϕ_{*} do \triangleright Construction of the local effect $\tilde{\phi}_{*}\left(\neg \bar{r}_{j}\right)$ due to $\neg \bar{r}_{j}$ (Lemma 15)
for all $k \in \mathfrak{C}_{*}^{\bar{r}_{j}}$ over ϕ_{*} do \triangleright Construction of the local effect $\tilde{\phi}_{*}\left(\neg \bar{r}_{j}\right)$ due to $\neg \bar{r}_{j}$ (Lemma 15)
$C_{k} \leftarrow C_{k}-\left\{\bar{r}_{j}\right\} ; \triangleright\left(\bar{r}_{j k} \odot r_{u_{1} k} \odot r_{u_{2} k}\right) \mapsto\left(r_{u_{1} k} \odot r_{u_{2} k}\right)$, or $\left(\bar{r}_{j k} \odot r_{u k}\right) \mapsto\left(r_{u k}\right)$ (Definition 6)
$C_{k} \leftarrow C_{k}-\left\{\bar{r}_{j}\right\} ; \triangleright\left(\bar{r}_{j k} \odot r_{u_{1} k} \odot r_{u_{2} k}\right) \mapsto\left(r_{u_{1} k} \odot r_{u_{2} k}\right)$, or $\left(\bar{r}_{j k} \odot r_{u k}\right) \mapsto\left(r_{u k}\right)$ (Definition 6)
if $\left|C_{k}\right|=1$ then $\tilde{\psi}_{*}\left(r_{j}\right) \leftarrow \tilde{\psi}_{*}\left(r_{j}\right) \cup C_{k} ; C_{k} \leftarrow \emptyset ; \triangleright \tilde{\phi}_{*}\left(\neg \bar{r}_{j}\right)$ contains no singleton, $C_{k} \mapsto c_{k}$
if $\left|C_{k}\right|=1$ then $\tilde{\psi}_{*}\left(r_{j}\right) \leftarrow \tilde{\psi}_{*}\left(r_{j}\right) \cup C_{k} ; C_{k} \leftarrow \emptyset ; \triangleright \tilde{\phi}_{*}\left(\neg \bar{r}_{j}\right)$ contains no singleton, $C_{k} \mapsto c_{k}$
end for $\triangleright 3 \backslash 2$-literal C_{k} in $\phi_{*}^{\bar{r}_{j}}$ shrinks due to $\neg \bar{r}_{j}$ to 2-literal C_{k} in $\phi_{*}^{\bar{r}_{j}} \backslash$ to conjunct r_{u} in $\tilde{\psi}_{*}\left(r_{j}\right)$
end for $\triangleright 3 \backslash 2$-literal C_{k} in $\phi_{*}^{\bar{r}_{j}}$ shrinks due to $\neg \bar{r}_{j}$ to 2-literal C_{k} in $\phi_{*}^{\bar{r}_{j}} \backslash$ to conjunct r_{u} in $\tilde{\psi}_{*}\left(r_{j}\right)$
return $\tilde{\psi}_{*}\left(r_{j}\right) \& \tilde{\phi}_{*}\left(\neg \bar{r}_{j}\right) \leftarrow \phi_{*}^{\bar{r}_{j}} ; \triangleright \tilde{\phi}_{*}\left(\neg \bar{r}_{j}\right)=\bigcup C_{k}$ such that $\left|C_{k}\right|>1$, or $\tilde{\phi}_{*}\left(\neg \bar{r}_{j}\right)=\{\{ \}\}$

```
```

 return \(\tilde{\psi}_{*}\left(r_{j}\right) \& \tilde{\phi}_{*}\left(\neg \bar{r}_{j}\right) \leftarrow \phi_{*}^{\bar{r}_{j}} ; \triangleright \tilde{\phi}_{*}\left(\neg \bar{r}_{j}\right)=\bigcup C_{k}\) such that \(\left|C_{k}\right|>1\), or \(\tilde{\phi}_{*}\left(\neg \bar{r}_{j}\right)=\{\{ \}\}\)
    ```
```

Definition 17. $\not \models \varphi_{s}\left(r_{j}\right)$ iff r_{j} is incompatible, that is, the assumption $r_{j}=\mathbf{T}$ cannot hold.

- Note. If $\not \models \varphi_{s}\left(r_{j}\right), r_{j}$ is incompatible, it is removed from ϕ_{s}, that is, $\neg r_{j}$ holds over ϕ_{s}.
- Note 18. $\varphi_{s}\left(r_{j}\right)=\psi_{s} \wedge r_{j} \wedge \phi_{s}$ by Definition 3/7, hence $\not \vDash \varphi_{s}\left(r_{j}\right)$ if $\not \vDash\left(\psi_{s} \wedge r_{j}\right)$ or $\not \vDash \phi_{s}\left(r_{j}\right)$.
- Note 19 (Assumption). $\not \models \phi_{s}\left(r_{j}\right)$ is verified through solely $\psi_{s}\left(r_{j}\right)$, called the scope of r_{j}.
- Lemma 20 (Scope construction). $r_{j} \models \psi_{s}\left(r_{j}\right)$ such that $\psi_{s}\left(r_{j}\right)=\bigwedge c_{k}$, unless $\not \vDash \psi_{s}\left(r_{j}\right)$.

Proof. $\phi_{s}\left(r_{j}\right)=r_{j} \wedge \phi_{s}$ by Definition 7, as $r_{j}=\mathbf{T}$. Then, a deterministic chain of reductions is initiated (Note 8). That is, $r_{j} \Rightarrow r_{j} \wedge x_{i} \wedge \bar{x}_{u}$ due to any clause $\left(r_{j} \odot \bar{x}_{i} \odot x_{u}\right)$ containing r_{j}, as well as $\neg \bar{r}_{j} \Rightarrow\left(\bar{x}_{u} \odot x_{v}\right)$ due to any clause $\left(\bar{r}_{j} \odot \bar{x}_{u} \odot x_{v}\right)$ containing \bar{r}_{j}. These reductions proceed, as long as new conjuncts r_{e} emerge in $\phi_{s}\left(r_{j}\right)$ (see Scope L:2-4). If the reductions are interrupted, then r_{j} is incompatible (L:5). If they terminate, then the scope $\psi_{s}\left(r_{j}\right)$ and beyond the scope $\phi_{s}^{\prime}\left(r_{j}\right)$ are constructed (L:9), where $\psi_{s}\left(r_{j}\right)=\bigwedge c_{k}$ and $\phi_{s}^{\prime}\left(r_{j}\right)=\bigwedge C_{k}$.

```
Algorithm \(2 \operatorname{Scope}\left(r_{j}, \phi_{s}\right) \triangleright\) Construction of \(\psi_{s}\left(r_{j}\right)\) and \(\phi_{s}^{\prime}\left(r_{j}\right)\) due to \(r_{j}\) over \(\phi_{s} ; \varphi_{s}=\psi_{s} \wedge \phi_{s}\)
    \(\psi_{s}\left(r_{j}\right) \leftarrow\left\{r_{j}\right\} ; \phi_{*} \leftarrow \phi_{s} ; \quad \triangleright \phi_{s}\left(r_{j}\right):=r_{j} \wedge \phi_{s} . \psi_{s}\) and \(\phi_{s}\) are disjoint due to Scan L:1-3
    for all \(r_{e} \in\left(\psi_{s}\left(r_{j}\right)-R\right)\) do \(\triangleright\) Reductions of \(C_{k}\) initiated by \(r_{j}\) over \(\phi_{s}\) start off
        OvrlEft \(\left(r_{e}, \phi_{*}\right)\); \(\triangleright\) It returns \(\tilde{\psi}_{*}\left(r_{e}\right)\) for L:4 \& \(\tilde{\phi}_{*}\left(\neg \bar{r}_{e}\right)\) for L:6
        \(\psi_{s}\left(r_{j}\right) \leftarrow \psi_{s}\left(r_{j}\right) \cup\left\{r_{e}\right\} \cup \tilde{\psi}_{*}\left(r_{e}\right) ; \triangleright \tilde{\psi}_{*}\left(r_{e}\right)\) (see OvrlEft L:5,9) consists in the scope \(\psi_{s}\left(r_{j}\right)\)
        if \(\psi_{s}\left(r_{j}\right) \supseteq\left\{x_{i}, \bar{x}_{i}\right\}\) then return NULL; \(\triangleright r_{j} \Rightarrow x_{i} \wedge \bar{x}_{i}, i \in \mathfrak{L}^{\phi} . \not \vDash \psi_{s}\left(r_{j}\right)\), thus \(\not \models \phi_{s}\left(r_{j}\right)\)
        \(\tilde{\phi}_{*}(\neg r) \leftarrow \tilde{\phi}_{*}(\neg r) \cup \tilde{\phi}_{*}\left(\neg \bar{r}_{e}\right) ; \triangleright \tilde{\phi}_{*}(\neg r)=\{\{ \}\}\) or \(\tilde{\phi}_{*}(\neg r)=\bigcup C_{k},\left|C_{k}\right|>1\) (OvrlEft L:8-11)
        \(\phi_{*} \leftarrow \tilde{\phi}_{*}(\neg r) \wedge \phi_{*}^{\prime} ; R \leftarrow R \cup\left\{r_{e}\right\} ; \quad \tilde{\phi}_{*}(\neg r)\) and \(\phi_{*}^{\prime}\) consist in beyond the scope \(\phi_{s}^{\prime}\left(r_{j}\right)\)
        \(\triangleright \phi_{*}^{\prime}=\bigwedge C_{k}\) for \(k \in \mathfrak{C}_{*}^{\prime}\), where \(\mathfrak{C}_{*}^{\prime}=\mathfrak{C}_{*}-\left(\mathfrak{C}_{*}^{x_{e}} \cup \mathfrak{C}_{*}^{\bar{x}_{e}}\right)\), and \(\mathfrak{C}_{*}^{x_{e}} \cap \mathfrak{C}_{*}^{\bar{x}_{e}}=\emptyset\) due to Lemma 10
    end for \(\triangleright\) The reductions terminate if \(\psi_{s}\left(r_{j}\right)=R\), which denotes conjuncts already reduced \(C_{k}\)
    return \(\psi_{s}\left(r_{j}\right) \& \phi_{s}^{\prime}\left(r_{j}\right) \leftarrow \phi_{*} ; \triangleright \phi_{s}\left(r_{j}\right)=\psi_{s}\left(r_{j}\right) \wedge \phi_{s}^{\prime}\left(r_{j}\right) ; \psi_{s}\left(r_{j}\right)=\bigwedge c_{k}=\bigwedge r_{j}, \phi_{s}^{\prime}\left(r_{j}\right)=\bigwedge C_{k}\)
```

- Note 21. $\mathfrak{L}_{s}\left(r_{j}\right)$ being an index set of $\psi_{s}\left(r_{j}\right), \mathfrak{L}_{s}\left(r_{j}\right) \cap \mathfrak{L}_{s}^{\prime}\left(r_{j}\right)=\emptyset$ and $\mathfrak{L}_{s}\left(r_{j}\right) \cup \mathfrak{L}_{s}^{\prime}\left(r_{j}\right)=\mathfrak{L}^{\phi}$, if $\operatorname{Scope}\left(r_{j}, \phi_{s}\right)$ terminates. As a result, $\psi_{s}\left(r_{j}\right)$ and $\phi_{s}^{\prime}\left(r_{j}\right)$ are disjoint, and compose $\phi_{s}\left(r_{j}\right)$.
- Note 22. If $\operatorname{Scan}\left(\varphi_{\hat{s}}\right)$ terminates, then $\psi_{\hat{s}}$ and $\phi_{\hat{s}}$ are disjoint, and compose $\varphi_{\hat{s}}$ such that $\psi_{\hat{s}}=\bigwedge c_{k}$ (see Definition 2), and that $\phi_{\hat{s}}=\bigwedge C_{k}$, in which $\left|C_{k}\right|>1$, because each $C_{k}=\left\{r_{i}\right\}$ in ϕ_{s} for any s transforms into r_{i} in $\psi_{\hat{s}}$. That is, $C_{k}=\left(r_{i} \odot r_{j}\right)$ or $C_{k}=\left(r_{i} \odot r_{j} \odot r_{u}\right)$ in $\phi_{\hat{s}}$.
