

On the Tractability of $\mathsf{Un}/\mathsf{Satisfiability}$

Latif Salum

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

October 21, 2019

On the Tractability of Un/Satisfiability

- 2 Latif Salum 💿
- ³ Department of Industrial Engineering, Dokuz Eylül University, Izmir, Turkey
- 4 latif.salum@deu.edu.tr & latif.salum@gmail.com

5 — Abstract

This paper shows $\mathbf{P} = \mathbf{NP}$ via exactly-1 3SAT (X3SAT). $C_k = (r_i \odot r_j \odot r_u)$ denotes a clause, an 6 exactly-1 disjunction \odot of literals, such that $\phi = \bigwedge C_k$, an X3SAT formula. $\phi(r_j) := r_j \land \phi$ denotes that the literal r_j is true, $r_j \in \{x_j, \overline{x}_j\}$. This truth assignment leads to reductions due to \odot of any 8 $C_k = (r_j \odot \overline{x}_i \odot x_u)$ into $c_k = r_j \land x_i \land \overline{x}_u$, and $C_k = (\overline{r}_j \odot r_u \odot r_v)$ into $C_{k'} = (r_u \odot r_v)$. As a result, q $\phi(r_j) := r_j \wedge \phi$ transforms into $\phi(r_j) = \psi(r_j) \wedge \phi'(r_j)$, unless $\psi(r_j)$ involves $x_i \wedge \overline{x}_i$, that is, unless 10 $\not\models \psi(r_j)$. Then, $\psi(r_j) = \bigwedge (c_k \wedge C_{k'})$ such that $C_{k'} = r_i$, and $\phi'(r_j) = \bigwedge (C_k \wedge C_{k'})$. Thus, $\psi(r_j)$ and 11 $\phi'(r_j)$ are *disjoint*. It is *trivial* to check if $\not\models \psi(r_j)$, and *redundant* to check if $\not\models \phi'(r_j)$, in order to 12 verify $\not\models \phi(r_j)$. Proof of this redundancy is sketched as follows. $\psi(r_i)$ is true, $\psi(r_i) \models \psi(r_i|r_j)$ holds, 13 hence $\psi(r_i|r_j)$ is true for every r_i , because each r_j such that $\not\models \psi(r_j)$ is removed from ϕ . Then, any 14 \overline{r}_i consists in ψ so that ϕ transforms into $\psi \wedge \phi'$. If ψ involves $x_i \wedge \overline{x}_i$, then $\not\models \phi$. Otherwise, ϕ is 15 satisfied, since any $\psi(.)$ is *disjoint* and *true*, and $\psi(r_{i_0}), \psi(r_{i_1}|r_{i_0}), \ldots, \psi(r_{i_n}|r_{i_m})$ compose ϕ . Thus, 16 $\phi'(r_j)$ is satisfied, since $(r_j \land \phi) \equiv (\psi(r_j) \land \phi'(r_j))$. The time complexity is $O(mn^3)$, hence $\mathbf{P} = \mathbf{NP}$. 17 2012 ACM Subject Classification Theory of computation \rightarrow Complexity theory and logic 18 Keywords and phrases P vs NP, NP-complete, 3SAT, one-in-three SAT, exactly-1 3SAT, X3SAT 19

20 Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

```
21 Acknowledgements
```

- 22
- 23

24

25

26

27

28

1 Introduction: Effectiveness of X3SAT in proving P = NP

P vs **NP** is the most notorious problem in theoretical computer science. It is well known that 29 $\mathbf{P} = \mathbf{NP}$, if there exists a polynomial time algorithm for any *one* of NP-complete problems, 30 since algorithmic efficiency of these problems is *equivalent*. Nevertheless, some **NP**-complete 31 problem features algorithmic effectiveness, if it incorporates an *effective* tool to develop an 32 efficient algorithm. That is, a particular problem can be more effective to prove $\mathbf{P} = \mathbf{NP}$. 33 This paper shows that one-in-three SAT, which is **NP**-complete [2], features algorithmic 34 effectiveness to prove $\mathbf{P} = \mathbf{NP}$. This problem is also known as exactly-1 3SAT (X3SAT). 35 X3SAT incorporates "exactly-1 disjunction \odot ", the tool used to develop a polynomial time 36 algorithm. It facilitates checking incompatibility of a literal r_i for satisfying some formula ϕ . 37 When every r_i incompatible is removed, ϕ becomes un/satisfiable. Thus, each r_i becomes 38 compatible to participate in some satisfiable assignment. Then, an assignment is constructed. 39 The truth assignment $r_j = \mathbf{T}$ (or r_j) is incompatible if $\phi(r_j)$ is unsatisfiable, denoted by 40 $\not\models \phi(r_i)$, where $\phi(r_i) := r_i \land \phi$, and $r_i \in \{x_i, \overline{x}_i\}$. Then, the ϕ scan algorithm, introduced 41 below, "scans" ϕ by checking incompatibility of every r_i , and removing each r_j incompatible. 42 Let $\phi = C_1 \wedge \cdots \wedge C_m$ be any X3SAT formula such that a clause $C_k = (r_i \odot r_j \odot r_u)$ is 43 an exactly-1 disjunction \odot of literals r_i , hence satisfied iff *exactly one* of $\{r_i, r_j, r_u\}$ is true. 44 Note that a clause $(r_i \lor r_j \lor r_u)$ in a 3SAT formula is satisfied iff at least one of them is true. 45 © Latif Salum:

23:2 On the Tractability of Un/Satisfiability

Incompatibility of r_i is checked by a deterministic chain of reductions of any C_k in $\phi(r_i)$, 46 which is constructed via \odot . This chain is initiated by $r_i = \mathbf{T}$, and followed by $\neg \overline{r}_i$, because 47 $r_j \Rightarrow \neg \overline{r}_j$. That is, each $(r_j \odot \overline{x}_i \odot x_u)$ collapses to $(r_j \wedge x_i \wedge \overline{x}_u)$ due to $r_j \Rightarrow r_j \wedge \neg \overline{x}_i \wedge \neg x_u$, 48 since there exists exactly one true literal in any clause C_k by the definition of X3SAT. Also, 49 each $(\overline{r}_j \odot \overline{x}_u \odot x_v)$ shrinks to $(\overline{x}_u \odot x_v)$ due to $\neg \overline{r}_j$. Thus, r_j transforms $\phi(r_j) := r_j \land \phi$ into 50 $\phi(r_i) = r_i \wedge x_i \wedge \overline{x}_u \wedge \phi^*$, and $x_i \wedge \overline{x}_u$ proceeds the reductions in ϕ^* , which involves $(\overline{x}_u \odot x_v)$. 51 The reductions over $\phi_s(r_i)$ terminate iff $r_i \wedge \phi_s$ transforms into $\psi_s(r_i) \wedge \phi'_s(r_i)$ such that 52 $\psi_s(r_i)$ and $\phi'_s(r_i)$ are disjoint, where s denotes the current scan, and $\psi_s(r_i)$ is a conjunction 53 of literals that are true. They are interrupted iff $\psi_s(r_j)$ involves $x_i \wedge \overline{x}_i$, thus $\not\models \phi_s(r_j)$, that 54 is, r_j is incompatible. By assumption, $\not\models \phi_s(r_j)$ is verified solely via $\not\models \psi_s(r_j)$ (see Figure 1). 55 The reductions over ϕ terminate iff ϕ transforms into $\psi \wedge \phi'$ such that ψ and ϕ' are disjoint, 56 where $\psi = \overline{x}_i \wedge x_u \wedge \cdots \wedge \overline{x}_v$ (see Figure 1). Then, ϕ is updated, that is, $\phi \leftarrow \phi'$. The ϕ_s scan 57 is interrupted iff ψ_s involves $x_i \wedge \overline{x_i}$ for some s and i, thus $\not\models \phi$, that is, ϕ is unsatisfiable. 58

Figure 1 The ϕ_s scan: $\not\models \phi_s(r_j)$ is verified solely by $\not\models \psi_s(r_j)$, and whether $\not\models \phi'_s(r_j)$ is ignored

⁵⁹ \triangleright Claim 1. It is *redundant* to check if $\not\models \phi'_s(r_j)$, thus $\not\models \phi(r_j)$ iff $\not\models \phi_s(r_j)$ iff $\not\models \psi_s(r_j)$ for ⁶⁰ some *s*. As a result, $\phi(r_i)$ reduces to $\psi(r_i)$ from $\phi(r_i) = \psi(r_i) \land \phi'(r_i)$, thus $\psi(r_i) \equiv \phi(r_i)$. ⁷¹ Therefore, ϕ is satisfiable iff any truth assignment $\psi(r_i)$ hold (the semi-terminates)

⁶¹ Therefore, ϕ is satisfiable iff any truth assignment $\psi(r_i)$ holds (the scan terminates).

Sketch of proof. $\psi(r_i)/\psi(r_i|r_j)$ is constructed over $\phi/\phi'(r_j)$, thus $\psi(r_i)$ covers $\psi(r_i|r_j)$, hence $\psi(r_i) \models \psi(r_i|r_j)$ holds. Because $\psi(r_j)$ and $\phi'(r_j)$ are disjoint, $\psi(r_j)$ and $\psi(r_i|r_j)$ are disjoint (see Figure 2). Therefore, $\psi(r_{i_0})$, $\psi(r_{i_1}|r_{i_0})$, $\psi(r_{i_2}|r_{i_0}, r_{i_1})$, and $\psi(r_{i_3}|r_{i_0}, r_{i_1}, r_{i_2})$ form disjoint minterms $\psi(.) = \bigwedge r_i$ over ϕ such that $\psi(r_{i_0})$, $\psi(r_{i_1}|r_{i_0})$, $\psi(r_{i_2}|r_{i_0}, r_{i_1})$, and $\psi(r_{i_3}|r_{i_0}, r_{i_1}, r_{i_2})$

- are true, because $\psi(r_i)$ is true for every r_i (the ϕ scan terminates), and $\psi(r_i) \models \psi(r_i|.)$ holds.
- ⁶⁷ Thus, ϕ is composed of $\psi(.)$ that are *disjoint* and *true* (see Figure 3), hence ϕ is satisfied.

Figure 2 Since $\psi(r_i) = \bigwedge r_i$ is true and $\psi(r_i) \supseteq \psi(r_i|r_j)$, $\psi(r_i|r_j)$ is true, hence $\psi(r_i) \models \psi(r_i|r_j)$

⁶⁸ A satisfiable assignment α is constructed by composing $\psi(.)$ that are *disjoint* and *true*. ⁶⁹ For example, $\alpha = \{\psi, \psi(r_{i_0}), \psi(r_{i_1}|r_{i_0}), \psi(r_{i_2}|r_{i_0}, r_{i_1}), \psi(r_{i_3}|r_{i_0}, r_{i_1}, r_{i_2})\}$ (see Figure 3).

Figure 3 $\psi(r_{i_1}) \models \psi(r_{i_1}|r_{i_0}), \psi(r_{i_2}) \models \psi(r_{i_2}|r_{i_0}, r_{i_1}), \text{ and } \psi(r_{i_3}) \models \psi(r_{i_3}|r_{i_0}, r_{i_1}, r_{i_2})$

70 2 Basic Definitions

⁷¹ A literal r_i is a variable x_i or its negation \overline{x}_i , i.e., $r_i \in \{x_i, \overline{x}_i\}$. A clause $C_k = (r_i \odot r_j \odot r_u)$, ⁷² or $C_k = (r_{ik} \odot r_{jk} \odot r_{uk})$, is an exactly-1 disjunction \odot of literals that are assumed to be true.