- Example 23. Consider $\psi\left(x_{1}\right)$, $\operatorname{Scope}\left(x_{1}, \phi\right)$, for $\phi=\left(x_{1} \odot \bar{x}_{3}\right) \wedge\left(x_{1} \odot \bar{x}_{2} \odot x_{3}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right)$. $\psi\left(x_{1}\right) \leftarrow\left\{x_{1}\right\}$ and $\phi_{*} \leftarrow \phi(\mathrm{~L}: 1)$. Then, $\phi_{*}^{\bar{x}_{1}}$ is empty, and $\phi_{*}^{x_{1}}=\left(x_{1} \odot \bar{x}_{3}\right) \wedge\left(x_{1} \odot \bar{x}_{2} \odot x_{3}\right)$ due to $\operatorname{OvrlEft}\left(x_{1}, \phi_{*}\right)$. Also, $\mathfrak{C}_{*}^{x_{1}}=\{1,2\}$, thus $c_{1} \leftarrow\left\{x_{3}\right\}$ and $\tilde{\psi}_{*}\left(x_{1}\right) \leftarrow \tilde{\psi}_{*}\left(x_{1}\right) \cup c_{1}$, as well as $c_{2} \leftarrow\left\{x_{2}, \bar{x}_{3}\right\}$ and $\tilde{\psi}_{*}\left(x_{1}\right) \leftarrow \tilde{\psi}_{*}\left(x_{1}\right) \cup c_{2}$ (see OvrlEft L:1-6). Then, $\tilde{\psi}_{*}\left(x_{1}\right)=\left\{x_{3}, x_{2}, \bar{x}_{3}\right\}$ $\& \tilde{\phi}_{*}\left(\neg \bar{x}_{1}\right) \leftarrow \phi_{*}^{\bar{x}_{1}}\left(\right.$ OvrlEft L:11). As a result, $\psi\left(x_{1}\right) \leftarrow \psi\left(x_{1}\right) \cup\left\{x_{1}\right\} \cup \tilde{\psi}_{*}\left(x_{1}\right)$ (Scope L:4), and $\psi\left(x_{1}\right) \supseteq\left\{x_{3}, \bar{x}_{3}\right\}$ (L:5), that is, $x_{1} \Rightarrow x_{3} \wedge \bar{x}_{3}$, hence x_{1} is incompatible in the first scan.
- Definition 24. $\mathfrak{L}^{\psi}=\left\{i \in \mathfrak{L} \mid r_{i} \in \psi_{s}\right\}$ and $\mathfrak{L}^{\phi}=\left\{i \in \mathfrak{L} \mid r_{i} \in C_{k}\right.$ in $\left.\phi_{s}\right\}$ due to $\varphi_{s}=\psi_{s} \wedge \phi_{s}$.

Figure 4 illustrates $\operatorname{Scan}\left(\varphi_{s}\right)$. It decomposes $\phi_{s}=\bigwedge C_{k}$ into $\psi_{s}\left(x_{1}\right), \psi_{s}\left(\bar{x}_{1}\right), \ldots, \psi_{s}\left(x_{n}\right)$, $\psi_{s}\left(\bar{x}_{n}\right)$, thus checks if $\not \models \phi_{s}\left(x_{i}\right)$ and $\not \models \phi_{s}\left(\bar{x}_{i}\right)$, where $\psi_{s}()=.\bigwedge c_{k}$ is true by Definition 2 .

$\psi \wedge \phi$ transforms into $\hat{\psi} \wedge \hat{\phi}$ such that $\hat{\phi} \equiv \bigwedge\left(\psi\left(x_{i}\right) \oplus \psi\left(\bar{x}_{i}\right)\right)$, if $\operatorname{Scan}\left(\varphi_{\hat{s}}\right)$ terminates
Figure 4 Scan decomposes ϕ_{s} into $\psi_{s}\left(x_{1}\right), \psi_{s}\left(\bar{x}_{1}\right), \ldots, \psi_{s}\left(\bar{x}_{n}\right)$, and transforms $\psi \wedge \phi$ into $\hat{\psi} \wedge \hat{\phi}$
$\operatorname{Scan}\left(\varphi_{s}\right)$ checks incompatibility of r_{i} for every $i \in \mathfrak{L}^{\phi}$. If $\bar{r}_{i} \in \psi_{s}$, then r_{i} is incompatible trivially (L:1-2). If $r_{i} \Rightarrow x_{j} \wedge \bar{x}_{j}$, then r_{i} is incompatible nontrivially (L:6). See also Note 18. For example, \bar{x}_{1} is incompatible trivially due to $x_{1} \wedge\left(x_{1} \odot x_{2} \odot \bar{x}_{3}\right)$, since $1 \in \mathfrak{L}^{\phi}$ and $x_{1} \in \psi_{s}$. Note that $\bar{x}_{1} \Rightarrow \bar{x}_{1} \wedge x_{1}$. If Scan $\left(\varphi_{s}\right)$ is interrupted (see Remove L:3), then φ is unsatisfiable. If the scan terminates (L:9), then a satisfiable assignment α is constructed (see Section 3.4).

```
Algorithm \(3 \operatorname{Scan}\left(\varphi_{s}\right) \quad \triangleright\) Checks if \(\not \vDash \varphi_{s}\left(r_{i}\right)\) for all \(i \in \mathfrak{L}^{\phi}\). See also Note 18. \(\varphi_{s}=\psi_{s} \wedge \phi_{s}\)
    for all \(i \in \mathfrak{L}^{\phi}\) and \(\bar{r}_{i} \in \psi_{s}\) do \(\triangleright \varphi_{s}\left(r_{i}\right)=\psi_{s} \wedge r_{i} \wedge \phi_{s}\), thus \(\not \vDash\left(\psi_{s} \wedge r_{i}\right)\), that is, \(r_{i} \Rightarrow x_{i} \wedge \bar{x}_{i}\)
        Remove \(\left(r_{i}, \phi_{s}\right) ; \quad \triangleright \bar{r}_{i}\) is necessary, thus \(r_{i}\) is incompatible trivially, hence \(\bar{r}_{i} \Rightarrow \neg r_{i}\)
    end for \(\triangleright\) If \(i \in \mathfrak{L}^{\psi}, r_{i}\) has been already removed, hence \(\bar{r}_{i} \in \psi_{s}\) and \(\bar{r}_{i} \notin C_{k} \forall k \in \mathfrak{C}_{s}\), i.e., \(i \notin \mathfrak{L}^{\phi}\)
    for all \(i \in \mathfrak{L}^{\phi} \mathbf{d o} \triangleright \mathfrak{L}^{\psi} \cap \mathfrak{L}^{\phi}=\emptyset\) due to L:1-3. Hence, \(i \in \mathfrak{L}^{\psi}\) iff \(r_{i}=x_{i}\) is fixed or \(r_{i}=\bar{x}_{i}\) is fixed
        for all \(r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}\) do \(\triangleright\) Each and every \(x_{i}\) and \(\bar{x}_{i}\) assumed to be true is to be verified
            if Scope \(\left(r_{i}, \phi_{s}\right)\) is NULL then Remove \(\left(r_{i}, \phi_{s}\right) ; \triangleright\) Incompatible nontrivially if \(\not \vDash \phi_{s}\left(r_{i}\right)\)
        end for \(\triangleright\) If \(r_{i} \Rightarrow x_{j} \wedge \bar{x}_{j}\), hence \(\neg x_{j} \vee \neg \bar{x}_{j} \Rightarrow \neg r_{i}\), then \(\neg r_{i} \Rightarrow \bar{r}_{i}\), where \(i \neq j\) due to L:1-3
    end for \(\triangleright \neg r_{i}\) iff \(\bar{r}_{i}\), since \(\neg r_{i} \Rightarrow \bar{r}_{i}\) due to nontrivial, and \(\neg r_{i} \Leftarrow \bar{r}_{i}\) due to trivial incompatibility
    return \(\hat{\varphi}=\hat{\psi} \wedge \hat{\phi}\), and \(\psi\left(r_{i}\right) \& \phi^{\prime}\left(r_{i}\right)\) for all \(i \in \mathfrak{L} \hat{\phi} ; \triangleright \hat{\psi} \leftarrow \psi_{\hat{s}}\) and \(\hat{\phi} \leftarrow \phi_{\hat{s}}\). See also Note 22
```

- Note 25. \mathfrak{L}^{ψ} and \mathfrak{L}^{ϕ} form a partition of \mathfrak{L} due to Definition 24 and Scan L:1-3.

Remove $\left(r_{j}, \phi_{s}\right)$ leads to reductions of any $C_{k} \ni \bar{r}_{j}$ due to \bar{r}_{j}, which consists in ψ_{s+1} (see L:1-2), as well as of any $C_{k} \ni r_{j}$ due to $\neg r_{j}$, which consists in ϕ_{s+1} (see L:1,5). Note that ψ_{s} denotes the current conjuncts (in φ_{s}), and that ψ denotes the initial conjuncts (in φ).

```
Algorithm 4 Remove \(\left(r_{j}, \phi_{s}\right) \quad \triangleright r_{j}\) is incompatible/removed iff \(\bar{r}_{j}\) is necessary, i.e., \(\neg r_{j}\) iff \(\bar{r}_{j}\)
    \(\operatorname{OvrlEft}\left(\bar{r}_{j}, \phi_{s}\right) ; \triangleright \tilde{\sim}_{\sim} \operatorname{vrlEft}\) is defined over \(\phi_{s}=\bigwedge C_{k},\left|C_{k}\right|>1\), and returns \(\tilde{\psi}_{s}\left(\bar{r}_{j}\right) \& \tilde{\phi}_{s}\left(\neg r_{j}\right)\)
    \(\psi_{s+1} \leftarrow \psi_{s} \cup\left\{\bar{r}_{j}\right\} \cup \tilde{\psi}_{s}\left(\bar{r}_{j}\right) ; \triangleright \psi_{s+1}=\bigwedge c_{k}\) is true by Definition 2, unless \(\psi_{s+1}\) involves \(x_{i} \wedge \bar{x}_{i}\)
    if \(\psi_{s+1} \supseteq\left\{x_{i}, \bar{x}_{i}\right\}\) for some \(i\) then return \(\varphi\) is unsatisfiable; \(\triangleright \varphi_{s}=\psi_{s} \wedge \phi_{s}\)
    \(\mathfrak{L}^{\phi} \leftarrow \mathfrak{L}^{\phi}-\{j\} ; \mathfrak{L}^{\psi} \leftarrow \mathfrak{L}^{\psi} \cup\{j\} ;\)
    \(\phi_{s+1} \leftarrow \tilde{\phi}_{s}\left(\neg r_{j}\right) \wedge \phi_{s}^{\prime}\); Update \(\left\{C_{k}\right\}\) over \(\phi_{s+1} ; \triangleright \phi_{s}^{\prime}\) denotes clauses beyond the entire \(\psi_{s}\) effect
        \(\triangleright \phi_{s}^{\prime}=\bigwedge C_{k}\) for \(k \in \mathfrak{C}_{s}^{\prime}\), where \(\mathfrak{C}_{s}^{\prime}=\mathfrak{C}_{s}-\left(\mathfrak{C}_{s}^{\bar{x}_{j}} \cup \mathfrak{C}_{s}^{x_{j}}\right)\), and \(\mathfrak{C}_{s}^{\bar{x}_{j}} \cap \mathfrak{C}_{s}^{x_{j}}=\emptyset\) due to Lemma 10
    Scan \(\left(\varphi_{s+1}\right) ; \triangleright r_{i}\) verified compatible for \(\check{s} \leqslant s\) can be incompatible for \(\tilde{s}>s\) due to \(\neg r_{j}\) in \(\phi_{s}\)
```


3.3 Unsatisfiability of $\phi\left(r_{j}\right)$ vs Unsatisfiability of $\psi_{s}\left(r_{j}\right)$ for some s

This section tackles satisfiability of φ through unsatisfiability of a truth assignment $\phi\left(r_{j}\right)$.

- Proposition 26 (Nontrivial incompatibility). $\not \vDash \phi\left(r_{j}\right)$ iff $\not \models \psi_{s}\left(r_{j}\right)$ or $\not \models \phi_{s}^{\prime}\left(r_{j}\right)$ for some s.

Proof. Proof is obvious due to $\phi_{s}\left(r_{j}\right)=\psi_{s}\left(r_{j}\right) \wedge \phi_{s}^{\prime}\left(r_{j}\right)$, transformed from $\phi_{s}\left(r_{j}\right):=r_{j} \wedge \phi_{s}$ through Scope $\left(r_{j}, \phi_{s}\right)$. Moreover, $\not \models \phi\left(r_{j}\right)$ iff $\not \models \phi_{s}\left(r_{j}\right)$ for some s due to Theorem 36.

- Remark. It is trivial to verify $\not \models \psi_{s}\left(r_{j}\right)$ (see Scope L:5). It is redundant to check if $\not \models \phi_{s}^{\prime}\left(r_{j}\right)$, since $\not \models \phi_{s}\left(r_{j}\right)$ is verified solely via $\not \models \psi_{s}\left(r_{j}\right)$ by assumption (Note 19). Thus, it is easy to verify $\not \vDash \phi_{s}\left(r_{j}\right)$ for Scan L:6. The following introduces the tools to justify this assumption.
$\mathfrak{L}_{s}\left(r_{i}\right)=\mathfrak{L}\left(\psi_{s}\left(r_{i}\right)\right)$ denotes the index set of the scope $\psi_{s}\left(r_{i}\right)$. Likewise, $\mathfrak{L}_{s}^{\prime}\left(r_{i}\right)=\mathfrak{L}\left(\phi_{s}^{\prime}\left(r_{i}\right)\right)$. Also, we define the conditional scope $\psi_{s}\left(r_{i} \mid r_{j}\right)$ and beyond the scope $\phi_{s}^{\prime}\left(r_{i} \mid r_{j}\right)$ over $\phi_{s}^{\prime}\left(r_{j}\right)$ for any $j \neq i$, which are constructed by $\operatorname{Scope}\left(r_{i}, \phi_{s}^{\prime}\left(r_{j}\right)\right)$. Thus, $\mathfrak{L}_{s}\left(r_{i} \mid r_{j}\right)=\mathfrak{L}\left(\psi_{s}\left(r_{i} \mid r_{j}\right)\right)$.
- Lemma 27 (No conjunct exists in beyond the scope). $\mathfrak{L}_{s}\left(r_{j}\right) \cap \mathfrak{L}_{s}^{\prime}\left(r_{j}\right)=\emptyset$ for any $j \in \mathfrak{L}^{\phi}$.

Proof. $\phi_{s}^{\prime}\left(r_{j}\right)=\bigwedge C_{k}$ by $\operatorname{Scope}\left(r_{j}, \phi_{s}\right)$. Let r_{i} the conjunct be in $C_{k}, i \in\left(\mathfrak{L}_{s}\left(r_{j}\right) \cap \mathfrak{L}_{s}^{\prime}\left(r_{j}\right)\right)$. Then, for any $C_{k} \ni r_{i},\left(r_{i} \odot x_{j} \odot \bar{x}_{u}\right) \searrow\left(r_{i} \wedge \bar{x}_{j} \wedge x_{u}\right)$, thus $r_{i} \notin C_{k}$. Moreover, for any $C_{k} \ni \bar{r}_{i}$, $\left(\bar{r}_{i} \odot r_{v} \odot r_{y}\right) \mapsto\left(r_{v} \odot r_{y}\right)$, thus $\bar{r}_{i} \notin C_{k}$. See Definition 5/6. Hence, $i \notin\left(\mathfrak{L}_{s}\left(r_{j}\right) \cap \mathfrak{L}_{s}^{\prime}\left(r_{j}\right)\right)$.

- Note. No conjunct exists in any clause C_{k} due to Note 25 , which states $\mathfrak{L}^{\psi} \cap \mathfrak{L}^{\phi}=\emptyset$.
- Lemma 28. \mathfrak{L}^{ϕ} is partitioned into $\mathfrak{L}_{s}\left(r_{j}\right), \mathfrak{L}_{s}\left(r_{j_{1}} \mid r_{j}\right), \ldots, \mathfrak{L}_{s}\left(r_{j_{n}} \mid r_{j_{m}}\right)$ by means of Scope.
- Lemma 29. $\phi_{s}\left(r_{j}\right)$ is decomposed into disjoint $\psi_{s}\left(r_{j}\right), \psi_{s}\left(r_{j_{1}} \mid r_{j}\right), \ldots, \psi_{s}\left(r_{j_{n}} \mid r_{j_{m}}\right)$.

Proof. Scope $\left(r_{j}, \phi_{s}\right)$ partitions \mathfrak{L}^{ϕ} into $\mathfrak{L}_{s}\left(r_{j}\right)$ and $\mathfrak{L}_{s}^{\prime}\left(r_{j}\right)$ for any $j \in \mathfrak{L}^{\phi}$ (see Lemma 27). Thus, $\phi_{s}\left(r_{j}\right)$ is decomposed into disjoint $\psi_{s}\left(r_{j}\right)$ and $\phi_{s}^{\prime}\left(r_{j}\right)$. Scope $\left(r_{j_{1}}, \phi_{s}^{\prime}\left(r_{j}\right)\right)$ partitions $\mathfrak{L}_{s}^{\prime}\left(r_{j}\right)$ into $\mathfrak{L}_{s}\left(r_{j_{1}} \mid r_{j}\right)$ and $\mathfrak{L}_{s}^{\prime}\left(r_{j_{1}} \mid r_{j}\right)$ for any $j_{1} \in \mathfrak{L}_{s}^{\prime}\left(r_{j}\right)$. Thus, $\phi_{s}^{\prime}\left(r_{j}\right)$ is decomposed into disjoint $\psi_{s}\left(r_{j_{1}} \mid r_{j}\right)$ and $\phi_{s}^{\prime}\left(r_{j_{1}} \mid r_{j}\right)$. Finally, $\phi_{s}^{\prime}\left(r_{j_{m}} \mid r_{j_{l}}\right)$ is decomposed into disjoint $\psi_{s}\left(r_{j_{n}} \mid r_{j_{m}}\right)$ and $\phi_{s}^{\prime}\left(r_{j_{n}} \mid r_{j_{m}}\right)$ for any $j_{n} \in \mathfrak{L}_{s}^{\prime}\left(r_{j_{m}} \mid r_{j_{l}}\right)$ such that $\mathfrak{L}_{s}^{\prime}\left(r_{j_{n}} \mid r_{j_{m}}\right)=\emptyset$ (see also Note 21).

Let the scan terminate (see Scan L:9), thus $\psi \wedge \phi$ transforms into $\hat{\psi} \wedge \hat{\phi}$. Let $\phi \leftarrow \hat{\phi}$, thus $\mathfrak{L} \leftarrow \mathfrak{L} \hat{\phi}$. Also, $\psi\left(r_{i}\right)=\mathbf{T}$ for every $i \in \mathfrak{L}$ and $r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$. Then, Lemma 29 leads to the fact (Theorem 34) that it is redundant to check if $\not \models \phi_{s}^{\prime}\left(r_{j}\right)$ to verify $\not \models \phi_{s}\left(r_{j}\right)$ for any s.

- Lemma 30. $\phi^{\prime}\left(r_{j}\right)$ is decomposed into disjoint $\psi\left(r_{j_{1}} \mid r_{j}\right), \psi\left(r_{j_{2}} \mid r_{j_{1}}\right), \ldots, \psi\left(r_{j_{n}} \mid r_{j_{m}}\right)$.

Proof. Follows from Lemma 29, and from $\phi\left(r_{j}\right)=\psi\left(r_{j}\right) \wedge \phi^{\prime}\left(r_{j}\right)$ due to $\operatorname{Scope}\left(r_{j}, \phi\right)$.

- Lemma 31. $\phi \supseteq \phi^{\prime}\left(r_{j}\right) \supseteq \phi^{\prime}\left(r_{j_{1}} \mid r_{j}\right) \supseteq \phi^{\prime}\left(r_{j_{2}} \mid r_{j_{1}}\right) \supseteq \cdots \supseteq \phi^{\prime}\left(r_{j_{n}} \mid r_{j_{m}}\right)$, since it terminates.

Proof. Some C_{k} in ϕ collapse to some c_{k} in $\psi\left(r_{j}\right)$ due to Scope $\left(r_{j}, \phi\right)$ (see Lemma 20). As a result, the number of C_{k} in ϕ is greater than or equal to that of C_{k} in $\phi^{\prime}\left(r_{j}\right)$, thus $|\mathfrak{C}| \geqslant\left|\mathfrak{C}^{\prime}\right|$, where \mathfrak{C} denotes an index set of C_{k} in ϕ. Also, some C_{k} in ϕ shrink to some $C_{k^{\prime}}$ in $\phi^{\prime}\left(r_{j}\right)$, thus $\forall k^{\prime} \in \mathfrak{C}^{\prime} \exists k \in \mathfrak{C}\left[C_{k} \supseteq C_{k^{\prime}}\right]$. Hence, $\phi \supseteq \phi^{\prime}\left(r_{j}\right)$. Likewise, $\phi^{\prime}\left(r_{j}\right) \supseteq \phi^{\prime}\left(r_{j_{1}} \mid r_{j}\right)$, since $\phi^{\prime}\left(r_{j}\right)$ is decomposed into $\psi\left(r_{j_{1}} \mid r_{j}\right)$ and $\phi^{\prime}\left(r_{j_{1}} \mid r_{j}\right)$ via Scope $\left(r_{j_{1}}, \phi^{\prime}\left(r_{j}\right)\right)$. Therefore, $\phi \supseteq \phi^{\prime}\left(r_{j}\right) \supseteq$ $\phi^{\prime}\left(r_{j_{1}} \mid r_{j}\right) \supseteq \phi^{\prime}\left(r_{j_{2}} \mid r_{j_{1}}\right) \supseteq \cdots \supseteq \phi^{\prime}\left(r_{j_{n}} \mid r_{j_{m}}\right)$, where $\phi^{\prime}\left(r_{j_{n}} \mid r_{j_{m}}\right)=\phi^{\prime}\left(r_{j_{n}} \mid r_{j}, r_{j_{1}}, \ldots, r_{j_{m}}\right)$.

- Lemma 32 (Any scope entails its conditional scope). $\psi\left(r_{i}\right) \models \psi\left(r_{i} \mid r_{j}\right)$, since it terminates.

Proof. $\phi \supseteq \phi^{\prime}\left(r_{j}\right)$ due to Lemma 31. Scope $\left(r_{i}, \phi\right)$ constructs the scope $\psi\left(r_{i}\right)$ over ϕ, while Scope $\left(r_{i}, \phi^{\prime}\left(r_{j}\right)\right)$ constructs the conditional scope $\psi\left(r_{i} \mid r_{j}\right)$ over $\phi^{\prime}\left(r_{j}\right)$, thus $\psi\left(r_{i}\right) \supseteq \psi\left(r_{i} \mid r_{j}\right)$, where $\psi\left(r_{i}\right)=\bigwedge c_{k}$ by Definition 2 and Lemma 20. Since $\psi\left(r_{i}\right) \supseteq \psi\left(r_{i} \mid r_{j}\right)$ and $\psi\left(r_{i}\right)$ is true for all r_{i} in $\phi, \psi\left(r_{i} \mid r_{j}\right)$ is true for all r_{i} in $\phi^{\prime}\left(r_{j}\right)$. Hence, $\psi\left(r_{i}\right) \models \psi\left(r_{i} \mid r_{j}\right)$ (see Figure 2).

- Lemma 33. $\psi\left(r_{i} \mid r_{j}\right), \psi\left(r_{i} \mid r_{j}, r_{j_{1}}\right), \ldots, \psi\left(r_{i} \mid r_{j}, r_{j_{1}}, \ldots, r_{j_{m}}\right)$ is true for every $j \in \mathfrak{L}$, and for every $i \in \mathfrak{L}^{\prime}\left(r_{j}\right), i \in \mathfrak{L}^{\prime}\left(r_{j_{1}} \mid r_{j}\right), \ldots, i \in \mathfrak{L}^{\prime}\left(r_{j_{m}} \mid r_{j}, r_{j_{1}}, \ldots, r_{j_{l}}\right)$, because the scan terminates.