▶ Definition 2 (Minterm). $c_k = \bigwedge r_i$ is a conjunction of literals that are true, hence c_k is true.

▶ **Definition 3** (X3SAT formula). $\varphi = \psi \land \phi$ such that $\psi = \bigwedge c_k$ and $\phi = \bigwedge C_k$.

Any r_i in ψ denotes a *conjunct*, which is necessary $(r_i = \mathbf{T})$ for satisfying φ , since $c_k = \mathbf{T}$ 75 by definition. If r_i is necessary, then \overline{r}_i is incompatible/removed from ϕ , i.e., $r_i \Rightarrow \neg \overline{r}_i$, while 76 r_i is incompatible/removed if the assumption $r_i = \mathbf{T}$ cannot hold. That is, if $r_i \Rightarrow x_j \land \overline{x}_j$, 77 hence $\neg x_j \lor \neg \overline{x}_j \Rightarrow \neg r_i$, then r_i is removed from ϕ and \overline{r}_i is necessary ($\overline{r}_i = \mathbf{T}$), i.e., $\neg r_i \Rightarrow \overline{r}_i$. 78 Where appropriate, C_k , as well as ψ , is denoted by a set. Thus, $\varphi = \psi \wedge \phi$ the formula, 79 that is, $\varphi = \psi \wedge C_1 \wedge C_2 \wedge \cdots \wedge C_m$, is denoted by $\varphi = \{\psi, C_1, C_2, \dots, C_m\}$ the family of sets. 80 $\mathfrak{L} = \{1, 2, \dots, n\}$ denotes the index set of the literals r_i in φ , and $\mathfrak{C} = \{1, 2, \dots, m\}$ is an 81 index set of the clauses C_k in ϕ , while $\mathfrak{C}^{r_i} = \{k \in \mathfrak{C} \mid r_i \in C_k\}$ denotes C_k that contain r_i . 82 ▶ **Example 4.** Let $\hat{\varphi} = (x_{11} \odot \overline{x}_{31}) \land (x_{12} \odot \overline{x}_{22} \odot x_{32}) \land (x_{23} \odot \overline{x}_{33} \odot \overline{x}_{43}) \land \overline{x}_4$. Note that 83 $C_3 = (x_2 \odot \overline{x}_3 \odot \overline{x}_4)$, and that \overline{x}_4 is a *conjunct*, thus $\overline{x}_4 = \mathbf{T}$ is *necessary* for satisfying $\hat{\varphi}$. Also, 84 $\mathfrak{C} = \{1, 2, 3\}, \ \mathfrak{C}^{x_1} = \{1, 2\}, \ \text{and} \ \mathfrak{C}^{\overline{x}_4} = \{3\}. \ \text{Let} \ \varphi = (x_1 \odot \overline{x}_3) \land (x_1 \odot \overline{x}_4 \odot x_2) \land (x_2 \odot \overline{x}_3) \land x_4.$ 85 Then, $\mathfrak{C}^{x_4} = \emptyset$, and $C_1 = \{x_1, \overline{x}_3\}, C_2 = \{x_1, \overline{x}_4, x_2\}$ and $C_3 = \{x_2, \overline{x}_3\}$, while $\psi = \{x_4\}$ in φ . 86 ▶ Definition 5 (Collapse). A clause $C_k = (r_i \odot x_j \odot \overline{x}_u)$ is said to collapse to the minterm 87 $c_k = (r_i \land \overline{x}_j \land x_u), \text{ thus } r_i \notin C_k, \text{ if } r_i \text{ is necessary, denoted by } (r_i \odot x_j \odot \overline{x}_u) \searrow (r_i \land \overline{x}_j \land x_u).$ 88 ▶ Definition 6 (Shrinkage). A clause $C_k = (r_i \odot r_j \odot r_u)$ is said to shrink to another clause 89 $C_{k'} = (r_j \odot r_u), \text{ if } \neg r_i \ (r_i \text{ the incompatible is removed}), \text{ denoted by } (r_i \odot r_j \odot r_u) \mapsto (r_j \odot r_u).$ 90 ▶ Definition 7 (Truth assignment $r_i = \mathbf{T}$ over ϕ). $\phi(r_i) = r_i \land \phi$ for any $r_i \in C_k$ and $C_k \in \phi$. 91 ▶ Note 8. r_i is necessary for $\phi(r_i)$, hence \overline{r}_i is removed, i.e., $r_i \Rightarrow \neg \overline{r}_i$. Then, by the definition 92 of X3SAT, $r_i \Rightarrow r_i \land \neg x_j \land \neg \overline{x}_u$ to satisfy a clause $(r_i \odot x_j \odot \overline{x}_u)$. As a result, $\neg x_j \Rightarrow \overline{x}_j$ and 93 $\neg \overline{x}_u \Rightarrow x_u$, thus \overline{x}_j and x_u become necessary. Therefore, the truth assignment $\phi(r_i)$ results 94 in $(r_i \odot x_j \odot \overline{x}_u) \searrow (r_i \land \overline{x}_j \land x_u)$ and $(\overline{r}_i \odot r_v \odot r_y) \rightarrowtail (r_v \odot r_y)$ due to Definition 5 and 6. 95 ▶ Remark (Reduction). The collapse or shrinkage of any clause C_k denotes its reduction, 96 which in turn reduces φ_s , denoted by $\varphi_s \rightarrow \varphi_{s+1}$. Then, the number of $C_k \in \phi_{s+1}$ is less than 97 the number of $C_k \in \phi_s$, or the number of literals in some $C_k \in \phi_{s+1}$ is less than that in some 98 $C_k \in \phi_s$. Also, a collapse reduces nondeterminism to construct a satisfiable assignment. 99 ▶ **Definition 9.** ϕ denotes a general formula if $\{x_i, \overline{x}_i\} \notin C_k$ for any $i \in \mathfrak{L}$ and $k \in \mathfrak{C}$, hence 100 $\mathfrak{C}^{x_i} \cap \mathfrak{C}^{\overline{x}_i} = \emptyset. \ \phi \ denotes \ a \ special \ formula \ if \ \{x_i, \overline{x}_i\} \subseteq C_k \ for \ some \ k, \ hence \ \mathfrak{C}^{x_i} \cap \mathfrak{C}^{\overline{x}_i} = \{k\}.$ 101 The φ scan algorithm accepts a general formula ϕ . Recall that $\varphi = \psi \wedge \phi$. 102 ▶ Lemma 10 (Conversion of a special formula). Each clause $C_k = (r_i \odot x_i \odot \overline{x_i})$ is replaced 103 by the conjunct \overline{r}_i so that $\mathfrak{C}^{x_i} \cap \mathfrak{C}^{\overline{x}_i} = \emptyset$ for any $i \in \mathfrak{L}$, if $\phi = \bigwedge C_k$ is a special formula. 104

Proof. ϕ is unsatisfiable due to $r_j \Rightarrow \overline{x}_i \land x_i$. Then, $x_i \lor \overline{x}_i \Rightarrow \overline{r}_j$. That is, \overline{r}_j is necessary for satisfying $C_k = (r_j \odot x_i \odot \overline{x}_i)$, which is sufficient also, thus \overline{r}_j is equivalent to C_k . Therefore, each clause $C_k = (r_j \odot x_i \odot \overline{x}_i)$ is replaced by the conjunct \overline{r}_j so that $\mathfrak{C}^{x_i} \cap \mathfrak{C}^{\overline{x}_i} = \emptyset$.

Example 11. $\phi = (x_1 \odot \overline{x}_2 \odot x_2) \land (x_1 \odot \overline{x}_3 \odot x_4) \land (x_2 \odot \overline{x}_1)$ denotes a special formula due to $C_1 = \{x_1, \overline{x}_2, x_2\}$. Note that $\mathfrak{C}^{\overline{x}_2} \cap \mathfrak{C}^{x_2} = \{1\}$. As a result, ϕ is converted by replacing the clause C_1 with the conjunct \overline{x}_1 . Therefore, $\phi \leftarrow \overline{x}_1 \land (x_1 \odot \overline{x}_3 \odot x_4) \land (x_2 \odot \overline{x}_1)$. Likewise, if $\phi = (x_1 \odot \overline{x}_2 \odot x_2) \land (x_1 \odot \overline{x}_1 \odot \overline{x}_4) \land (x_2 \odot \overline{x}_1)$, then $\phi \leftarrow \overline{x}_1 \land x_4 \land (x_2 \odot \overline{x}_1)$. On the other hand, if ϕ involves $(x_u \odot \overline{x}_i \odot x_i) \land (\overline{x}_u \odot x_j \odot \overline{x}_j)$, then ϕ is unsatisfiable due to $\overline{x}_u \land x_u$.

23:4 On the Tractability of Un/Satisfiability

113 **3** The φ Scan

This section addresses the φ scan. Section 3.2 introduces the core algorithms. Section 3.3 tackles satisfiability of φ , and Section 3.4 tackles construction of a satisfiable assignment.

 $\begin{array}{ll} & \varphi_s \text{ denotes the current formula at the } s^{\text{th}} \text{ scan/step, if } \neg r_j \text{ (an incompatible } r_j \text{ is removed).} \\ & \text{Note that } \varphi := \varphi_1 \text{ and } \varphi_s \equiv \varphi. \text{ Then, } \phi_s^{r_i} = (r_{ik_1} \odot r_{u_1k_1} \odot r_{u_2k_1}) \land \cdots \land (r_{ik_r} \odot r_{v_1k_r} \odot r_{v_2k_r}) \\ & \text{denotes the formula over clauses } C_k \ni r_i \text{ in } \phi_s, \text{ where } r_i \in \{x_i, \overline{x}_i\}. \text{ Hence, } \mathfrak{C}_s^{r_i} = \{k_1, \ldots, k_r\}. \\ & \models_{\alpha} \varphi \text{ denotes that the assignment } \alpha = \{r_1, r_2, \ldots, r_n\} \text{ satisfies } \varphi, \text{ and } \nvDash \varphi \text{ denotes } \varphi \text{ is unsatisfiable, while } \psi \models \psi' \text{ denotes } \psi' \text{ is the logical consequence of } \psi - \text{ as } \psi = \mathbf{T}, \ \psi' = \mathbf{T}. \end{array}$

 $\tilde{\psi}_{s}(r_{i}) \text{ is called the } local \text{ effect of } r_{i} \text{ and } \tilde{\phi}_{s}(\neg r_{i}) \text{ is the effect of } \neg r_{i}. \quad \tilde{\varphi}_{s}(r_{i}) \text{ denotes its}$ $\frac{\tilde{\psi}_{s}(r_{i})}{\tilde{\psi}_{s}(r_{i})} = \tilde{\psi}_{s}(r_{i}) \wedge \tilde{\phi}_{s}(\neg \bar{r}_{i}), \text{ specified below. Also, } \tilde{\psi}_{s}(r_{i}) = \bigwedge(c_{k} \wedge C_{k})$ $\frac{\tilde{\psi}_{s}(r_{i})}{\tilde{\psi}_{s}(r_{i})} = 1. \text{ Moreover, } \quad \tilde{\phi}_{s}(\neg r_{i}) = \bigwedge C_{k} \text{ such that } |C_{k}| > 1, \text{ or } \quad \tilde{\phi}_{s}(\neg r_{i}) \text{ is empty.}$