Proof. Recall that the scan terminates. Thus, $\hat{\varphi}=\hat{\psi} \wedge \hat{\phi}$, and $\phi:=\hat{\phi}$ and $\mathfrak{L}:=\mathfrak{L} \hat{\phi}$ (see also Note 22). Hence, a truth assignment $\psi\left(r_{i}\right)$ holds for every $i \in \mathfrak{L}$ and $r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$. Moreover, $\phi \supseteq \phi^{\prime}\left(r_{j}\right) \supseteq \phi^{\prime}\left(r_{j_{1}} \mid r_{j}\right) \supseteq \phi^{\prime}\left(r_{j_{2}} \mid r_{j_{1}}\right) \supseteq \cdots \supseteq \phi^{\prime}\left(r_{j_{n}} \mid r_{j_{m}}\right)$ due to Lemma 31 for any $j \in \mathfrak{L}$, and $j_{1} \in \mathfrak{L}^{\prime}\left(r_{j}\right), \ldots, j_{n} \in \mathfrak{L}^{\prime}\left(r_{j_{m}} \mid r_{j_{l}}\right)$. Then, $\psi\left(r_{i}\right) \supseteq \psi\left(r_{i} \mid r_{j}\right), \ldots, \psi\left(r_{i}\right) \supseteq \psi\left(r_{i} \mid r_{j}, r_{j_{1}}, \ldots, r_{j_{m}}\right)$, in which $\psi\left(r_{i}\right) \supseteq \psi\left(r_{i} \mid r_{j}, r_{j_{1}}\right)$ via Scope $\left(r_{i}, \phi^{\prime}\left(r_{j_{1}} \mid r_{j}\right)\right)$, thus $\psi\left(r_{i}\right) \models \psi\left(r_{i} \mid r_{j}, r_{j_{1}}\right)$. Therefore, any $\psi\left(r_{i} \mid r_{j}\right), \psi\left(r_{i} \mid r_{j}, r_{j_{1}}\right), \ldots, \psi\left(r_{i} \mid r_{j}, r_{j_{1}}, \ldots, r_{j_{m}}\right)$ is true, which generalizes Lemma 32.

- Theorem 34 (Unsatisfiability). $\not \vDash \phi\left(r_{j}\right), r_{j}$ is incompatible, iff $\not \vDash \psi_{s}\left(r_{j}\right)$ for some s.
- Corollary 35 (Satisfiability). $\models{ }_{\alpha} \phi$ iff a truth assignment $\psi\left(r_{i}\right)$ holds $\forall i \in \mathfrak{L}, r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$.

Proof. $\psi\left(r_{j_{1}} \mid r_{j}\right), \psi\left(r_{j_{2}} \mid r_{j_{1}}\right), \ldots, \psi\left(r_{j_{n}} \mid r_{j_{m}}\right)$ form disjoint minterms over $\phi^{\prime}\left(r_{j}\right)$ (Lemma 30) such that $\psi\left(r_{j_{1}} \mid r_{j}\right), \psi\left(r_{j_{2}} \mid r_{j_{1}}\right), \ldots, \psi\left(r_{j_{n}} \mid r_{j_{m}}\right)$ are true (Lemma 33) for any $j \in \mathfrak{L}, j_{1} \in \mathfrak{L}^{\prime}\left(r_{j}\right)$, $j_{2} \in \mathfrak{L}^{\prime}\left(r_{j_{1}} \mid r_{j}\right), \ldots, j_{n} \in \mathfrak{L}^{\prime}\left(r_{j_{m}} \mid r_{j_{l}}\right)$. Then, $\phi^{\prime}\left(r_{j}\right)$ is composed of $\psi($.$) the minterms true and$ disjoint, hence $\phi^{\prime}\left(r_{j}\right)$ is satisfied, thus unsatisfiability of $\phi_{s}^{\prime}\left(r_{j}\right)$ is ignored to verify $\not \vDash \phi_{s}\left(r_{j}\right)$. Therefore, Theorem 34 holds (cf. Proposition 26). Moreover, $\psi\left(r_{i}\right) \equiv \phi\left(r_{i}\right)$, since $\phi^{\prime}\left(r_{i}\right)$ is satisfied, and $\phi\left(r_{i}\right)=\psi\left(r_{i}\right) \wedge \phi^{\prime}\left(r_{i}\right)$. Therefore, Corollary 35 holds (see also Appendix A).

- Theorem 36 (Incompatibility is monotonic). $\forall \vDash \varphi_{s}\left(r_{j}\right)$ for all $s>\tilde{s}$ if $\not \vDash \varphi_{\tilde{s}}\left(r_{j}\right)$, even if $\neg r_{i}$.

Proof. $\not \models \varphi_{s}\left(r_{j}\right)$, if $\not \models\left(\psi_{s} \wedge r_{j}\right)$ or $\not \models \phi_{s}\left(r_{j}\right)\left(\right.$ Scan L:1,6). $\psi_{s} \supseteq \psi_{\tilde{s}}$ for all $s>\tilde{s}$ (Remove L:2), thus $\not \models\left(\psi_{s} \wedge r_{j}\right)$ for all $s>\tilde{s}$, if $\not \models\left(\psi_{\tilde{s}} \wedge r_{j}\right)$. Let $\not \models \phi_{\tilde{s}}\left(r_{j}\right)$ due to $x_{i} \wedge \bar{x}_{i}$, hence $\bar{x}_{i} \vee x_{i} \Rightarrow \bar{r}_{j}$, thus $\bar{r}_{j} \in \psi_{s}$, and $\not \models\left(\psi_{s} \wedge r_{j}\right)$ for all $s>\tilde{s}$. If $\not \models \varphi_{\check{s}}\left(r_{i}\right)$ for $\check{s} \leqslant \tilde{s}$, then $\neg r_{i} \Rightarrow \bar{r}_{i}$ and $\bar{r}_{i} \Rightarrow \bar{r}_{j}$, thus $\bar{r}_{j} \in \psi_{s}$ still holds, and $\not \models\left(\psi_{s} \wedge r_{j}\right)$ for all $s>\check{s}$, hence all $s>\tilde{s}$. If $\notin \varphi_{s}\left(r_{i}\right)$ for $s>\tilde{s}$, then $\not \vDash\left(\psi_{s} \wedge r_{j}\right)$ still holds for all $s>\tilde{s}$, since $x_{j} \notin C_{k}$ and $\bar{x}_{j} \notin C_{k}$, while $r_{i} \in C_{k}$ in ϕ_{s}.

- Proposition 37. The time complexity of Scan is $O\left(m n^{3}\right)$.

Proof. OvrlEft, and Remove, takes $4 m$ steps by $\left(\left|\mathfrak{C}_{*}^{r_{j}}\right| \times\left|C_{k}\right|\right)+\left|\mathfrak{C}_{*}^{\bar{r}_{j}}\right|=3 m+m$. Scope takes $n 4 m$ steps by $\left|\psi_{s}\left(r_{j}\right)\right| \times 4 m$. Then, Scan takes $n^{2} 4 m$ steps due to L:1-3 by $\left|\mathfrak{L}^{\phi}\right| \times\left|\psi_{s}\right| \times 4 m$, as well as $8 n^{2} m+8 n m$ steps due to L:4-8 by $2\left|\mathfrak{L}^{\phi}\right| \times(4 n m+4 m)$. Also, the number of the scans is $\hat{s} \leqslant\left|\mathfrak{L}^{\phi}\right|$ due to Remove L:6. Therefore, the time complexity of Scan is $O\left(n^{3} m\right)$.

- Example 38. Let $\varphi=\left\{\left\{x_{3}, x_{4}, \bar{x}_{5}\right\},\left\{x_{3}, x_{6}, \bar{x}_{7}\right\},\left\{x_{4}, x_{6}, \bar{x}_{7}\right\}\right\}$. Let Scope $\left(x_{3}, \phi\right)$ execute first in the first scan, which leads to the reductions below over ϕ due to x_{3}. Note that $\psi=\emptyset$.

$$
\begin{aligned}
& \phi\left(x_{3}\right)=\left(x_{3} \odot x_{4} \odot \bar{x}_{5}\right) \wedge\left(x_{3} \odot x_{6} \odot \bar{x}_{7}\right) \wedge\left(x_{4} \odot x_{6} \odot \bar{x}_{7}\right) \wedge x_{3} \\
& x_{3} \Rightarrow\left(x_{3} \wedge \bar{x}_{4} \wedge x_{5}\right) \wedge\left(x_{3} \wedge \bar{x}_{6} \wedge x_{7}\right) \wedge\left(x_{4} \odot x_{6} \odot \bar{x}_{7}\right) \wedge x_{3} \\
& \bar{x}_{4} \Rightarrow\left(x_{3} \wedge \bar{x}_{4} \wedge x_{5}\right) \wedge\left(x_{3} \wedge \bar{x}_{6} \wedge x_{7}\right) \wedge\left(\quad x_{6} \odot \bar{x}_{7}\right) \wedge x_{3} \\
& \bar{x}_{6} \Rightarrow\left(x_{3} \wedge \bar{x}_{4} \wedge x_{5}\right) \wedge\left(x_{3} \wedge \bar{x}_{6} \wedge x_{7}\right) \wedge\left(\quad \bar{x}_{7}\right) \wedge x_{3}
\end{aligned}
$$

Because $\not \vDash\left(\psi\left(x_{3}\right)=x_{3} \wedge \bar{x}_{4} \wedge x_{5} \wedge \bar{x}_{6} \wedge x_{7} \wedge \bar{x}_{7}\right)$, x_{3} is incompatible, hence \bar{x}_{3} is necessary, i.e., $\neg x_{3} \Rightarrow \bar{x}_{3}$. Thus, $\varphi \rightarrow \varphi_{2}$ by $\left(x_{3} \odot x_{4} \odot \bar{x}_{5}\right) \mapsto\left(x_{4} \odot \bar{x}_{5}\right)$ and $\left(x_{3} \odot x_{6} \odot \bar{x}_{7}\right) \mapsto\left(x_{6} \odot \bar{x}_{7}\right)$. As a result, $\varphi_{2}=\left(x_{4} \odot \bar{x}_{5}\right) \wedge\left(x_{6} \odot \bar{x}_{7}\right) \wedge\left(x_{4} \odot x_{6} \odot \bar{x}_{7}\right) \wedge \bar{x}_{3}$. Let Scope $\left(x_{5}, \phi_{2}\right)$ execute next.

$$
\begin{aligned}
& \phi_{2}\left(x_{5}\right)=\left(\quad x_{4} \odot \bar{x}_{5}\right) \wedge\left(\quad x_{6} \odot \bar{x}_{7}\right) \wedge\left(x_{4} \odot x_{6} \odot \bar{x}_{7}\right) \wedge x_{5} \\
& x_{5} \Rightarrow\left(\quad x_{4}\right) \wedge\left(\quad x_{6} \odot \bar{x}_{7}\right) \wedge\left(x_{4} \odot x_{6} \odot \bar{x}_{7}\right) \wedge x_{5} \\
& x_{4} \Rightarrow\left(\quad x_{4}\right) \wedge\left(\quad x_{6} \odot \bar{x}_{7}\right) \wedge\left(x_{4} \wedge \bar{x}_{6} \wedge x_{7}\right) \wedge x_{5} \\
& \bar{x}_{6} \Rightarrow\left(\quad x_{4}\right) \wedge\left(\quad \bar{x}_{7}\right) \wedge\left(x_{4} \wedge \bar{x}_{6} \wedge x_{7}\right) \wedge x_{5}
\end{aligned}
$$

Because $\not \vDash\left(\psi_{2}\left(x_{5}\right)=x_{4} \wedge \bar{x}_{7} \wedge \bar{x}_{6} \wedge x_{7} \wedge \bar{x}_{3} \wedge x_{5}\right), x_{5}$ is removed from ϕ_{2}, i.e., $\neg x_{5} \Rightarrow \bar{x}_{5}$. Thus, $\varphi_{2} \rightarrow \varphi_{3}$ by $\left(x_{4} \odot \bar{x}_{5}\right) \searrow\left(\bar{x}_{4} \wedge \bar{x}_{5}\right)$, where $\varphi_{3}=\left(\bar{x}_{4} \wedge \bar{x}_{5}\right) \wedge\left(x_{6} \odot \bar{x}_{7}\right) \wedge\left(x_{4} \odot x_{6} \odot \bar{x}_{7}\right) \wedge \bar{x}_{3}$, and \bar{x}_{4} leads to the next reduction by $\left(x_{4} \odot x_{6} \odot \bar{x}_{7}\right) \mapsto\left(x_{6} \odot \bar{x}_{7}\right)$. Then, $\operatorname{Scan}\left(\varphi_{4}\right)$ terminates, and $\varphi_{4}=\bar{x}_{3} \wedge \bar{x}_{4} \wedge \bar{x}_{5} \wedge\left(x_{6} \odot \bar{x}_{7}\right)$, that is, $\hat{\varphi}=\hat{\psi} \wedge \hat{\phi}$, and $\hat{\psi}=\left\{\bar{x}_{3}, \bar{x}_{4}, \bar{x}_{5}\right\}$ and $\hat{\phi}=\left\{\left\{x_{6}, \bar{x}_{7}\right\}\right\}$.

L. Salum

In Example 38, if Scope $\left(x_{5}, \phi\right)$ executes first, then $\psi\left(x_{5}\right)=x_{5}$ becomes the scope, and $\phi^{\prime}\left(x_{5}\right)=\left(x_{3} \odot x_{4}\right) \wedge\left(x_{3} \odot x_{6} \odot \bar{x}_{7}\right) \wedge\left(x_{4} \odot x_{6} \odot \bar{x}_{7}\right)$ becomes beyond the scope of x_{5} over ϕ. Then, x_{5} is compatible (in ϕ) due to Theorem 34, since $\psi\left(x_{5}\right)$ is true, while it is incompatible due to Proposition 26, since $\not \vDash \phi^{\prime}\left(x_{5}\right)$ holds. On the other hand, the fact that $\not \vDash \phi^{\prime}\left(x_{5}\right)$ holds is verified indirectly. That is, incompatibility of x_{5} is checked by means of $\psi_{s}\left(x_{5}\right)$ for some s. Then, x_{5} becomes incompatible (in ϕ_{2}), because $\not \models \psi_{2}\left(x_{5}\right)$ holds, after $\varphi \rightarrow \varphi_{2}$ by removing x_{3} from ϕ due to $\not \models \psi\left(x_{3}\right)$. As a result, $\not \models \phi^{\prime}\left(x_{5}\right)$ holds due to $\neg x_{3}$. Thus, there exists no r_{j} such that $\not \models \phi^{\prime}\left(r_{j}\right)$, when the scan terminates, because $\psi\left(r_{i}\right)$ is true for all r_{i} in ϕ, hence $\psi\left(r_{i} \mid r_{j}\right)$ is true for all r_{i} in $\phi^{\prime}\left(r_{j}\right)$, after each r_{j} is removed if $\not \models \psi_{s}\left(r_{j}\right)$ (see also Figures 1-4).

3.4 Construction of a satisfiable assignment by composing minterms

$\hat{\varphi}=\hat{\psi} \wedge \hat{\phi}$, when $\operatorname{Scan}\left(\varphi_{\hat{s}}\right)$ terminates. Let $\psi:=\hat{\psi}$ and $\phi:=\hat{\phi}$, i.e., $\mathfrak{L}:=\mathfrak{L} \hat{\phi}$. Then, $\models_{\alpha} \phi$ holds by Corollary 35, where α is a satisfiable assignment, and constructed by Algorithm 5 through any $\left(i_{0}, i_{1}, i_{2}, \ldots, i_{m}, i_{n}\right)$ over \mathfrak{L} such that $\alpha=\left\{\psi\left(r_{i_{0}}\right), \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \psi\left(r_{i_{2}} \mid r_{i_{1}}\right), \ldots, \psi\left(r_{i_{n}} \mid r_{i_{m}}\right)\right\}$. Thus, φ is decomposed into disjoint minterms $\psi, \psi\left(r_{i_{0}}\right), \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \psi\left(r_{i_{2}} \mid r_{i_{1}}\right), \ldots, \psi\left(r_{i_{n}} \mid r_{i_{m}}\right)$ (see Note 25, and Lemmas 28-29). Note that ψ is fixed in each satisfiable assignment for φ. Recall that $\operatorname{Scope}\left(r_{i}, \phi\right)$ constructs the scope $\psi\left(r_{i}\right)$ and beyond the scope $\phi^{\prime}\left(r_{i}\right)$ to determine any assignment α, unless φ itself collapses to a unique assignment, i.e., unless $\hat{\varphi}=\alpha=\hat{\psi}$. See also Appendix A to determine α without constructing $\psi\left(r_{i} \mid.\right)$ and $\phi^{\prime}\left(r_{i} \mid.\right)$ by $\operatorname{Scope}\left(r_{i}, \phi^{\prime}().\right)$.

```
Algorithm \(5 \quad \triangleright\) Construction of a satisfiable assignment \(\alpha\) over \(\phi, \mathfrak{L}:=\mathfrak{L}^{\hat{\phi}}\) and \(\phi:=\hat{\phi}\)
    Pick \(j \in \mathfrak{L} ; \quad \triangleright\) The scope \(\psi\left(r_{i}\right)\) and beyond the scope \(\phi^{\prime}\left(r_{i}\right)\) for all \(i \in \mathfrak{L}\) are available initially
    \(\alpha \leftarrow \psi\left(r_{j}\right) ; \mathfrak{L} \leftarrow \mathfrak{L}-\mathfrak{L}\left(r_{j}\right) ; \phi \leftarrow \phi^{\prime}\left(r_{j}\right) ;\)
    repeat
        Pick \(i \in \mathfrak{L}\); Scope \(\left(r_{i}, \phi\right) ; \quad \triangleright\) It constructs \(\psi\left(r_{i} \mid r_{j}\right)\) and \(\phi^{\prime}\left(r_{i} \mid r_{j}\right)\) with respect to \(\phi^{\prime}\left(r_{j}\right)\)
        \(\alpha \leftarrow \alpha \cup \psi\left(r_{i}\right) ; \triangleright \psi\left(r_{i}\right):=\psi\left(r_{i} \mid r_{j}\right)\), because \(\psi\left(r_{i}\right)\) is unconditional with respect to \(\phi\) updated
        \(\mathfrak{L} \leftarrow \mathfrak{L}-\mathfrak{L}\left(r_{i}\right) ; \quad \triangleright \mathfrak{L} \leftarrow \mathfrak{L}^{\prime}\left(r_{i} \mid r_{j}\right)\) due to the partition \(\left\{\mathfrak{L}\left(r_{j}\right), \mathfrak{L}\left(r_{i} \mid r_{j}\right), \mathfrak{L}^{\prime}\left(r_{i} \mid r_{j}\right)\right\}\) over \(\mathfrak{L}\)
        \(\phi \leftarrow \phi^{\prime}\left(r_{i}\right) ; \triangleright \phi^{\prime}\left(r_{i}\right):=\phi^{\prime}\left(r_{i} \mid r_{j}\right)\), because \(\phi^{\prime}\left(r_{i}\right)\) is unconditional with respect to \(\phi\) updated
    until \(\mathfrak{L}=\emptyset\)
    return \(\alpha ; \quad \triangleright \psi\left(r_{i_{n}} \mid r_{i_{m}}\right)=\psi\left(r_{i_{n}} \mid r_{j}, r_{i_{1}}, \ldots, r_{i_{m}}\right)\) (see also Appendix A)
```

- Definition 39. Let $\left\langle\left\langle r_{i_{1}, 1}, r_{i_{2}, 1}, r_{i_{3}, 1}\right\rangle,\left\langle r_{j_{1}, 2}, r_{j_{2}, 2}, r_{j_{3}, 2}\right\rangle, \ldots,\left\langle r_{u_{1}, m}, r_{u_{2}, m}, r_{u_{3}, m}\right\rangle\right\rangle$ be in ascending order with respect to the index set \mathfrak{L}. If $\imath_{3}<\jmath_{1}$ for any $\left\langle r_{\imath_{1}, k}, r_{i_{2}, k}, r_{\imath_{3}, k}\right\rangle$ and any $\left\langle r_{\jmath_{1}, k+1}, r_{\jmath_{2}, k+1}, r_{\jmath_{3}, k+1}\right\rangle$, then ${ }^{\imath} \phi \cup^{J} \phi=\phi$ and ${ }^{\imath} \phi \cap^{\jmath} \phi=\emptyset$ such that $C_{k} \in{ }^{2} \phi$ and $C_{k+1} \in{ }^{J} \phi$.
- Note. ${ }^{i} \phi$ and ${ }^{\dagger} \phi$ form a partition of ϕ, hence their satisfiability check can be independent.
- Example 40. Let ${ }^{1} \phi=\left(x_{1} \odot \bar{x}_{2} \odot x_{6}\right) \wedge\left(x_{3} \odot x_{4} \odot \bar{x}_{5}\right) \wedge\left(x_{3} \odot x_{6} \odot \bar{x}_{7}\right) \wedge\left(x_{4} \odot x_{6} \odot \bar{x}_{7}\right)$, ${ }^{2} \phi=\left(x_{8} \odot x_{9} \odot \bar{x}_{10}\right)$, and ${ }^{3} \phi=\left(x_{11} \odot \bar{x}_{12} \odot x_{13}\right)$ to form $\varphi={ }^{1} \phi \wedge^{2} \phi \wedge^{3} \phi$ (see Definition 39). Then, $\operatorname{Scan}\left(\varphi_{4}\right)$ returns φ is satisfiable. Therefore, $\hat{\varphi}=\hat{\psi} \wedge \hat{\phi}$, where $\psi:=\hat{\psi}=\bar{x}_{3} \wedge \bar{x}_{4} \wedge \bar{x}_{5}$ and $\phi:=\hat{\phi}=\left(x_{1} \odot \bar{x}_{2} \odot x_{6}\right) \wedge\left(x_{6} \odot \bar{x}_{7}\right) \wedge^{2} \phi \wedge^{3} \phi$ (see Example 38). Then, α is constructed by composing $\psi($.$) based on \phi^{\prime}($.$) below, where \mathfrak{L}^{\psi}=\{3,4,5\}$ and $\mathfrak{L}:=\mathfrak{L} \hat{\phi}=\{1,2, \ldots, 13\}-\mathfrak{L}^{\psi}$.

$$
\begin{array}{rlrlrl}
\psi\left(x_{1}\right) & =x_{1} \wedge x_{2} \wedge \bar{x}_{6} \wedge \bar{x}_{7} & \& & & \phi^{\prime}\left(x_{1}\right) & ={ }^{2} \phi \wedge^{3} \phi \\
\psi\left(x_{2}\right) & =x_{2} & \& & \phi^{\prime}\left(x_{2}\right) & =\left(x_{1} \odot x_{6}\right) \wedge\left(x_{6} \odot \bar{x}_{7}\right) \wedge^{2} \phi \wedge^{3} \phi \\
\psi\left(\bar{x}_{2}\right) & =\bar{x}_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{6} \wedge \bar{x}_{7} & \& & \phi^{\prime}\left(\bar{x}_{2}\right) & ={ }^{2} \phi \wedge^{3} \phi \\
\psi\left(x_{6}\right)=\psi\left(x_{7}\right) & =\bar{x}_{1} \wedge x_{2} \wedge x_{6} \wedge x_{7} & \& & \phi^{\prime}\left(x_{6}\right)=\phi^{\prime}\left(x_{7}\right) & ={ }^{2} \phi \wedge^{3} \phi \\
\psi\left(\bar{x}_{6}\right)=\psi\left(\bar{x}_{7}\right) & =\bar{x}_{6} \wedge \bar{x}_{7} & \& & \phi^{\prime}\left(\bar{x}_{6}\right)=\phi^{\prime}\left(\bar{x}_{7}\right) & =\left(x_{1} \odot \bar{x}_{2}\right) \wedge^{2} \phi \wedge^{3} \phi \\
\psi\left(x_{8}\right) & =x_{8} \wedge \bar{x}_{9} \wedge x_{10} & \& & \phi^{\prime}\left(x_{8}\right) & =\left(x_{1} \odot \bar{x}_{2} \odot x_{6}\right) \wedge\left(x_{6} \odot \bar{x}_{7}\right) \wedge^{3} \phi \\
\psi\left(x_{11}\right) & =x_{11} \wedge x_{12} \wedge \bar{x}_{13} & \& & \phi^{\prime}\left(x_{11}\right) & =\left(x_{1} \odot \bar{x}_{2} \odot x_{6}\right) \wedge\left(x_{6} \odot \bar{x}_{7}\right) \wedge^{2} \phi
\end{array}
$$

- Example 41. A satisfiable assignment α is constructed by an order of indices over $\mathfrak{L}, \mathfrak{L}=$ $\{1, \ldots, 13\}-\mathfrak{L}^{\psi}$ (Example 40), such that $r_{i}:=x_{i}$ for any $\psi\left(r_{i}\right)$ throughout the construction. First, pick $6 \in \mathfrak{L}$. As a result, $\alpha \leftarrow \psi\left(x_{6}\right)$ and $\mathfrak{L} \leftarrow \mathfrak{L}-\mathfrak{L}\left(x_{6}\right)$, where $\psi\left(x_{6}\right)=\left\{\bar{x}_{1}, x_{2}, x_{6}, x_{7}\right\}$, $\mathfrak{L}\left(x_{6}\right)=\{1,2,6,7\}$, and $\mathfrak{L} \leftarrow\{8,9,10,11,12,13\}$. Then, pick 8 , hence $\alpha \leftarrow \alpha \cup \psi\left(x_{8} \mid x_{6}\right)$, where $\psi\left(x_{8} \mid x_{6}\right)=\left\{x_{8}, \bar{x}_{9}, x_{10}\right\}$. Also, $\mathfrak{L} \leftarrow \mathfrak{L}-\mathfrak{L}\left(x_{8} \mid x_{6}\right)$, where $\mathfrak{L}\left(x_{8} \mid x_{6}\right)=\{8,9,10\}$, hence $\mathfrak{L} \leftarrow\{11,12,13\}$. Finally, pick 11. Therefore, $\alpha \leftarrow \alpha \cup \psi\left(x_{11} \mid x_{6}, x_{8}\right)$ such that $\mathfrak{L} \leftarrow \emptyset$, which indicates its termination. Note that Scope $\left(x_{11}, \phi^{\prime}\left(x_{8} \mid x_{6}\right)\right)$ constructs $\psi\left(x_{11} \mid x_{6}, x_{8}\right)$, in which $\phi^{\prime}\left(x_{8} \mid x_{6}\right)={ }^{3} \phi$, and that $\phi^{\prime}\left(x_{11} \mid x_{6}, x_{8}\right)=\emptyset$ iff $\mathfrak{L} \leftarrow \emptyset$. Note also that $\psi\left(x_{8} \mid x_{6}\right)=\psi\left(x_{8}\right)$ and $\psi\left(x_{11} \mid x_{6}, x_{8}\right)=\psi\left(x_{11}\right)$, since ${ }^{1} \phi,{ }^{2} \phi$ and ${ }^{3} \phi$ are disjoint (see Definition 39). Consequently, Algorithm 5 constructs $\alpha=\left\{\psi\left(x_{6}\right), \psi\left(x_{8} \mid x_{6}\right), \psi\left(x_{11} \mid x_{6}, x_{8}\right)\right\}$. Note that φ is decomposed into $\psi, \psi\left(x_{6}\right), \psi\left(x_{8} \mid x_{6}\right)$, and $\psi\left(x_{11} \mid x_{6}, x_{8}\right)$, which are disjoint (see also Note 22 and Lemma 29).