3.1 Introduction: Incompatibility and Reductions

125 Example 12 and 13 introduces incompatibility and reductions, which drive the φ scan.

Example 12. Consider $\phi(x_1)$ over $\varphi = \phi = (x_1 \odot \overline{x}_3) \land (x_1 \odot \overline{x}_2 \odot x_3) \land (x_2 \odot \overline{x}_3)$. Thus, x_1 is necessary (see Note 8), hence $x_1 \models \tilde{\psi}(x_1)$ such that $\tilde{\psi}(x_1) = (x_1 \land x_3) \land (x_1 \land x_2 \land \overline{x}_3)$. That is, $x_1 \Rightarrow \neg \overline{x}_3$ holds for $C_1 = (x_1 \odot \overline{x}_3)$, hence $\neg \overline{x}_3 \Rightarrow x_3$. Likewise, $x_1 \Rightarrow \neg \overline{x}_2 \land \neg x_3$ holds for $C_2 = (x_1 \odot \overline{x}_2 \odot x_3)$, hence $\neg \overline{x}_2 \Rightarrow x_2$ and $\neg x_3 \Rightarrow \overline{x}_3$. Thus, $\tilde{\varphi}(x_1) = \tilde{\psi}(x_1) \land \tilde{\phi}(\neg \overline{x}_1)$ becomes the overall effect, where $\tilde{\phi}(\neg \overline{x}_1)$ is empty. Then, the reductions initiated by x_1 are to proceed due to x_2 . Nevertheless, they are interrupted by $x_3 \land \overline{x}_3$ due to $\tilde{\psi}(x_1)$, hence $\nvDash \phi(x_1)$, where $\phi(x_1) = \tilde{\varphi}(x_1) \land (x_2 \odot \overline{x}_3)$. Therefore, x_1 is *incompatible* and *removed* from ϕ , thus $\neg x_1 \Rightarrow \overline{x}_1$.

► Example 13. \overline{x}_1 initiates reductions over φ (see Note 8). Then, $\tilde{\psi}(\overline{x}_1) = \overline{x}_1 \wedge \overline{x}_3$, $\tilde{\phi}(\neg x_1) = \overline{x}_1 \wedge \overline{x}_3$. 133 $(\overline{x}_2 \odot x_3)$, and $\tilde{\varphi}(\overline{x}_1) = \psi(\overline{x}_1) \land \phi(\neg x_1)$ such that $\varphi_2 = \tilde{\varphi}(\overline{x}_1) \land (x_2 \odot \overline{x}_3)$. Note that $(x_2 \odot \overline{x}_3)$ 134 is beyond $\tilde{\varphi}(\overline{x}_1)$ the overall effect. Note also that $\{\overline{x}_3\} \notin \tilde{\phi}(\neg x_1)$, while $\overline{x}_3 \in \tilde{\psi}(\overline{x}_1)$, because 135 $C_1 \rightarrow c_1$, since $\phi(\neg x_1)$ contains no singleton. Then, φ_2 is the current formula due to the first 136 reduction by \overline{x}_1 over φ . Thus, $\varphi \to \varphi_2$ due to $(x_1 \odot \overline{x}_3) \mapsto (\overline{x}_3)$ and $(x_1 \odot \overline{x}_2 \odot x_3) \mapsto (\overline{x}_2 \odot x_3)$. 137 As a result, $\varphi_2 = \overline{x}_1 \wedge \overline{x}_3 \wedge (\overline{x}_2 \odot x_3) \wedge (x_2 \odot \overline{x}_3)$, in which $\psi_2 = \{\overline{x}_1, \overline{x}_3\}$ denotes the conjuncts, 138 and $C_1 = \{\overline{x}_2, x_3\}$ and $C_2 = \{x_2, \overline{x}_3\}$ denote the clauses. Note that $\mathfrak{C}_2^{x_3} = \{1\}$ and $\mathfrak{C}_2^{x_3} = \{2\}$. 139 Then, \overline{x}_3 leads to the next reduction over φ_2 : $\psi_2(\overline{x}_3) = (\overline{x}_2 \wedge \overline{x}_3), \ \phi_2(\neg x_3)$ is empty, and 140 $\tilde{\varphi}_2(\overline{x}_3) = \tilde{\psi}_2(\overline{x}_3) \wedge \tilde{\phi}_2(\neg x_3)$. Thus, $\varphi_2 \to \varphi_3$ due to $(x_2 \odot \overline{x}_3) \searrow (\overline{x}_2 \wedge \overline{x}_3)$ and $(\overline{x}_2 \odot x_3) \mapsto (\overline{x}_2)$. 141 Then, $\varphi_3 = \tilde{\varphi}(\overline{x}_1) \wedge \tilde{\varphi}_2(\overline{x}_3) = \overline{x}_1 \wedge \overline{x}_2 \wedge \overline{x}_3$, which denotes the cumulative effects of \overline{x}_1 and \overline{x}_3 . 142

143 3.2 The Core Algorithms: Scope and Scan

¹⁴⁴ This section specifies **Scope** and **Scan**, which incorporate the overall effect $\tilde{\varphi}_s(r_j)$, defined ¹⁴⁵ below. Recall that \overline{r}_j is *removed*, if r_j is *necessary* for satisfying some formula, i.e., $r_j \Rightarrow \neg \overline{r}_j$. ¹⁴⁶ Note that $\phi_s^{r_j} = (r_{jk_1} \odot r_{i_1k_1} \odot r_{i_2k_1}) \land \cdots \land (r_{jk_r} \odot r_{u_1k_r} \odot r_{u_2k_r})$ for Lemma 14 and 15 below.

Lemma 14. $r_j \models \tilde{\psi}_s(r_j)$ such that $\tilde{\psi}_s(r_j) = r_j \wedge \overline{r}_{i_1} \wedge \overline{r}_{i_2} \wedge \cdots \wedge \overline{r}_{u_1} \wedge \overline{r}_{u_2}$, unless $\not\models \tilde{\psi}_s(r_j)$.

Proof. Follows from Definition 5. That is, $r_j \Rightarrow (r_j \wedge \overline{r}_{i_1} \wedge \overline{r}_{i_2}) \wedge \cdots \wedge (r_j \wedge \overline{r}_{u_1} \wedge \overline{r}_{u_2})$. Hence, $r_j \Rightarrow r_j \wedge \overline{r}_{i_1} \wedge \overline{r}_{i_2} \wedge \cdots \wedge \overline{r}_{u_1} \wedge \overline{r}_{u_2}$.

Lemma 15. If $\neg r_j$, then $\tilde{\phi}_s(\neg r_j)$ holds such that $\tilde{\phi}_s(\neg r_j) = (r_{i_1} \odot r_{i_2}) \land \cdots \land (r_{u_1} \odot r_{u_2})$.

- Proof. Follows from Definition 6. $\tilde{\phi}_s(\neg r_j) = \{\{\}\}, \text{ or } |C_k| > 1 \text{ for any } C_k \text{ in } \tilde{\phi}_s(\neg r_j).$
- **Lemma 16** (Overall effect of r_j). $r_j \models \tilde{\varphi}_s(r_j)$ such that $\tilde{\varphi}_s(r_j) = \tilde{\psi}_s(r_j) \land \tilde{\phi}_s(\neg \overline{r}_j)$.
- Proof. Follows from $r_j \models r_j \land \neg \overline{r}_j$, as well as from Lemma 14, and Lemma 15 via $\phi_s^{r_j}$.

The algorithm $\texttt{OvrlEft}(r_j, \phi_*)$ below constructs the overall effect $\tilde{\varphi}_*(r_j)$ by means of the local effect $\tilde{\psi}_*(r_j)$ (see Lines 1-6, or L:1-6), as well as of the local effect $\tilde{\phi}_*(\neg \overline{r}_j)$ (L:7-10).

Algorithm 1 OvrlEft (r_j, ϕ_*)	\triangleright Construction of the overall effect $\tilde{\varphi}_*(r_j)$ due to r_j over ϕ_*
1: for all $k \in \mathfrak{C}^{r_j}_*$ over ϕ_* do	\triangleright Construction of the local effect $\tilde{\psi}_*(r_j)$ due to r_j (Lemma 14)
2: for all $r_i \in (C_k - \{r_j\})$	$\mathbf{do} \triangleright \tilde{\psi}_*(r_j)$ gets r_j via r_e (see Scope L:4), or via \overline{r}_j (Remove L:2)
3: $c_k \leftarrow c_k \cup \{\overline{r}_i\}; \triangleright (r_{jk})$	$\odot r_{i_1k} \odot r_{i_2k}) \searrow (\overline{r}_{i_1k} \wedge \overline{r}_{i_2k}).$ That is, $C_k \searrow c_k$ (see Definition 2/5)
4: end for	
5: $\tilde{\psi}_*(r_j) \leftarrow \tilde{\psi}_*(r_j) \cup c_k;$	$\triangleright c_k$ consists in $\psi_s(r_j)$ (see Scope L:4), or in ψ_s (see Remove L:2)
6: end for⊳ L:1-6 are independe	ent from L:7-10, since $\mathfrak{C}_*^{r_j} \cap \mathfrak{C}_*^{\overline{r}_j} = \emptyset$, i.e., $\mathfrak{C}_*^{x_j} \cap \mathfrak{C}_*^{\overline{x}_j} = \emptyset$ (Lemma 10)
7: for all $k \in \mathfrak{C}^{r_j}_*$ over ϕ_* do	> Construction of the local effect $\tilde{\phi}_*(\neg \overline{r}_j)$ due to $\neg \overline{r}_j$ (Lemma 15)
8: $C_k \leftarrow C_k - \{\overline{r}_j\}; \triangleright (\overline{r}_{jk})$	$(r_{u_1k} \odot r_{u_2k}) \rightarrow (r_{u_1k} \odot r_{u_2k}), \text{ or } (\overline{r}_{jk} \odot r_{uk}) \rightarrow (r_{uk}) \text{ (Definition 6)}$
9: if $ C_k = 1$ then $\tilde{\psi}_*(r_j)$	$\leftarrow \tilde{\psi}_*(r_j) \cup C_k; C_k \leftarrow \emptyset; \triangleright \tilde{\phi}_*(\neg \overline{r}_j) \text{ contains no singleton, } C_k \rightarrowtail c_k$
10: end for $> 3 \setminus 2$ -literal C_k in $\phi_*^{\overline{r}_3}$	^{<i>j</i>} shrinks due to $\neg \overline{r}_j$ to 2-literal C_k in $\phi_*^{\overline{r}_j}$ to conjunct r_u in $\tilde{\psi}_*(r_j)$
11: return $\tilde{\psi}_*(r_j)$ & $\tilde{\phi}_*(\neg \overline{r}_j) \leftarrow$	$-\phi_*^{r_j}; \triangleright \ \tilde{\phi}_*(\neg \overline{r}_j) = \bigcup C_k \text{ such that } C_k > 1, \text{ or } \ \tilde{\phi}_*(\neg \overline{r}_j) = \{\{\}\}$

Definition 17. $\not\models \varphi_s(r_j)$ iff r_j is incompatible, that is, the assumption $r_j = \mathbf{T}$ cannot hold.