- Example 42. Let $(2,1,8,11)$ be another order of indices in Example 40. This order leads to the assignment $\left\{\psi, \psi\left(x_{2}\right), \psi\left(x_{1} \mid x_{2}\right), \psi\left(x_{8} \mid x_{2}, x_{1}\right), \psi\left(x_{11} \mid x_{2}, x_{1}, x_{8}\right)\right\}$ for φ. This assignment corresponds to the partition $\left\{\mathfrak{L}^{\psi},\{2\},\{1,6,7\},\{8,9,10\},\{11,12,13\}\right\}$, where $\mathfrak{L}^{\psi}=\{3,4,5\}$ (see also Note 25 and Lemma 28). Note that the scope $\psi\left(x_{1}\right)$ is constructed over ϕ, and the conditional scope $\psi\left(x_{1} \mid x_{2}\right)$ is constructed over $\phi^{\prime}\left(x_{2}\right)$, where $\phi \supseteq \phi^{\prime}\left(x_{2}\right)$. Recall that $\phi:=\hat{\phi}$. Hence, $\psi\left(x_{1}\right) \models \psi\left(x_{1} \mid x_{2}\right)$, in which $\psi\left(x_{1}\right)=x_{1} \wedge x_{2} \wedge \bar{x}_{6} \wedge \bar{x}_{7}$, while $\psi\left(x_{1} \mid x_{2}\right)=x_{1} \wedge \bar{x}_{6} \wedge \bar{x}_{7}$. Moreover, $\psi\left(x_{8}\right) \models \psi\left(x_{8} \mid x_{2}, x_{1}\right)$ due to $\phi \supseteq \phi^{\prime}\left(x_{1} \mid x_{2}\right)$, and $\psi\left(x_{11}\right) \models \psi\left(x_{11} \mid x_{2}, x_{1}, x_{8}\right)$ due to $\phi \supseteq \phi^{\prime}\left(x_{8} \mid x_{2}, x_{1}\right)$, where $\phi^{\prime}\left(x_{1} \mid x_{2}\right)={ }^{2} \phi \wedge^{3} \phi$ and $\phi^{\prime}\left(x_{8} \mid x_{2}, x_{1}\right)={ }^{3} \phi$ (see Lemmas 31-33).

3.5 An Illustrative Example

This section illustrates Scan $\left(\varphi_{s}\right)$. Let $\varphi=\phi=\left(x_{1} \odot \bar{x}_{3}\right) \wedge\left(x_{1} \odot \bar{x}_{2} \odot x_{3}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right)$, which is adapted from Esparza [1], and denotes a general formula by Definition 9. Note that $C_{1}=$ $\left\{x_{1}, \bar{x}_{3}\right\}, C_{2}=\left\{x_{1}, \bar{x}_{2}, x_{3}\right\}$, and $C_{3}=\left\{x_{2}, \bar{x}_{3}\right\}$. Hence, $\mathfrak{C}=\{1,2,3\}$, and $\mathfrak{L}=\mathfrak{L}^{\phi}=\{1,2,3\}$.
$\operatorname{Scan}(\varphi)$: There exists no conjunct in (the initial formula) φ. That is, ψ is empty (L:1). Recall that $\varphi:=\varphi_{1}$, and that $r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$. Recall also that nontrivial incompatibility of r_{i} is checked (L:4-8) via Scope $\left(r_{i}, \phi\right)$. Moreover, the order of incompatibility check is arbitrary (incompatibility is monotonic) by Theorem 36. Let Scope (x_{1}, ϕ) execute due to Scan L:6.

Scope $\left(x_{1}, \phi\right)$: Since $\psi\left(x_{1}\right) \supseteq\left\{x_{3}, \bar{x}_{3}\right\}, x_{1}$ is incompatible nontrivially (see Example 23). Thus, \bar{x}_{1} becomes necessary (a conjunct). Then, Remove (x_{1}, ϕ) executes due to Scan L:6.

Remove $\left(x_{1}, \phi\right): \mathfrak{C}^{\bar{x}_{1}}=\emptyset$ by OvrlEft L:1. $\mathfrak{C}^{x_{1}}=\{1,2\}$, thus $\phi^{x_{1}}=\left(x_{1} \odot \bar{x}_{3}\right) \wedge\left(x_{1} \odot \bar{x}_{2} \odot x_{3}\right)$ by OvrlEft L:7. As a result, $\tilde{\psi}\left(\bar{x}_{1}\right)=\left\{\bar{x}_{3}\right\} \& \tilde{\phi}\left(\neg x_{1}\right)=\left\{\{ \},\left\{\bar{x}_{2}, x_{3}\right\}\right\}$, the effects of \bar{x}_{1} and $\neg x_{1}$. Note that $C_{1} \leftarrow \emptyset$. Then, $\psi_{2} \leftarrow \psi \cup\left\{\bar{x}_{1}\right\} \cup \tilde{\psi}\left(\bar{x}_{1}\right)$ (Remove L:2), and $\mathfrak{L}^{\phi} \leftarrow \mathfrak{L}^{\phi}-\{1\}$ and $\mathfrak{L}^{\psi} \leftarrow \mathfrak{L}^{\psi} \cup\{1\}(\mathrm{L}: 4)$. Also, $\phi_{2} \leftarrow \tilde{\phi}\left(\neg x_{1}\right) \wedge \phi^{\prime}$, where $\tilde{\phi}\left(\neg x_{1}\right)=\left(\bar{x}_{2} \odot x_{3}\right)$ and $\phi^{\prime}=\left(x_{2} \odot \bar{x}_{3}\right)$ (L:5). As a result, $\psi_{2}=\bar{x}_{1} \wedge \bar{x}_{3}$, and $\phi_{2}=\left(\bar{x}_{2} \odot x_{3}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right)$. Note that $C_{1}=\left\{\bar{x}_{2}, x_{3}\right\}$ and $C_{2}=\left\{x_{2}, \bar{x}_{3}\right\}$. Consequently, $\varphi_{2}=\psi_{2} \wedge \phi_{2}$, and $\operatorname{Scan}\left(\varphi_{2}\right)$ executes due to Remove L:6.
$\operatorname{Scan}\left(\varphi_{2}\right): \mathfrak{C}_{2}=\{1,2\}$ and $\mathfrak{L}^{\phi}=\{2,3\}$ hold in ϕ_{2}. Then, $\left\{x_{2}, \bar{x}_{2}\right\} \cap \psi_{2}=\emptyset$ for $2 \in \mathfrak{L}^{\phi}$, while $\bar{x}_{3} \in \psi_{2}$ for $3 \in \mathfrak{L}^{\phi}$ (L:1). As a result, \bar{x}_{3} is necessary for satisfying φ_{2}, hence $\bar{x}_{3} \Rightarrow \neg x_{3}$, that is, x_{3} is incompatible trivially. Then, Remove $\left(x_{3}, \phi_{2}\right)$ executes due to Scan L:2.

Remove $\left(x_{3}, \phi_{2}\right): \mathfrak{C}_{2}^{\bar{x}_{3}}=\{2\}$, thus $\phi_{2}^{\bar{x}_{3}}=\left(x_{2} \odot \bar{x}_{3}\right)$, and $\mathfrak{C}_{2}^{x_{3}}=\{1\}$, thus $\phi_{2}^{x_{3}}=\left(\bar{x}_{2} \odot x_{3}\right)$. As a result, $\tilde{\psi}_{2}\left(\bar{x}_{3}\right)=\left\{\bar{x}_{2}\right\} \cup\left\{\bar{x}_{2}\right\} \& \tilde{\phi}_{2}\left(\neg x_{3}\right)=\{\{ \}\}$, because $C_{1}=\left\{\bar{x}_{2}\right\}$ consists in $\tilde{\psi}_{2}\left(\bar{x}_{3}\right)$, rather than in $\tilde{\phi}_{2}\left(\neg x_{3}\right)$ (see OvrlEft L:9). Hence, $\psi_{3} \leftarrow \psi_{2} \cup\left\{\bar{x}_{3}\right\} \cup \tilde{\psi}_{2}\left(\bar{x}_{3}\right)$, $\mathfrak{L}^{\phi} \leftarrow \mathfrak{L}^{\phi}-\{3\}$, and $\mathfrak{L}^{\psi} \leftarrow \mathfrak{L}^{\psi} \cup\{3\}$, i.e., $\mathfrak{L}^{\phi}=\{2\}$. Therefore, $\phi_{3}=\{\{ \}\}$, thus $\mathfrak{C}_{3}=\emptyset$, and $\psi_{3}=\bar{x}_{1} \wedge \bar{x}_{3} \wedge \bar{x}_{2}$.
$\operatorname{Scan}\left(\varphi_{3}\right): \bar{x}_{2} \in \psi_{3}$ for $2 \in \mathfrak{L}^{\phi}$ over ϕ_{3}. Then, Remove $\left(x_{2}, \phi_{3}\right)$ executes due to Scan L:2.
Remove $\left(x_{2}, \phi_{3}\right): \tilde{\psi}_{3}\left(\bar{x}_{2}\right)=\emptyset \& \tilde{\phi}_{3}\left(\neg x_{2}\right)=\{\{ \}\}$ due to $\operatorname{OvrlEft}\left(\bar{x}_{2}, \phi_{3}\right)$, because $\mathfrak{C}_{3}^{\bar{x}_{2}}=\emptyset$ and $\mathfrak{C}_{3}^{x_{2}}=\emptyset$, since $\mathfrak{C}_{3}=\emptyset$. Hence, $\mathfrak{L}^{\phi} \leftarrow\{2\}-\{2\}$ and $\phi_{4} \leftarrow \phi_{3}$. Then, $\operatorname{Scan}\left(\varphi_{4}\right)$ executes.
$\operatorname{Scan}\left(\varphi_{4}\right)$ terminates: $\hat{\varphi}=\hat{\psi}=\bar{x}_{1} \wedge \bar{x}_{3} \wedge \bar{x}_{2}$ (L:9), and φ collapses to a unique assignment.

Let Scope $\left(x_{3}, \phi\right)$ execute before Scope $\left(x_{1}, \phi\right)$ due to Scan L:6 (see Theorem 36).