157 Note. If $\not\models \varphi_s(r_j), r_j$ is incompatible, it is removed from ϕ_s , that is, $\neg r_j$ holds over ϕ_s .

158 Note 18. $\varphi_s(r_j) = \psi_s \wedge r_j \wedge \phi_s$ by Definition 3/7, hence $\not\models \varphi_s(r_j)$ if $\not\models (\psi_s \wedge r_j)$ or $\not\models \phi_s(r_j)$.

159 Note 19 (Assumption). $\not\models \phi_s(r_j)$ is verified through solely $\psi_s(r_j)$, called the scope of r_j .

Lemma 20 (Scope construction). $r_j \models \psi_s(r_j)$ such that $\psi_s(r_j) = \bigwedge c_k$, unless $\not\models \psi_s(r_j)$.

Proof. $\phi_s(r_j) = r_j \wedge \phi_s$ by Definition 7, as $r_j = \mathbf{T}$. Then, a *deterministic* chain of reductions is initiated (Note 8). That is, $r_j \Rightarrow r_j \wedge x_i \wedge \overline{x}_u$ due to any clause $(r_j \odot \overline{x}_i \odot x_u)$ containing r_j , as well as $\neg \overline{r}_j \Rightarrow (\overline{x}_u \odot x_v)$ due to any clause $(\overline{r}_j \odot \overline{x}_u \odot x_v)$ containing \overline{r}_j . These reductions proceed, as long as new conjuncts r_e emerge in $\phi_s(r_j)$ (see Scope L:2-4). If the reductions are interrupted, then r_j is incompatible (L:5). If they terminate, then the scope $\psi_s(r_j)$ and beyond the scope $\phi'_s(r_j)$ are constructed (L:9), where $\psi_s(r_j) = \bigwedge c_k$ and $\phi'_s(r_j) = \bigwedge C_k$.

Algorithm 2 Scope $(r_j, \phi_s) \triangleright$ Construction of $\psi_s(r_j)$ and $\phi'_s(r_j)$ due to r_j over $\phi_s; \varphi_s = \psi_s \land \phi_s$ $\triangleright \phi_s(r_j) := r_j \land \phi_s$. ψ_s and ϕ_s are disjoint due to Scan L:1-3 1: $\psi_s(r_j) \leftarrow \{r_j\}; \phi_* \leftarrow \phi_s;$ 2: for all $r_e \in (\psi_s(r_j) - R)$ do \triangleright Reductions of C_k initiated by r_i over ϕ_s start off \triangleright It returns $\tilde{\psi}_*(r_e)$ for L:4 & $\tilde{\phi}_*(\neg \overline{r}_e)$ for L:6 3: OvrlEft $(r_e, \phi_*);$ 4: $\psi_s(r_j) \leftarrow \psi_s(r_j) \cup \{r_e\} \cup \tilde{\psi}_*(r_e); \triangleright \tilde{\psi}_*(r_e) \text{ (see OvrlEft L:5,9) consists in the scope } \psi_s(r_j)$ if $\psi_s(r_i) \supseteq \{x_i, \overline{x}_i\}$ then return NULL; $\triangleright r_j \Rightarrow x_i \land \overline{x}_i, i \in \mathfrak{L}^{\phi}. \not\models \psi_s(r_j), \text{ thus } \not\models \phi_s(r_j)$ 5: $\tilde{\phi}_*(\neg r) \leftarrow \tilde{\phi}_*(\neg r) \cup \tilde{\phi}_*(\neg \overline{r}_e); \triangleright \tilde{\phi}_*(\neg r) = \{\{\}\} \text{ or } \tilde{\phi}_*(\neg r) = \bigcup C_k, |C_k| > 1 \text{ (OvrlEft L:8-11)}$ 6: $\phi_* \leftarrow \phi_*(\neg r) \land \phi'_*; R \leftarrow R \cup \{r_e\}; \quad \triangleright \ \tilde{\phi}_*(\neg r) \text{ and } \phi'_* \text{ consist in beyond the scope } \phi'_s(r_j)$ 7: $\triangleright \phi'_* = \bigwedge C_k$ for $k \in \mathfrak{C}'_*$, where $\mathfrak{C}'_* = \mathfrak{C}_* - (\mathfrak{C}^{*e}_* \cup \mathfrak{C}^{*e}_*)$, and $\mathfrak{C}^{*e}_* - \mathfrak{C}^{*e}_* = \emptyset$ due to Lemma 10 8: end for \triangleright The reductions terminate if $\psi_s(r_j) = R$, which denotes conjuncts already reduced C_k 9: return $\psi_s(r_j)$ & $\phi'_s(r_j) \leftarrow \phi_*$; $\triangleright \phi_s(r_j) = \psi_s(r_j) \land \phi'_s(r_j)$; $\psi_s(r_j) = \bigwedge c_k = \bigwedge r_j, \phi'_s(r_j) = \bigwedge C_k$

▶ Note 21. $\mathcal{L}_s(r_j)$ being an index set of $\psi_s(r_j)$, $\mathcal{L}_s(r_j) \cap \mathcal{L}'_s(r_j) = \emptyset$ and $\mathcal{L}_s(r_j) \cup \mathcal{L}'_s(r_j) = \mathcal{L}^{\phi}$, if Scope (r_j, ϕ_s) terminates. As a result, $\psi_s(r_j)$ and $\phi'_s(r_j)$ are disjoint, and compose $\phi_s(r_j)$.

Note 22. If $Scan(\varphi_{\hat{s}})$ terminates, then $\psi_{\hat{s}}$ and $\phi_{\hat{s}}$ are disjoint, and compose $\varphi_{\hat{s}}$ such that

 $\psi_{\hat{s}} = \bigwedge c_k$ (see Definition 2), and that $\phi_{\hat{s}} = \bigwedge C_k$, in which $|C_k| > 1$, because each $C_k = \{r_i\}$

in ϕ_s for any s transforms into r_i in $\psi_{\hat{s}}$. That is, $C_k = (r_i \odot r_j)$ or $C_k = (r_i \odot r_j \odot r_u)$ in $\phi_{\hat{s}}$.

23:6 On the Tractability of Un/Satisfiability

▶ Example 23. Consider $\psi(x_1)$, Scope (x_1, ϕ) , for $\phi = (x_1 \odot \overline{x}_3) \land (x_1 \odot \overline{x}_2 \odot x_3) \land (x_2 \odot \overline{x}_3)$. $\psi(x_1) \leftarrow \{x_1\}$ and $\phi_* \leftarrow \phi$ (L:1). Then, $\phi_*^{\overline{x}_1}$ is empty, and $\phi_*^{x_1} = (x_1 \odot \overline{x}_3) \land (x_1 \odot \overline{x}_2 \odot x_3)$ due to $\mathsf{OvrlEft}(x_1, \phi_*)$. Also, $\mathfrak{C}_*^{x_1} = \{1, 2\}$, thus $c_1 \leftarrow \{x_3\}$ and $\tilde{\psi}_*(x_1) \leftarrow \tilde{\psi}_*(x_1) \cup c_1$, as well as $c_2 \leftarrow \{x_2, \overline{x}_3\}$ and $\tilde{\psi}_*(x_1) \leftarrow \tilde{\psi}_*(x_1) \cup c_2$ (see $\mathsf{OvrlEft}$ L:1-6). Then, $\tilde{\psi}_*(x_1) = \{x_3, x_2, \overline{x}_3\}$ $\tilde{\phi}_*(\neg \overline{x}_1) \leftarrow \phi_*^{\overline{x}_1}$ ($\mathsf{OvrlEft}$ L:11). As a result, $\psi(x_1) \leftarrow \psi(x_1) \cup \{x_1\} \cup \tilde{\psi}_*(x_1)$ (Scope L:4), and $\psi(x_1) \supseteq \{x_3, \overline{x}_3\}$ (L:5), that is, $x_1 \Rightarrow x_3 \land \overline{x}_3$, hence x_1 is incompatible in the first scan.

Definition 24. $\mathfrak{L}^{\psi} = \{i \in \mathfrak{L} \mid r_i \in \psi_s\}$ and $\mathfrak{L}^{\phi} = \{i \in \mathfrak{L} \mid r_i \in C_k \text{ in } \phi_s\}$ due to $\varphi_s = \psi_s \land \phi_s$.

Figure 4 illustrates Scan (φ_s). It decomposes $\phi_s = \bigwedge C_k$ into $\psi_s(x_1), \psi_s(\overline{x}_1), \dots, \psi_s(x_n), \psi_s(\overline{x}_n), \psi_s$

$$\varphi_s \xrightarrow{\text{The } \psi_s \operatorname{scan}} \psi \wedge \phi \text{ transforms into } \hat{\psi} \wedge \hat{\phi} \text{ such that } \hat{\phi} \equiv \bigwedge (\psi(x_i) \oplus \psi(\overline{x}_i)), \text{ if } \operatorname{Scan}(\varphi_{\hat{s}}) \text{ terminates}$$

Figure 4 Scan decomposes ϕ_s into $\psi_s(x_1), \psi_s(\overline{x}_1), \ldots, \psi_s(\overline{x}_n)$, and transforms $\psi \land \phi$ into $\hat{\psi} \land \hat{\phi}$

181 Scan (φ_s) checks incompatibility of r_i for every $i \in \mathfrak{L}^{\phi}$. If $\overline{r}_i \in \psi_s$, then r_i is incompatible 182 trivially (L:1-2). If $r_i \Rightarrow x_j \wedge \overline{x}_j$, then r_i is incompatible nontrivially (L:6). See also Note 18. 183 For example, \overline{x}_1 is incompatible trivially due to $x_1 \wedge (x_1 \odot x_2 \odot \overline{x}_3)$, since $\mathbf{1} \in \mathfrak{L}^{\phi}$ and $x_1 \in \psi_s$. 184 Note that $\overline{x}_1 \Rightarrow \overline{x}_1 \wedge x_1$. If Scan (φ_s) is interrupted (see Remove L:3), then φ is unsatisfiable. 185 If the scan terminates (L:9), then a satisfiable assignment α is constructed (see Section 3.4).