Scope $\left(x_{3}, \phi\right): \psi\left(x_{3}\right) \leftarrow\left\{x_{3}\right\}$ and $\phi_{*} \leftarrow \phi\left(\right.$ L:1). Then, $\mathfrak{C}_{*}^{x_{3}}=\{2\}$ due to $\operatorname{OvrlEft}\left(x_{3}, \phi_{*}\right)$ $\mathrm{L}: 1$, hence $\phi_{*}^{x_{3}}=\left(x_{1} \odot \bar{x}_{2} \odot x_{3}\right)$. As a result, $c_{2} \leftarrow\left\{\bar{x}_{1}, x_{2}\right\}$ and $\tilde{\psi}_{*}\left(x_{3}\right) \leftarrow \tilde{\psi}_{*}\left(x_{3}\right) \cup c_{2}$ (L:3,5). Moreover, $\mathfrak{C}_{*}^{\bar{x}_{3}}=\{1,3\}(\mathrm{L}: 7)$, hence $\phi_{*}^{\bar{x}_{3}}=\left(x_{1} \odot \bar{x}_{3}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right)$. Then, $C_{1} \leftarrow\left\{x_{1}, \bar{x}_{3}\right\}-\left\{\bar{x}_{3}\right\}$, $\tilde{\psi}_{*}\left(x_{3}\right) \leftarrow \tilde{\psi}_{*}\left(x_{3}\right) \cup C_{1}$, and $C_{1} \leftarrow \emptyset$. Likewise, $C_{3} \leftarrow\left\{x_{2}, \bar{x}_{3}\right\}-\left\{\bar{x}_{3}\right\}, \tilde{\psi}_{*}\left(x_{3}\right) \leftarrow \tilde{\psi}_{*}\left(x_{3}\right) \cup C_{3}$, and $C_{3} \leftarrow \emptyset\left(\right.$ OvrlEft L:8-9). Consequently, $\tilde{\psi}_{*}\left(x_{3}\right) \leftarrow\left\{\bar{x}_{1}, x_{2}, x_{1}\right\} \& \tilde{\phi}_{*}\left(\neg \bar{x}_{3}\right) \leftarrow \phi_{*}^{\bar{x}_{3}}$ (L:11). Note that $\phi_{*}^{\bar{x}_{3}}=\{\{ \},\{ \}\}$, since $C_{1}=C_{3}=\emptyset$. Then, $\psi\left(x_{3}\right) \leftarrow \psi\left(x_{3}\right) \cup\left\{x_{3}\right\} \cup \tilde{\psi}_{*}\left(x_{3}\right)$ due to Scope L:4, hence $\psi\left(x_{3}\right)=\left\{x_{3}, \bar{x}_{1}, x_{2}, x_{1}\right\}$. Since $\psi\left(x_{3}\right) \supseteq\left\{\bar{x}_{1}, x_{1}\right\}$ (L:5), x_{3} is incompatible nontrivially, i.e., $x_{3} \Rightarrow \bar{x}_{1} \wedge x_{1}$ and $\neg x_{3} \Rightarrow \bar{x}_{3}$. Then, Remove $\left(x_{3}, \phi\right)$ executes due to Scan L:6.

Remove $\left(x_{3}, \phi\right): \phi^{\bar{x}_{3}}=\left(x_{1} \odot \bar{x}_{3}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right)$ due to $\mathfrak{C}^{\bar{x}_{3}}=\{1,3\}$, and $\phi^{x_{3}}=\left(x_{1} \odot \bar{x}_{2} \odot x_{3}\right)$ due to $\mathfrak{C}^{x_{3}}=\{2\}$. Then, OvrlEft $\left(\bar{x}_{3}, \phi\right)$ returns $\tilde{\psi}\left(\bar{x}_{3}\right)=\left\{\bar{x}_{1}, \bar{x}_{2}\right\} \& \tilde{\phi}\left(\neg x_{3}\right)=\left\{\left\{x_{1}, \bar{x}_{2}\right\}\right\}$ (Remove L:1), $\psi_{2} \leftarrow \psi \cup\left\{\bar{x}_{3}\right\} \cup \tilde{\psi}\left(\bar{x}_{3}\right)$ (L:2), and $\mathfrak{L}^{\phi} \leftarrow \mathfrak{L}^{\phi}-\{3\}$ and $\mathfrak{L}^{\psi} \leftarrow \mathfrak{L}^{\psi} \cup\{3\}$ (L:4). As a result, $\psi_{2}=\bar{x}_{3} \wedge \bar{x}_{1} \wedge \bar{x}_{2}$. Moreover, $\phi_{2} \leftarrow \tilde{\phi}\left(\neg x_{3}\right) \wedge \phi^{\prime}($ L:5 $)$, in which $\tilde{\phi}\left(\neg x_{3}\right)=\left(x_{1} \odot \bar{x}_{2}\right)$ and ϕ^{\prime} is empty. Therefore, $\varphi_{2}=\psi_{2} \wedge \phi_{2}$. Note that $C_{1}=\left\{x_{1}, \bar{x}_{2}\right\}$, hence $\mathfrak{C}_{2}=\{1\}$. Recall that $\mathfrak{L}^{\phi}=\{1,2\}$, and that $\mathfrak{L}^{\psi}=\{3\}$. Then, $\operatorname{Scan}\left(\varphi_{2}\right)$ executes due to Remove $\left(x_{3}, \phi\right)$ L: 6 .
$\operatorname{Scan}\left(\varphi_{2}\right): \mathfrak{L}^{\phi}=\{1,2\}$ such that $\bar{x}_{2} \in \psi_{2}$ and $\bar{x}_{1} \in \psi_{2}$. Thus, \bar{x}_{2} and \bar{x}_{1} are necessary, hence x_{2} and x_{1} are incompatible trivially. Then, $\operatorname{Remove}\left(x_{1}, \phi_{2}\right)$ and $\operatorname{Remove}\left(x_{2}, \phi_{2}\right)$ execute.

The fact that the order of incompatibility check is arbitrary (Theorem 36) is illustrated as follows. Scope $\left(x_{3}, \phi\right)$ returns x_{3} is incompatible nontrivially, since $x_{3} \Rightarrow \bar{x}_{1} \wedge x_{1}$. Therefore, $\neg \bar{x}_{1} \vee \neg x_{1} \Rightarrow \neg x_{3}$, hence $x_{1} \vee \bar{x}_{1} \Rightarrow \bar{x}_{3}$. Then, $\bar{x}_{3} \Rightarrow \bar{x}_{1}$ due to $C_{1}=\left(x_{1} \odot \bar{x}_{3}\right)$, and $\bar{x}_{1} \Rightarrow \neg x_{1}$. Thus, x_{1} is still incompatible, but trivially (cf. Scope $\left(x_{1}, \phi\right)$), even if $\neg x_{3}$ holds. That is, x_{1} the nontrivial incompatible in ϕ due to $x_{1} \Rightarrow \bar{x}_{3} \wedge x_{3}$, i.e., $\neg \bar{x}_{3} \vee \neg x_{3} \Rightarrow \neg x_{1}$, is incompatible trivially in ψ_{2} due to $\bar{x}_{1} \Rightarrow \neg x_{1}$. See Scan $\left(\varphi_{2}\right)$ above. Also, since $x_{3} \notin C_{k}$ and $\bar{x}_{3} \notin C_{k}$ in ϕ_{s} for any $s \geqslant 2, \notin \varphi_{s}\left(x_{3}\right)$ for all $s \geqslant 2$, even if any r_{i} is removed from some C_{k} in $\phi_{s}, s \geqslant 2$.

4 Conclusion

X3SAT has proved to be effective to show $\mathbf{P}=\mathbf{N P}$. A polynomial time algorithm checks unsatisfiability of a truth assignment $\phi\left(r_{i}\right)$ such that $\not \models \phi\left(r_{i}\right)$ iff $\psi_{s}\left(r_{i}\right)$ involves $x_{j} \wedge \bar{x}_{j}$ for some s. Thus, $\phi\left(r_{i}\right)$ reduces to $\psi\left(r_{i}\right) . \psi\left(r_{i}\right)$ denotes a conjunction of literals that are true, since each r_{j} such that $\not \models \psi_{s}\left(r_{j}\right)$ is removed from ϕ. Therefore, ϕ is satisfiable iff any truth assignment $\psi\left(r_{i}\right)$ holds, thus it is easy to verify satisfiability of ϕ through the truth of $\psi\left(r_{i}\right)$.

__ References

1 Javier Esparza. Decidability and complexity of Petri net problems - an introduction. In Wolfgang Reisig and Grzegorz Rozenberg, editors, Lectures on Petri Nets I: Basic Models, volume 1491 of $L N C S$, pages 374-428. Springer Berlin Heidelberg, 1998.
2 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, STOC '78, pages 216-226, New York, NY, USA, 1978. ACM. URL: http://doi.acm.org/10.1145/800133.804350.

A Proof of Theorem 34/35

This section gives a rigorous proof of Theorem 34/35. Recall that the φ_{s} scan is interrupted iff ψ_{s} involves $x_{i} \wedge \bar{x}_{i}$ for some i and s, that is, φ is unsatisfiable, which is trivial to verify. Recall also that the $\varphi_{\hat{s}}$ scan terminates iff $\psi_{\hat{s}}\left(r_{i}\right)=\mathbf{T}$ for any $i \in \mathfrak{L}^{\hat{\phi}}, r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$. Moreover, $\hat{\varphi}=\hat{\psi} \wedge \hat{\phi}$ such that $\hat{\psi}=\mathbf{T}$ (see Scan L:9 and Note 22). Therefore, when the scan terminates, satisfiability of $\hat{\phi}$ is to be proved, which is addressed in this section. Let $\phi:=\hat{\phi}$, i.e., $\mathfrak{L}:=\mathfrak{L} \phi$.

- Theorem 43 (cf. 34-35/Claim 1). These statements are equivalent: $a) \not \vDash \phi\left(r_{j}\right)$ iff $\not \vDash \psi_{s}\left(r_{j}\right)$ for some s. b) $\psi\left(r_{i}\right)=\mathbf{T}$ for any $i \in \mathfrak{L}$. c) $\models{ }_{\alpha} \phi$ by $\alpha=\left\{\psi\left(r_{i_{0}}\right), \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \ldots, \psi\left(r_{i_{n}} \mid r_{i_{m}}\right)\right\}$.

Proof. We will show $a \Rightarrow b, b \Rightarrow c$, and $c \Rightarrow a$ (see Kenneth H. Rosen, Discrete Mathematics and its Applications, 7E, pg. 88). Firstly, $a \Rightarrow b$ holds, because a holds by assumption (see Note 19 and Scope L:5), and b holds by definition (Scan L:9). Also, $\psi\left(r_{i} \mid r_{j}\right)$ is true due to $\psi\left(r_{i}\right) \models \psi\left(r_{i} \mid r_{j}\right)$ (see Lemmas 32-33), where $\psi()=.\bigwedge r_{i}$ by Lemma 20. Next, we will show $b \Rightarrow c$. We do this by showing that satisfiability of ϕ is preserved throughout the assignment $\alpha=\left\{\psi\left(r_{i_{0}}\right), \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \ldots, \psi\left(r_{i_{n}} \mid r_{i_{m}}\right)\right\}$ construction, because any partial truth assignment $\psi\left(r_{i} \mid r_{j}\right)$ is constructed arbitrarily through consecutive steps having the Markov property. Thus, construction of $\psi\left(r_{i} \mid r_{j}\right)$ in the next step is independent from the preceding steps, and depends only upon $\psi\left(r_{j} \mid r_{k}\right)$ in the present step. The construction process is specified below.

Step 0: Pick any $r_{i_{0}}$ in ϕ. The reductions due to $r_{i_{0}}$ partition \mathfrak{L} into $\mathfrak{L}\left(r_{i_{0}}\right)$ and $\mathfrak{L}^{\prime}\left(r_{i_{0}}\right)$. Note that $i_{0} \in \mathfrak{L}$, and that $i_{0} \in \mathfrak{L}\left(r_{i_{0}}\right)$. Hence, $i_{0} \notin \mathfrak{L}^{\prime}\left(r_{i_{0}}\right)$ by Lemma 27. Thus, $r_{i_{0}} \Rightarrow \psi\left(r_{i_{0}}\right)$ such that $\phi\left(r_{i_{0}}\right)=\psi\left(r_{i_{0}}\right) \wedge \phi^{\prime}\left(r_{i_{0}}\right)$ in Step 0 . Then, pick an arbitrary $r_{i_{1}}$ in $\phi^{\prime}\left(r_{i_{0}}\right)$ for Step 1.