Algorithm 3 Scan (φ_s) \triangleright Checks if $\not\models \varphi_s(r_i)$ for all $i \in \mathfrak{L}^{\phi}$. See also Note 18. $\varphi_s = \psi_s \land \phi_s$ 1: for all $i \in \mathfrak{L}^{\phi}$ and $\overline{r}_i \in \psi_s$ do $\triangleright \varphi_s(r_i) = \psi_s \wedge r_i \wedge \phi_s$, thus $\not\models (\psi_s \wedge r_i)$, that is, $r_i \Rightarrow x_i \wedge \overline{x}_i$ 2: Remove (r_i, ϕ_s) ; $\triangleright \overline{r}_i$ is necessary, thus r_i is incompatible trivially, hence $\overline{r}_i \Rightarrow \neg r_i$ 3: end for \triangleright If $i \in \mathfrak{L}^{\psi}$, r_i has been already removed, hence $\overline{r}_i \notin \psi_s$ and $\overline{r}_i \notin C_k \forall k \in \mathfrak{C}_s$, i.e., $i \notin \mathfrak{L}^{\phi}$ 4: for all $i \in \mathfrak{L}^{\phi}$ do $\triangleright \mathfrak{L}^{\psi} \cap \mathfrak{L}^{\phi} = \emptyset$ due to L:1-3. Hence, $i \in \mathfrak{L}^{\psi}$ iff $r_i = x_i$ is fixed or $r_i = \overline{x}_i$ is fixed for all $r_i \in \{x_i, \overline{x}_i\}$ do \triangleright Each and every x_i and \overline{x}_i assumed to be true is to be verified 5: 6: if Scope (r_i, ϕ_s) is NULL then Remove (r_i, ϕ_s) ; \triangleright Incompatible nontrivially if $\not\models \phi_s(r_i)$ end for \triangleright If $r_i \Rightarrow x_j \land \overline{x}_j$, hence $\neg x_j \lor \neg \overline{x}_j \Rightarrow \neg r_i$, then $\neg r_i \Rightarrow \overline{r}_i$, where $i \neq j$ due to L:1-3 7:8: end for $\neg r_i$ iff \overline{r}_i , since $\neg r_i \Rightarrow \overline{r}_i$ due to nontrivial, and $\neg r_i \leftarrow \overline{r}_i$ due to trivial incompatibility 9: return $\hat{\varphi} = \psi \land \phi$, and $\psi(r_i) \& \phi'(r_i)$ for all $i \in \mathfrak{L}_{\hat{\phi}}$; $\triangleright \hat{\psi} \leftarrow \psi_{\hat{s}}$ and $\hat{\phi} \leftarrow \phi_{\hat{s}}$. See also Note 22

186 Note 25. \mathfrak{L}^{ψ} and \mathfrak{L}^{ϕ} form a partition of \mathfrak{L} due to Definition 24 and Scan L:1-3.

Remove (r_j, ϕ_s) leads to reductions of any $C_k \ni \overline{r}_j$ due to \overline{r}_j , which consists in ψ_{s+1} (see L:1-2), as well as of any $C_k \ni r_j$ due to $\neg r_j$, which consists in ϕ_{s+1} (see L:1,5). Note that ψ_s denotes the current conjuncts (in φ_s), and that ψ denotes the initial conjuncts (in φ).

Algorithm 4 Remove (r_j,ϕ_s)	$\triangleright r_j$ is incompatible/removed iff \overline{r}_j is neg	cessary, i.e., $\neg r_j$ iff \overline{r}_j
1: $OvrlEft\left(\overline{r}_{j},\phi_{s}\right); \triangleright OvrlEft$ i	s defined over $\phi_s = \bigwedge C_k, C_k > 1$, and retu	$\operatorname{trns}\tilde{\psi}_s(\overline{r}_j)\&\tilde{\phi}_s(\neg r_j)$
2: $\psi_{s+1} \leftarrow \psi_s \cup \{\overline{r}_j\} \cup \tilde{\psi}_s(\overline{r}_j); \triangleright$	$\psi_{s+1} = \bigwedge c_k$ is true by Definition 2, unless	ψ_{s+1} involves $x_i \wedge \overline{x}_i$
3: if $\psi_{s+1} \supseteq \{x_i, \overline{x}_i\}$ for some	then return φ is unsatisfiable;	$\triangleright \varphi_s = \psi_s \wedge \phi_s$
4: $\mathfrak{L}^{\phi} \leftarrow \mathfrak{L}^{\phi} - \{j\}; \mathfrak{L}^{\psi} \leftarrow \mathfrak{L}^{\psi} \cup \{$	<i>j</i> };	
5: $\phi_{s+1} \leftarrow \tilde{\phi}_s(\neg r_j) \land \phi'_s$; Update	$\{C_k\}$ over ϕ_{s+1} ; $\triangleright \phi'_s$ denotes clauses beyo	nd the entire ψ_s effect
$\triangleright \phi'_s = \bigwedge C_k \text{ for } k \in \mathfrak{C}'_s, \text{ with } k \in \mathfrak{C}'_s$	here $\mathfrak{C}'_s = \mathfrak{C}_s - (\mathfrak{C}^{\overline{x}_j}_s \cup \mathfrak{C}^{x_j}_s)$, and $\mathfrak{C}^{\overline{x}_j}_s \cap \mathfrak{C}^{x_j}_s =$	\emptyset due to Lemma 10
6: Scan (φ_{s+1}) ; $\triangleright r_i$ verified com	patible for $\check{s} \leq s$ can be incompatible for \tilde{s}	$> s$ due to $\neg r_i$ in ϕ_s

¹⁹⁰ 3.3 Unsatisfiability of $\phi(r_i)$ vs Unsatisfiability of $\psi_s(r_i)$ for some s

¹⁹¹ This section tackles satisfiability of φ through unsatisfiability of a truth assignment $\phi(r_j)$.

Proposition 26 (Nontrivial incompatibility). $\not\models \phi(r_j)$ iff $\not\models \psi_s(r_j)$ or $\not\models \phi'_s(r_j)$ for some s.

Proof. Proof is obvious due to $\phi_s(r_j) = \psi_s(r_j) \wedge \phi'_s(r_j)$, transformed from $\phi_s(r_j) := r_j \wedge \phi_s$ through Scope (r_j, ϕ_s) . Moreover, $\not\models \phi(r_j)$ iff $\not\models \phi_s(r_j)$ for some s due to Theorem 36.

▶ Remark. It is trivial to verify $\not\models \psi_s(r_j)$ (see Scope L:5). It is *redundant* to check if $\not\models \phi'_s(r_j)$, since $\not\models \phi_s(r_j)$ is verified *solely* via $\not\models \psi_s(r_j)$ by assumption (Note 19). Thus, it is easy to verify $\not\models \phi_s(r_j)$ for Scan L:6. The following introduces the tools to justify this assumption. $\mathfrak{L}_s(r_i) = \mathfrak{L}(\psi_s(r_i))$ denotes the index set of the scope $\psi_s(r_i)$. Likewise, $\mathfrak{L}'_s(r_i) = \mathfrak{L}(\phi'_s(r_i))$.

Also, we define the conditional scope $\psi_s(r_i|r_j)$ and beyond the scope $\phi'_s(r_i|r_j)$ over $\phi'_s(r_j)$ for any $j \neq i$, which are constructed by Scope $(r_i, \phi'_s(r_j))$. Thus, $\mathfrak{L}_s(r_i|r_j) = \mathfrak{L}(\psi_s(r_i|r_j))$.

▶ Lemma 27 (No conjunct exists in beyond the scope). $\mathfrak{L}_s(r_j) \cap \mathfrak{L}'_s(r_j) = \emptyset$ for any $j \in \mathfrak{L}^{\phi}$.

Proof. $\phi'_s(r_j) = \bigwedge C_k$ by Scope (r_j, ϕ_s) . Let r_i the *conjunct* be in C_k , $i \in (\mathfrak{L}_s(r_j) \cap \mathfrak{L}'_s(r_j))$. Then, for any $C_k \ni r_i$, $(r_i \odot x_j \odot \overline{x}_u) \searrow (r_i \wedge \overline{x}_j \wedge x_u)$, thus $r_i \notin C_k$. Moreover, for any $C_k \ni \overline{r}_i$, $(\overline{r}_i \odot r_v \odot r_y) \rightarrowtail (r_v \odot r_y)$, thus $\overline{r}_i \notin C_k$. See Definition 5/6. Hence, $i \notin (\mathfrak{L}_s(r_j) \cap \mathfrak{L}'_s(r_j))$.

▶ Note. No conjunct exists in any clause C_k due to Note 25, which states $\mathfrak{L}^{\psi} \cap \mathfrak{L}^{\phi} = \emptyset$.

▶ Lemma 28. \mathfrak{L}^{ϕ} is partitioned into $\mathfrak{L}_s(r_j)$, $\mathfrak{L}_s(r_{j_1}|r_j)$,..., $\mathfrak{L}_s(r_{j_n}|r_{j_m})$ by means of Scope.

▶ Lemma 29. $\phi_s(r_j)$ is decomposed into disjoint $\psi_s(r_j)$, $\psi_s(r_{j_1}|r_j)$, ..., $\psi_s(r_{j_n}|r_{j_m})$.

Proof. Scope (r_j, ϕ_s) partitions \mathfrak{L}^{ϕ} into $\mathfrak{L}_s(r_j)$ and $\mathfrak{L}'_s(r_j)$ for any $j \in \mathfrak{L}^{\phi}$ (see Lemma 27). Thus, $\phi_s(r_j)$ is decomposed into disjoint $\psi_s(r_j)$ and $\phi'_s(r_j)$. Scope $(r_{j_1}, \phi'_s(r_j))$ partitions $\mathfrak{L}'_s(r_j)$ into $\mathfrak{L}_s(r_{j_1}|r_j)$ and $\mathfrak{L}'_s(r_{j_1}|r_j)$ for any $j_1 \in \mathfrak{L}'_s(r_j)$. Thus, $\phi'_s(r_j)$ is decomposed into disjoint $\psi_s(r_{j_1}|r_j)$ and $\phi'_s(r_{j_1}|r_j)$. Finally, $\phi'_s(r_{j_m}|r_{j_l})$ is decomposed into disjoint $\psi_s(r_{j_n}|r_{j_m})$ and $\phi'_s(r_{j_n}|r_{j_m})$ for any $j_n \in \mathfrak{L}'_s(r_{j_m}|r_{j_l})$ such that $\mathfrak{L}'_s(r_{j_n}|r_{j_m}) = \emptyset$ (see also Note 21).

Let the scan *terminate* (see Scan L:9), thus $\psi \wedge \phi$ transforms into $\hat{\psi} \wedge \hat{\phi}$. Let $\phi \leftarrow \hat{\phi}$, thus $\mathfrak{L} \leftarrow \mathfrak{L}^{\phi}$. Also, $\psi(r_i) = \mathbf{T}$ for every $i \in \mathfrak{L}$ and $r_i \in \{x_i, \overline{x}_i\}$. Then, Lemma 29 leads to the fact (Theorem 34) that it is *redundant* to check if $\not\models \phi'_s(r_j)$ to verify $\not\models \phi_s(r_j)$ for any s.

▶ Lemma 30. $\phi'(r_j)$ is decomposed into disjoint $\psi(r_{j_1}|r_j), \psi(r_{j_2}|r_{j_1}), \ldots, \psi(r_{j_n}|r_{j_m})$.

Proof. Follows from Lemma 29, and from $\phi(r_j) = \psi(r_j) \wedge \phi'(r_j)$ due to Scope (r_j, ϕ) .

▶ Lemma 31. $\phi \supseteq \phi'(r_j) \supseteq \phi'(r_{j_1}|r_j) \supseteq \phi'(r_{j_2}|r_{j_1}) \supseteq \cdots \supseteq \phi'(r_{j_n}|r_{j_m})$, since it terminates.

Proof. Some C_k in ϕ collapse to some c_k in $\psi(r_j)$ due to $\mathsf{Scope}(r_j, \phi)$ (see Lemma 20). As a result, the number of C_k in ϕ is greater than or equal to that of C_k in $\phi'(r_j)$, thus $|\mathfrak{C}| \ge |\mathfrak{C}'|$, where \mathfrak{C} denotes an index set of C_k in ϕ . Also, some C_k in ϕ shrink to some $C_{k'}$ in $\phi'(r_j)$, thus $\forall k' \in \mathfrak{C}' \exists k \in \mathfrak{C}[C_k \supseteq C_{k'}]$. Hence, $\phi \supseteq \phi'(r_j)$. Likewise, $\phi'(r_j) \supseteq \phi'(r_{j_1}|r_j)$, since $\phi'(r_j)$ is decomposed into $\psi(r_{j_1}|r_j)$ and $\phi'(r_{j_1}|r_j)$ via $\mathsf{Scope}(r_{j_1}, \phi'(r_j))$. Therefore, $\phi \supseteq \phi'(r_j) \supseteq$ $\phi'(r_{j_1}|r_j) \supseteq \phi'(r_{j_2}|r_{j_1}) \supseteq \cdots \supseteq \phi'(r_{j_n}|r_{j_m})$, where $\phi'(r_{j_n}|r_{j_m}) = \phi'(r_{j_n}|r_j, r_{j_1}, \dots, r_{j_m})$.

Lemma 32 (Any scope entails its conditional scope). $\psi(r_i) \models \psi(r_i|r_j)$, since it terminates.

Proof. $\phi \supseteq \phi'(r_j)$ due to Lemma 31. Scope (r_i, ϕ) constructs the scope $\psi(r_i)$ over ϕ , while Scope $(r_i, \phi'(r_j))$ constructs the conditional scope $\psi(r_i|r_j)$ over $\phi'(r_j)$, thus $\psi(r_i) \supseteq \psi(r_i|r_j)$,

where $\psi(r_i) = \bigwedge c_k$ by Definition 2 and Lemma 20. Since $\psi(r_i) \supseteq \psi(r_i|r_j)$ and $\psi(r_i)$ is true

for all r_i in ϕ , $\psi(r_i|r_j)$ is true for all r_i in $\phi'(r_j)$. Hence, $\psi(r_i) \models \psi(r_i|r_j)$ (see Figure 2).

23:8 On the Tractability of Un/Satisfiability

▶ Lemma 33. $\psi(r_i|r_j), \psi(r_i|r_j, r_{j_1}), \dots, \psi(r_i|r_j, r_{j_1}, \dots, r_{j_m})$ is true for every $j \in \mathfrak{L}$, and for every $i \in \mathfrak{L}'(r_j), i \in \mathfrak{L}'(r_{j_1}|r_j), \dots, i \in \mathfrak{L}'(r_{j_m}|r_j, r_{j_1}, \dots, r_{j_l})$, because the scan terminates.

Proof. Recall that the scan terminates. Thus, $\hat{\varphi} = \hat{\psi} \land \hat{\phi}$, and $\phi := \hat{\phi}$ and $\mathfrak{L} := \mathfrak{L}^{\hat{\phi}}$ (see also Note 22). Hence, a truth assignment $\psi(r_i)$ holds for every $i \in \mathfrak{L}$ and $r_i \in \{x_i, \overline{x}_i\}$. Moreover, $\phi \supseteq \phi'(r_j) \supseteq \phi'(r_{j_1}|r_j) \supseteq \phi'(r_{j_2}|r_{j_1}) \supseteq \cdots \supseteq \phi'(r_{j_n}|r_{j_m})$ due to Lemma 31 for any $j \in \mathfrak{L}$, and $j_1 \in \mathfrak{L}'(r_j), \ldots, j_n \in \mathfrak{L}'(r_{j_m}|r_{j_l})$. Then, $\psi(r_i) \supseteq \psi(r_i|r_j), \ldots, \psi(r_i) \supseteq \psi(r_i|r_j, r_{j_1}, \ldots, r_{j_m})$, in which $\psi(r_i) \supseteq \psi(r_i|r_j, r_{j_1})$ via Scope $(r_i, \phi'(r_{j_1}|r_j))$, thus $\psi(r_i) \models \psi(r_i|r_j, r_{j_1})$. Therefore, any $\psi(r_i|r_j), \psi(r_i|r_j, r_{j_1}), \ldots, \psi(r_i|r_j, r_{j_1}, \ldots, r_{j_m})$ is true, which generalizes Lemma 32.

Theorem 34 (Unsatisfiability). $\not\models \phi(r_j), r_j \text{ is incompatible, iff } \not\models \psi_s(r_j) \text{ for some s.}$

Corollary 35 (Satisfiability). $\models_{\alpha} \phi$ *iff a truth assignment* $\psi(r_i)$ *holds* $\forall i \in \mathfrak{L}, r_i \in \{x_i, \overline{x}_i\}$.

Proof. $\psi(r_{j_1}|r_j), \psi(r_{j_2}|r_{j_1}), \ldots, \psi(r_{j_n}|r_{j_m})$ form disjoint minterms over $\phi'(r_j)$ (Lemma 30) such that $\psi(r_{j_1}|r_j), \psi(r_{j_2}|r_{j_1}), \ldots, \psi(r_{j_n}|r_{j_m})$ are true (Lemma 33) for any $j \in \mathfrak{L}, j_1 \in \mathfrak{L}'(r_j), j_2 \in \mathfrak{L}'(r_{j_1}|r_j), \ldots, j_n \in \mathfrak{L}'(r_{j_m}|r_{j_l})$. Then, $\phi'(r_j)$ is composed of $\psi(.)$ the minterms true and disjoint, hence $\phi'(r_j)$ is satisfied, thus unsatisfiability of $\phi'_s(r_j)$ is ignored to verify $\not\models \phi_s(r_j)$. Therefore, Theorem 34 holds (cf. Proposition 26). Moreover, $\psi(r_i) \equiv \phi(r_i)$, since $\phi'(r_i)$ is satisfied, and $\phi(r_i) = \psi(r_i) \land \phi'(r_i)$. Therefore, Corollary 35 holds (see also Appendix A).

Theorem 36 (Incompatibility is monotonic). $\not\models \varphi_s(r_j)$ for all $s > \tilde{s}$ if $\not\models \varphi_{\tilde{s}}(r_j)$, even if $\neg r_i$.

Proof. $\not\models \varphi_s(r_j)$, if $\not\models (\psi_s \wedge r_j)$ or $\not\models \phi_s(r_j)$ (Scan L:1,6). $\psi_s \supseteq \psi_{\tilde{s}}$ for all $s > \tilde{s}$ (Remove L:2), thus $\not\models (\psi_s \wedge r_j)$ for all $s > \tilde{s}$, if $\not\models (\psi_{\tilde{s}} \wedge r_j)$. Let $\not\models \phi_{\tilde{s}}(r_j)$ due to $x_i \wedge \overline{x}_i$, hence $\overline{x}_i \vee x_i \Rightarrow \overline{r}_j$, thus $\overline{r}_j \in \psi_s$, and $\not\models (\psi_s \wedge r_j)$ for all $s > \tilde{s}$. If $\not\models \varphi_{\tilde{s}}(r_i)$ for $\check{s} \leqslant \tilde{s}$, then $\neg r_i \Rightarrow \overline{r}_i$ and $\overline{r}_i \Rightarrow \overline{r}_j$, thus $\overline{r}_j \in \psi_s$ still holds, and $\not\models (\psi_s \wedge r_j)$ for all $s > \check{s}$, hence all $s > \tilde{s}$. If $\not\models \varphi_s(r_i)$ for $s > \tilde{s}$, then $\not\models (\psi_s \wedge r_j)$ still holds for all $s > \tilde{s}$, since $x_j \notin C_k$ and $\overline{x}_j \notin C_k$, while $r_i \in C_k$ in ϕ_s .

Proposition 37. The time complexity of Scan is $O(mn^3)$.

Proof. OvrlEft, and Remove, takes 4m steps by $(|\mathfrak{C}_{*}^{r_j}| \times |C_k|) + |\mathfrak{C}_{*}^{\bar{r}_j}| = 3m + m$. Scope takes n4m steps by $|\psi_s(r_j)| \times 4m$. Then, Scan takes $n^2 4m$ steps due to L:1-3 by $|\mathfrak{L}^{\phi}| \times |\psi_s| \times 4m$, as well as $8n^2m + 8nm$ steps due to L:4-8 by $2|\mathfrak{L}^{\phi}| \times (4nm + 4m)$. Also, the number of the scans is $\hat{s} \leq |\mathfrak{L}^{\phi}|$ due to Remove L:6. Therefore, the time complexity of Scan is $O(n^3m)$.

▶ Example 38. Let $\varphi = \{\{x_3, x_4, \overline{x}_5\}, \{x_3, x_6, \overline{x}_7\}, \{x_4, x_6, \overline{x}_7\}\}$. Let Scope (x_3, ϕ) execute first in the first scan, which leads to the reductions below over ϕ due to x_3 . Note that $\psi = \emptyset$. $\phi(x_3) = (x_3 \odot x_4 \odot \overline{x}_5) \land (x_3 \odot x_6 \odot \overline{x}_7) \land (x_4 \odot x_6 \odot \overline{x}_7) \land x_3$

 $\begin{array}{c} x_{3} \Rightarrow (x_{3} \land \overline{x}_{4} \land x_{5}) \land (x_{3} \land \overline{x}_{6} \land x_{7}) \land (x_{4} \oslash x_{6} \oslash \overline{x}_{7}) \land x_{3} \\ x_{3} \Rightarrow (x_{3} \land \overline{x}_{4} \land x_{5}) \land (x_{3} \land \overline{x}_{6} \land x_{7}) \land (x_{4} \odot x_{6} \odot \overline{x}_{7}) \land x_{3} \\ \overline{x}_{4} \Rightarrow (x_{3} \land \overline{x}_{4} \land x_{5}) \land (x_{3} \land \overline{x}_{6} \land x_{7}) \land (x_{6} \odot \overline{x}_{7}) \land x_{3} \\ \overline{x}_{6} \Rightarrow (x_{3} \land \overline{x}_{4} \land x_{5}) \land (x_{3} \land \overline{x}_{6} \land x_{7}) \land (\overline{x}_{7}) \land x_{3} \\ \end{array}$ $\begin{array}{c} z_{50} \\ Because \not\models (\psi(x_{3}) = x_{3} \land \overline{x}_{4} \land x_{5} \land \overline{x}_{6} \land x_{7} \land \overline{x}_{7}), x_{3} \text{ is incompatible, hence } \overline{x}_{3} \text{ is necessary,} \end{array}$

i.e., $\neg x_3 \Rightarrow \overline{x}_3$. Thus, $\varphi \rightarrow \varphi_2$ by $(x_3 \odot x_4 \odot \overline{x}_5) \rightarrow (x_4 \odot \overline{x}_5)$ and $(x_3 \odot x_6 \odot \overline{x}_7) \rightarrow (x_6 \odot \overline{x}_7)$. 261 As a result, $\varphi_2 = (x_4 \odot \overline{x}_5) \land (x_6 \odot \overline{x}_7) \land (x_4 \odot x_6 \odot \overline{x}_7) \land \overline{x}_3$. Let Scope (x_5, ϕ_2) execute next. 262 $x_4 \odot \overline{x}_5) \land ($ $x_6 \odot \overline{x}_7) \land (x_4 \odot x_6 \odot \overline{x}_7) \land x_5$ $\phi_2(x_5) = ($ $x_5 \Rightarrow ($ x_4 $) \land ($ $x_6 \odot \overline{x}_7) \land (x_4 \odot x_6 \odot \overline{x}_7) \land x_5$ 263 $x_4 \Rightarrow ($ $) \land ($ $x_6 \odot \overline{x}_7) \wedge (x_4 \wedge \overline{x}_6 \wedge x_7) \wedge x_5$ x_4 $\overline{x}_6 \Rightarrow ($ x_4 $) \land ($ $\overline{x}_7) \wedge (x_4 \wedge \overline{x}_6 \wedge x_7) \wedge x_5$