Step 1: $\mathfrak{L}\left(r_{i_{0}}\right) \cap \mathfrak{L}^{\prime}\left(r_{i_{0}}\right)=\emptyset$ in Step 0 , and the reductions due to $r_{i_{1}}$ over $\phi^{\prime}\left(r_{i_{0}}\right)$ partition $\mathfrak{L}^{\prime}\left(r_{i_{0}}\right)$ into $\mathfrak{L}\left(r_{i_{1}} \mid r_{i_{0}}\right)$ and $\mathfrak{L}^{\prime}\left(r_{i_{1}} \mid r_{i_{0}}\right)$, thus $r_{i_{1}} \Rightarrow \psi\left(r_{i_{1}} \mid r_{i_{0}}\right)$. See also Lemma 28. Therefore, $\mathfrak{L}\left(r_{i_{0}}\right) \cap \mathfrak{L}\left(r_{i_{1}} \mid r_{i_{0}}\right)=\emptyset$, because $\mathfrak{L}^{\prime}\left(r_{i_{0}}\right) \supseteq \mathfrak{L}\left(r_{i_{1}} \mid r_{i_{0}}\right)$. As a result, \mathfrak{L} is partitioned into $\mathfrak{L}\left(r_{i_{0}}\right)$, $\mathfrak{L}\left(r_{i_{1}} \mid r_{i_{0}}\right)$, and $\mathfrak{L}^{\prime}\left(r_{i_{1}} \mid r_{i_{0}}\right)$ due to $r_{i_{0}}$ and $r_{i_{1}}$. Thus, $\psi\left(r_{i_{0}}\right)$ and $\psi\left(r_{i_{1}} \mid r_{i_{0}}\right)$ are disjoint, as well as true. Hence, $\psi\left(r_{i_{0}}\right) \wedge \psi\left(r_{i_{1}} \mid r_{i_{0}}\right)=\mathbf{T}$, and $\phi\left(r_{i_{0}}, r_{i_{1}}\right)=\psi\left(r_{i_{0}}\right) \wedge \psi\left(r_{i_{1}} \mid r_{i_{0}}\right) \wedge \phi^{\prime}\left(r_{i_{1}} \mid r_{i_{0}}\right)$.

Step 2: The preceding steps have partitioned \mathfrak{L} into $\mathfrak{L}\left(r_{i_{0}}\right) \cup \mathfrak{L}\left(r_{i_{1}} \mid r_{i_{0}}\right)$ and $\mathfrak{L}^{\prime}\left(r_{i_{1}} \mid r_{i_{0}}\right)$, and $r_{i_{2}}$ in $\phi^{\prime}\left(r_{i_{1}} \mid r_{i_{0}}\right)$ partitions $\mathfrak{L}^{\prime}\left(r_{i_{1}} \mid r_{i_{0}}\right)$ into $\mathfrak{L}\left(r_{i_{2}} \mid r_{i_{1}}\right)$ and $\mathfrak{L}^{\prime}\left(r_{i_{2}} \mid r_{i_{1}}\right)$, i.e., $\mathfrak{L}^{\prime}\left(r_{i_{1}} \mid r_{i_{0}}\right) \supseteq \mathfrak{L}\left(r_{i_{2}} \mid r_{i_{1}}\right)$. Hence, $\left(\mathfrak{L}\left(r_{i_{0}}\right) \cup \mathfrak{L}\left(r_{i_{1}} \mid r_{i_{0}}\right)\right) \cap \mathfrak{L}\left(r_{i_{2}} \mid r_{i_{1}}\right)=\emptyset$. Therefore, $\psi\left(r_{i_{0}}\right) \wedge \psi\left(r_{i_{1}} \mid r_{i_{0}}\right)$ and $\psi\left(r_{i_{2}} \mid r_{i_{1}}\right)$ are disjoint, as well as true. As a result, $\psi\left(r_{i_{0}}\right) \wedge \psi\left(r_{i_{1}} \mid r_{i_{0}}\right) \wedge \psi\left(r_{i_{2}} \mid r_{i_{1}}\right)=\mathbf{T}$, and $\phi\left(r_{i_{0}}, r_{i_{1}}, r_{i_{2}}\right)=$ $\psi\left(r_{i_{0}}\right) \wedge \psi\left(r_{i_{1}} \mid r_{i_{0}}\right) \wedge \psi\left(r_{i_{2}} \mid r_{i_{1}}\right) \wedge \phi^{\prime}\left(r_{i_{2}} \mid r_{i_{1}}\right)$. Note that $\alpha \supseteq\left\{\psi\left(r_{i_{0}}\right), \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \psi\left(r_{i_{2}} \mid r_{i_{1}}\right)\right\}$, and that \mathfrak{L} is partitioned into $\mathfrak{L}\left(r_{i_{0}}\right), \mathfrak{L}\left(r_{i_{1}} \mid r_{i_{0}}\right), \mathfrak{L}\left(r_{i_{2}} \mid r_{i_{1}}\right)$, and $\mathfrak{L}^{\prime}\left(r_{i_{2}} \mid r_{i_{1}}\right)$ such that $\mathfrak{L}^{\prime}\left(r_{i_{2}} \mid r_{i_{1}}\right) \neq \emptyset$.

Step n : $r_{i_{n}}$ partitions $\mathfrak{L}^{\prime}\left(r_{i_{m}} \mid r_{i_{l}}\right)$ into $\mathfrak{L}\left(r_{i_{n}} \mid r_{i_{m}}\right)$ and $\mathfrak{L}^{\prime}\left(r_{i_{n}} \mid r_{i_{m}}\right)$ such that $\mathfrak{L}^{\prime}\left(r_{i_{n}} \mid r_{i_{m}}\right)=\emptyset$. Then, $\mathfrak{L}\left(r_{i_{0}}\right) \cup \mathfrak{L}\left(r_{i_{1}} \mid r_{i_{0}}\right) \cup \cdots \cup \mathfrak{L}\left(r_{i_{m}} \mid r_{i_{l}}\right)$ and $\mathfrak{L}^{\prime}\left(r_{i_{m}} \mid r_{i_{l}}\right)$, hence $\mathfrak{L}\left(r_{i_{n}} \mid r_{i_{m}}\right)$, form a partition of \mathfrak{L}. Therefore, $\psi\left(r_{i_{0}}\right) \wedge \psi\left(r_{i_{1}} \mid r_{i_{0}}\right) \wedge \cdots \wedge \psi\left(r_{i_{m}} \mid r_{i_{l}}\right)$ and $\psi\left(r_{i_{n}} \mid r_{i_{m}}\right)$ are both disjoint and true, thus $\alpha=\phi\left(r_{i_{0}}, r_{i_{1}}, \ldots, r_{i_{m}}, r_{i_{n}}\right)=\psi\left(r_{i_{0}}\right) \wedge \psi\left(r_{i_{1}} \mid r_{i_{0}}\right) \wedge \cdots \wedge \psi\left(r_{i_{m}} \mid r_{i_{l}}\right) \wedge \psi\left(r_{i_{n}} \mid r_{i_{m}}\right)=\mathbf{T}$.

Consequently, ϕ is composed of $\psi($.$) disjoint and satisfied, thus \models{ }_{\alpha} \phi$, hence $b \Rightarrow c$ holds. Finally, we show $c \Rightarrow a$. Scope $\left(r_{i}, \phi\right)$ transforms $r_{i} \wedge \phi$ into $\psi\left(r_{i}\right) \wedge \phi^{\prime}\left(r_{i}\right)$, thus $\left(r_{i} \wedge \phi\right) \equiv$ $\left(\psi\left(r_{i}\right) \wedge \phi^{\prime}\left(r_{i}\right)\right)$. Since ϕ and $\psi\left(r_{i}\right)$ are satisfied, $\phi^{\prime}\left(r_{i}\right)$ is satisfied. Therefore, unsatisfiability of $\psi_{s}\left(r_{i}\right)$ for some s is necessary and sufficient for the unsatisfiability of $\phi_{s}\left(r_{i}\right)$ for any s.

- Note. $\psi\left(r_{i}\right) \equiv \phi\left(r_{i}\right)$ for all $i \in \mathfrak{L}$. Also, $\bigwedge C_{k}$ such that $C_{k}=\left(r_{i} \odot r_{j} \odot r_{v}\right)$ transforms into $\bigwedge \mathcal{C}_{i}$ such that $\mathcal{C}_{i}=\left(\psi\left(x_{i}\right) \oplus \psi\left(\bar{x}_{i}\right)\right)$, thus $\bigwedge C_{k} \equiv \bigwedge \mathcal{C}_{i}$. Recall that $\phi=\bigwedge C_{k}$, where $\phi:=\hat{\phi}$.
- Note. The assignment α construction is driven by partitioning the set $\mathfrak{L}^{\prime}($.$) such that$ $\mathfrak{L} \leftarrow \mathfrak{L}-\mathfrak{L}\left(r_{i_{0}}\right)$ in Step 1 , and $\mathfrak{L} \leftarrow \mathfrak{L}-\mathfrak{L}\left(r_{i_{n-1}} \mid r_{i_{n-2}}\right)$ for $i_{n} \in \mathfrak{L}^{\prime}\left(r_{i_{n-1}} \mid r_{i_{n-2}}\right)$ in Step $n \geqslant 2$. - Note (Construction of α). In order to form a partition over the set ϕ, α is constructed such that $\psi\left(r_{i_{1}} \mid r_{i_{0}}\right)=\psi\left(r_{i_{1}}\right)-\psi\left(r_{i_{0}}\right)$, and $\psi\left(r_{i_{n}} \mid r_{i_{n-1}}\right)=\psi\left(r_{n}\right)-\left(\psi\left(r_{i_{0}}\right) \cup \cdots \cup \psi\left(r_{i_{n-1}} \mid r_{i_{n-2}}\right)\right)$ for $n \geqslant 2$. On the other hand, if the construction involves no set partition, then $\alpha=\bigcup \psi\left(r_{i}\right)$ for $i=\left(i_{0}, i_{1}, \ldots, i_{n}\right)$, where $i_{0} \in \mathfrak{L}, i_{1} \in \mathfrak{L}^{\prime}\left(r_{i_{0}}\right), \ldots, i_{n} \in \mathfrak{L}^{\prime}\left(r_{i_{m}} \mid r_{i_{l}}\right)$, thus $r_{i_{0}} \prec r_{i_{1}} \prec \cdots \prec r_{i_{n}}$. Note that there is no need to construct $\phi^{\prime}\left(r_{i}\right)$ in Scan/Scope L:9 (cf. Algorithm 5).

For instance, if Example 40 involves no set partition, then $\alpha=\left\{\psi\left(\bar{x}_{7}\right), \psi\left(x_{2}\right), \psi\left(x_{1}\right)\right\}$, in which $\psi\left(\bar{x}_{7}\right)=\left\{\bar{x}_{7}, \bar{x}_{6}\right\}, \psi\left(x_{2}\right)=\left\{x_{2}\right\}$, and $\psi\left(x_{1}\right)=\left\{x_{1}, x_{2}, \bar{x}_{7}, \bar{x}_{6}\right\}$. Also, $\bar{x}_{7} \prec x_{2} \prec x_{1}$ due to $x_{2} \in \phi^{\prime}\left(\bar{x}_{7}\right)$ and $x_{1} \in \phi^{\prime}\left(x_{2} \mid \bar{x}_{7}\right)$. Moreover, $\psi\left(\bar{x}_{7}\right), \psi\left(x_{2} \mid \bar{x}_{7}\right)$, and $\psi\left(x_{1} \mid x_{2}\right)$ form a partition over the set ϕ, where $\psi\left(x_{2} \mid \bar{x}_{7}\right)=\psi\left(x_{2}\right)-\psi\left(\bar{x}_{7}\right)$ and $\psi\left(x_{1} \mid x_{2}\right)=\psi\left(x_{1}\right)-\left(\psi\left(x_{2} \mid \bar{x}_{7}\right) \cup \psi\left(\bar{x}_{7}\right)\right)$. As a result, $\alpha=\phi\left(\bar{x}_{7}, x_{2}, x_{1}\right)=\left\{\bar{x}_{7}, \bar{x}_{6}\right\} \cup\left\{x_{2}\right\} \cup\left\{x_{1}\right\}$ such that $\left\{\bar{x}_{7}, \bar{x}_{6}\right\} \cap\left\{x_{2}\right\} \cap\left\{x_{1}\right\}=\emptyset$.