Because $\not\models (\psi_2(x_5) = x_4 \land \overline{x}_7 \land \overline{x}_6 \land x_7 \land \overline{x}_3 \land x_5), x_5$ is removed from ϕ_2 , i.e., $\neg x_5 \Rightarrow \overline{x}_5$. Thus, $\varphi_2 \to \varphi_3$ by $(x_4 \odot \overline{x}_5) \searrow (\overline{x}_4 \land \overline{x}_5),$ where $\varphi_3 = (\overline{x}_4 \land \overline{x}_5) \land (x_6 \odot \overline{x}_7) \land (x_4 \odot x_6 \odot \overline{x}_7) \land \overline{x}_3,$ and \overline{x}_4 leads to the next reduction by $(x_4 \odot x_6 \odot \overline{x}_7) \rightarrowtail (x_6 \odot \overline{x}_7)$. Then, Scan (φ_4) terminates, and $\varphi_4 = \overline{x}_3 \land \overline{x}_4 \land \overline{x}_5 \land (x_6 \odot \overline{x}_7),$ that is, $\hat{\varphi} = \hat{\psi} \land \hat{\phi},$ and $\hat{\psi} = \{\overline{x}_3, \overline{x}_4, \overline{x}_5\}$ and $\hat{\phi} = \{\{x_6, \overline{x}_7\}\}$.

In Example 38, if Scope (x_5, ϕ) executes first, then $\psi(x_5) = x_5$ becomes the scope, and 268 $\phi'(x_5) = (x_3 \odot x_4) \land (x_3 \odot x_6 \odot \overline{x_7}) \land (x_4 \odot x_6 \odot \overline{x_7})$ becomes beyond the scope of x_5 over ϕ . 269 Then, x_5 is compatible (in ϕ) due to Theorem 34, since $\psi(x_5)$ is true, while it is incompatible 270 due to Proposition 26, since $\not\models \phi'(x_5)$ holds. On the other hand, the fact that $\not\models \phi'(x_5)$ holds 271 is verified indirectly. That is, incompatibility of x_5 is checked by means of $\psi_s(x_5)$ for some s. 272 Then, x_5 becomes incompatible (in ϕ_2), because $\not\models \psi_2(x_5)$ holds, after $\varphi \to \varphi_2$ by removing 273 x_3 from ϕ due to $\not\models \psi(x_3)$. As a result, $\not\models \phi'(x_5)$ holds due to $\neg x_3$. Thus, there exists no 274 r_i such that $\not\models \phi'(r_i)$, when the scan *terminates*, because $\psi(r_i)$ is true for all r_i in ϕ , hence 275 $\psi(r_i|r_j)$ is true for all r_i in $\phi'(r_j)$, after each r_j is removed if $\not\models \psi_s(r_j)$ (see also Figures 1-4). 276

3.4 Construction of a satisfiable assignment by composing minterms 277

 $\hat{\varphi} = \hat{\psi} \wedge \hat{\phi}$, when $\operatorname{Scan}(\varphi_{\hat{s}})$ terminates. Let $\psi := \hat{\psi}$ and $\phi := \hat{\phi}$, i.e., $\mathfrak{L} := \mathfrak{L}^{\hat{\phi}}$. Then, $\models_{\alpha} \phi$ holds 278 by Corollary 35, where α is a satisfiable assignment, and constructed by Algorithm 5 through 279 any $(i_0, i_1, i_2, \dots, i_m, i_n)$ over \mathfrak{L} such that $\alpha = \{\psi(r_{i_0}), \psi(r_{i_1}|r_{i_0}), \psi(r_{i_2}|r_{i_1}), \dots, \psi(r_{i_n}|r_{i_m})\}$. 280 Thus, φ is decomposed into *disjoint* minterms $\psi, \psi(r_{i_0}), \psi(r_{i_1}|r_{i_0}), \psi(r_{i_2}|r_{i_1}), \dots, \psi(r_{i_n}|r_{i_m})$ 281 (see Note 25, and Lemmas 28-29). Note that ψ is fixed in each satisfiable assignment for φ . 282 Recall that $\mathsf{Scope}(r_i, \phi)$ constructs the scope $\psi(r_i)$ and beyond the scope $\phi'(r_i)$ to determine 283 any assignment α , unless φ itself collapses to a *unique* assignment, i.e., unless $\hat{\varphi} = \alpha = \hat{\psi}$. See 284 also Appendix A to determine α without constructing $\psi(r_i|.)$ and $\phi'(r_i|.)$ by Scope $(r_i, \phi'(.))$. 285

Algorithm 5 \triangleright Construction of a satisfiable assignment α over ϕ , $\mathfrak{L} := \mathfrak{L}^{\hat{\phi}}$ and $\phi := \hat{\phi}$ Pick $j \in \mathfrak{L}$; \triangleright The scope $\psi(r_i)$ and beyond the scope $\phi'(r_i)$ for all $i \in \mathfrak{L}$ are available initially $\alpha \leftarrow \psi(r_i); \mathfrak{L} \leftarrow \mathfrak{L} - \mathfrak{L}(r_i); \phi \leftarrow \phi'(r_i);$ repeat

Pick $i \in \mathfrak{L}$; Scope (r_i, ϕ) ; \triangleright It constructs $\psi(r_i|r_i)$ and $\phi'(r_i|r_i)$ with respect to $\phi'(r_i)$ $\alpha \leftarrow \alpha \cup \psi(r_i)$; $\triangleright \psi(r_i) := \psi(r_i|r_j)$, because $\psi(r_i)$ is unconditional with respect to ϕ updated $\mathfrak{L} \leftarrow \mathfrak{L} - \mathfrak{L}(r_i);$ $\triangleright \mathfrak{L} \leftarrow \mathfrak{L}'(r_i|r_j)$ due to the partition $\{\mathfrak{L}(r_i), \mathfrak{L}(r_i|r_j), \mathfrak{L}'(r_i|r_j)\}$ over \mathfrak{L} $\phi \leftarrow \phi'(r_i)$; $\triangleright \phi'(r_i) := \phi'(r_i|r_j)$, because $\phi'(r_i)$ is unconditional with respect to ϕ updated until $\mathfrak{L} = \emptyset$ return α ;

 $\triangleright \psi(r_{i_n}|r_{i_m}) = \psi(r_{i_n}|r_j, r_{i_1}, \dots, r_{i_m})$ (see also Appendix A)

▶ Definition 39. Let $\langle \langle r_{i_1,1}, r_{i_2,1}, r_{i_3,1} \rangle, \langle r_{j_1,2}, r_{j_2,2}, r_{j_3,2} \rangle, \dots, \langle r_{u_1,m}, r_{u_2,m}, r_{u_3,m} \rangle \rangle$ be in as-286 cending order with respect to the index set \mathfrak{L} . If $i_3 < j_1$ for any $\langle r_{i_1,k}, r_{i_2,k}, r_{i_3,k} \rangle$ and any 287 $\langle r_{j_1,k+1}, r_{j_2,k+1}, r_{j_3,k+1} \rangle$, then ${}^i\phi \cup {}^j\phi = \phi$ and ${}^i\phi \cap {}^j\phi = \emptyset$ such that $C_k \in {}^i\phi$ and $C_{k+1} \in {}^j\phi$. 288

▶ Note. ${}^{i}\phi$ and ${}^{j}\phi$ form a partition of ϕ , hence their satisfiability check can be independent. 289

► Example 40. Let ${}^{_{1}}\phi = (x_{1} \odot \overline{x}_{2} \odot x_{6}) \land (x_{3} \odot x_{4} \odot \overline{x}_{5}) \land (x_{3} \odot x_{6} \odot \overline{x}_{7}) \land (x_{4} \odot x_{6} \odot \overline{x}_{7}),$ 290 ${}^{2}\phi = (x_8 \odot x_9 \odot \overline{x}_{10}), \text{ and } {}^{3}\phi = (x_{11} \odot \overline{x}_{12} \odot x_{13}) \text{ to form } \varphi = {}^{4}\phi \wedge {}^{2}\phi \wedge {}^{3}\phi \text{ (see Definition 39)}.$ 291 Then, Scan (φ_4) returns φ is satisfiable. Therefore, $\hat{\varphi} = \hat{\psi} \wedge \hat{\phi}$, where $\psi := \hat{\psi} = \overline{x}_3 \wedge \overline{x}_4 \wedge \overline{x}_5$ 292 and $\phi := \phi = (x_1 \odot \overline{x}_2 \odot x_6) \land (x_6 \odot \overline{x}_7) \land {}^2\phi \land {}^3\phi$ (see Example 38). Then, α is constructed by 293 composing $\psi(.)$ based on $\phi'(.)$ below, where $\mathfrak{L}^{\psi} = \{3, 4, 5\}$ and $\mathfrak{L} := \mathfrak{L}^{\phi} = \{1, 2, \ldots, 13\} - \mathfrak{L}^{\psi}$. 294 $\phi'(x_1) = {}^2\phi \wedge {}^3\phi$ $\psi(x_1) = x_1 \wedge x_2 \wedge \overline{x}_6 \wedge \overline{x}_7 \quad \&$

295

 $\phi'(x_2) = (x_1 \odot x_6) \land (x_6 \odot \overline{x}_7) \land {}^2\phi \land {}^3\phi$ $\psi(x_2) = x_2$ & $\psi(\overline{x}_2) = \overline{x}_1 \wedge \overline{x}_2 \wedge \overline{x}_6 \wedge \overline{x}_7 \quad \&$ $\phi'(\overline{x}_2) = {}^2\phi \wedge {}^3\phi$ $\psi(x_6) = \psi(x_7) = \overline{x}_1 \wedge x_2 \wedge x_6 \wedge x_7 \quad \& \quad \phi'(x_6) = \phi'(x_7) = {}^2\phi \wedge {}^3\phi$ $\psi(\overline{x}_6) = \psi(\overline{x}_7) = \overline{x}_6 \wedge \overline{x}_7$ $\& \phi'(\overline{x}_6) = \phi'(\overline{x}_7) = (x_1 \odot \overline{x}_2) \wedge {}^2\phi \wedge {}^3\phi$ $\phi'(x_8) = (x_1 \odot \overline{x}_2 \odot x_6) \land (x_6 \odot \overline{x}_7) \land {}^3\phi$ $\psi(x_8) = x_8 \wedge \overline{x}_9 \wedge x_{10}$ & $\phi'(x_{11}) = (x_1 \odot \overline{x}_2 \odot x_6) \land (x_6 \odot \overline{x}_7) \land {}^2\phi$ $\psi(x_{11}) = x_{11} \wedge x_{12} \wedge \overline{x}_{13}$ &

23:10 On the Tractability of Un/Satisfiability

Example 41. A satisfiable assignment α is constructed by an order of indices over $\mathfrak{L}, \mathfrak{L} =$ 296 $\{1,\ldots,13\}-\mathfrak{L}^{\psi}$ (Example 40), such that $r_i:=x_i$ for any $\psi(r_i)$ throughout the construction. 297 First, pick $6 \in \mathfrak{L}$. As a result, $\alpha \leftarrow \psi(x_6)$ and $\mathfrak{L} \leftarrow \mathfrak{L} - \mathfrak{L}(x_6)$, where $\psi(x_6) = \{\overline{x}_1, x_2, x_6, x_7\}$, 298 $\mathfrak{L}(x_6) = \{1, 2, 6, 7\}, \text{ and } \mathfrak{L} \leftarrow \{8, 9, 10, 11, 12, 13\}.$ Then, pick 8, hence $\alpha \leftarrow \alpha \cup \psi(x_8 | x_6), \psi(x_8 | x_6), \psi(x_8 | x_8), \psi($ 299 where $\psi(x_8|x_6) = \{x_8, \overline{x}_9, x_{10}\}$. Also, $\mathfrak{L} \leftarrow \mathfrak{L} - \mathfrak{L}(x_8|x_6)$, where $\mathfrak{L}(x_8|x_6) = \{8, 9, 10\}$, hence 300 $\mathfrak{L} \leftarrow \{11, 12, 13\}$. Finally, pick 11. Therefore, $\alpha \leftarrow \alpha \cup \psi(x_{11}|x_6, x_8)$ such that $\mathfrak{L} \leftarrow \emptyset$, which 301 indicates its termination. Note that Scope $(x_{11}, \phi'(x_8|x_6))$ constructs $\psi(x_{11}|x_6, x_8)$, in which 302 $\phi'(x_8|x_6) = {}^{3}\phi$, and that $\phi'(x_{11}|x_6, x_8) = \emptyset$ iff $\mathfrak{L} \leftarrow \emptyset$. Note also that $\psi(x_8|x_6) = \psi(x_8)$ and 303 $\psi(x_{11}|x_6, x_8) = \psi(x_{11})$, since ${}^1\phi$, ${}^2\phi$ and ${}^3\phi$ are disjoint (see Definition 39). Consequently, 304 Algorithm 5 constructs $\alpha = \{\psi(x_6), \psi(x_8|x_6), \psi(x_{11}|x_6, x_8)\}$. Note that φ is decomposed into 305 $\psi, \psi(x_6), \psi(x_8|x_6), \text{ and } \psi(x_{11}|x_6, x_8), \text{ which are disjoint (see also Note 22 and Lemma 29).}$ 306 \blacktriangleright Example 42. Let (2, 1, 8, 11) be another order of indices in Example 40. This order leads 307 to the assignment $\{\psi, \psi(x_2), \psi(x_1|x_2), \psi(x_8|x_2, x_1), \psi(x_{11}|x_2, x_1, x_8)\}$ for φ . This assignment 308

corresponds to the partition $\{\mathfrak{L}^{\psi}, \{2\}, \{1, 6, 7\}, \{8, 9, 10\}, \{11, 12, 13\}\}$, where $\mathfrak{L}^{\psi} = \{3, 4, 5\}$ (see also Note 25 and Lemma 28). Note that the scope $\psi(x_1)$ is constructed over ϕ , and the conditional scope $\psi(x_1|x_2)$ is constructed over $\phi'(x_2)$, where $\phi \supseteq \phi'(x_2)$. Recall that $\phi := \hat{\phi}$. Hence, $\psi(x_1) \models \psi(x_1|x_2)$, in which $\psi(x_1) = x_1 \land x_2 \land \overline{x}_6 \land \overline{x}_7$, while $\psi(x_1|x_2) = x_1 \land \overline{x}_6 \land \overline{x}_7$. Moreover, $\psi(x_8) \models \psi(x_8|x_2, x_1)$ due to $\phi \supseteq \phi'(x_1|x_2)$, and $\psi(x_{11}) \models \psi(x_{11}|x_2, x_1, x_8)$ due to

$_{314} \phi \supseteq \phi'(x_8|x_2, x_1)$, where $\phi'(x_1|x_2) = {}^2\phi \wedge {}^3\phi$ and $\phi'(x_8|x_2, x_1) = {}^3\phi$ (see Lemmas 31-33).

315 3.5 An Illustrative Example

This section illustrates Scan (φ_s) . Let $\varphi = \phi = (x_1 \odot \overline{x}_3) \land (x_1 \odot \overline{x}_2 \odot x_3) \land (x_2 \odot \overline{x}_3)$, which 316 is adapted from Esparza [1], and denotes a general formula by Definition 9. Note that $C_1 =$ 317 $\{x_1, \overline{x}_3\}, C_2 = \{x_1, \overline{x}_2, x_3\}, \text{ and } C_3 = \{x_2, \overline{x}_3\}.$ Hence, $\mathfrak{C} = \{1, 2, 3\}, \text{ and } \mathfrak{L} = \mathfrak{L}^{\phi} = \{1, 2, 3\}.$ 318 Scan (φ): There exists no conjunct in (the initial formula) φ . That is, ψ is empty (L:1). 319 Recall that $\varphi := \varphi_1$, and that $r_i \in \{x_i, \overline{x}_i\}$. Recall also that *nontrivial* incompatibility of r_i 320 is checked (L:4-8) via Scope (r_i, ϕ) . Moreover, the order of incompatibility check is arbitrary 321 (incompatibility is monotonic) by Theorem 36. Let Scope (x_1, ϕ) execute due to Scan L:6. 322 Scope (x_1, ϕ) : Since $\psi(x_1) \supseteq \{x_3, \overline{x}_3\}, x_1$ is incompatible *nontrivially* (see Example 23). 323 Thus, \overline{x}_1 becomes necessary (a conjunct). Then, Remove (x_1, ϕ) executes due to Scan L:6. 324 Remove (x_1, ϕ) : $\mathfrak{C}^{\overline{x}_1} = \emptyset$ by OvrlEft L:1. $\mathfrak{C}^{x_1} = \{1, 2\}$, thus $\phi^{x_1} = (x_1 \odot \overline{x}_3) \land (x_1 \odot \overline{x}_2 \odot x_3)$ 325 by OvrlEft L:7. As a result, $\tilde{\psi}(\overline{x}_1) = \{\overline{x}_3\} \& \tilde{\phi}(\neg x_1) = \{\{\}, \{\overline{x}_2, x_3\}\}$, the effects of \overline{x}_1 and 326 $\neg x_1$. Note that $C_1 \leftarrow \emptyset$. Then, $\psi_2 \leftarrow \psi \cup \{\overline{x}_1\} \cup \psi(\overline{x}_1)$ (Remove L:2), and $\mathfrak{L}^{\phi} \leftarrow \mathfrak{L}^{\phi} - \{1\}$ and 327 $\mathfrak{L}^{\psi} \leftarrow \mathfrak{L}^{\psi} \cup \{1\}$ (L:4). Also, $\phi_2 \leftarrow \tilde{\phi}(\neg x_1) \land \phi'$, where $\tilde{\phi}(\neg x_1) = (\overline{x}_2 \odot x_3)$ and $\phi' = (x_2 \odot \overline{x}_3)$ 328 (L:5). As a result, $\psi_2 = \overline{x}_1 \wedge \overline{x}_3$, and $\phi_2 = (\overline{x}_2 \odot x_3) \wedge (x_2 \odot \overline{x}_3)$. Note that $C_1 = \{\overline{x}_2, x_3\}$ and 329 $C_2 = \{x_2, \overline{x}_3\}$. Consequently, $\varphi_2 = \psi_2 \land \phi_2$, and Scan (φ_2) executes due to Remove L:6. 330 $\operatorname{Scan}(\varphi_2)$: $\mathfrak{C}_2 = \{1, 2\}$ and $\mathfrak{L}_{\phi} = \{2, 3\}$ hold in ϕ_2 . Then, $\{x_2, \overline{x}_2\} \cap \psi_2 = \emptyset$ for $2 \in \mathfrak{L}_{\phi}$, 331 while $\overline{x}_3 \in \psi_2$ for $3 \in \mathfrak{L}^{\phi}$ (L:1). As a result, \overline{x}_3 is *necessary* for satisfying φ_2 , hence $\overline{x}_3 \Rightarrow \neg x_3$, 332 that is, x_3 is incompatible *trivially*. Then, Remove (x_3, ϕ_2) executes due to Scan L:2. 333 Remove (x_3, ϕ_2) : $\mathfrak{C}_2^{\overline{x}_3} = \{2\}$, thus $\phi_2^{\overline{x}_3} = (x_2 \odot \overline{x}_3)$, and $\mathfrak{C}_2^{x_3} = \{1\}$, thus $\phi_2^{x_3} = (\overline{x}_2 \odot x_3)$. 334 As a result, $\tilde{\psi}_2(\overline{x}_3) = \{\overline{x}_2\} \cup \{\overline{x}_2\} \& \tilde{\phi}_2(\neg x_3) = \{\{\}\}, \text{ because } C_1 = \{\overline{x}_2\} \text{ consists in } \tilde{\psi}_2(\overline{x}_3),$ 335 rather than in $\phi_2(\neg x_3)$ (see OvrlEft L:9). Hence, $\psi_3 \leftarrow \psi_2 \cup \{\overline{x}_3\} \cup \psi_2(\overline{x}_3), \mathfrak{L}^{\diamond} \leftarrow \mathfrak{L}^{\diamond} - \{3\},$ 336 and $\mathfrak{L}^{\psi} \leftarrow \mathfrak{L}^{\psi} \cup \{\mathbf{3}\}$, i.e., $\mathfrak{L}^{\phi} = \{2\}$. Therefore, $\phi_3 = \{\{\}\}$, thus $\mathfrak{C}_3 = \emptyset$, and $\psi_3 = \overline{x}_1 \wedge \overline{x}_3 \wedge \overline{x}_2$. 337 $\operatorname{Scan}(\varphi_3)$: $\overline{x}_2 \in \psi_3$ for $2 \in \mathfrak{L}^{\phi}$ over ϕ_3 . Then, Remove (x_2, ϕ_3) executes due to Scan L:2. 338 Remove (x_2, ϕ_3) : $\tilde{\psi}_3(\overline{x}_2) = \emptyset$ & $\tilde{\phi}_3(\neg x_2) = \{\{\}\}$ due to $\texttt{OvrlEft}(\overline{x}_2, \phi_3)$, because $\mathfrak{C}_3^{\overline{x}_2} = \emptyset$ 339 and $\mathfrak{C}_{3}^{x_{2}} = \emptyset$, since $\mathfrak{C}_{3} = \emptyset$. Hence, $\mathfrak{L}^{\phi} \leftarrow \{2\} - \{2\}$ and $\phi_{4} \leftarrow \phi_{3}$. Then, $\operatorname{Scan}(\varphi_{4})$ executes. 340 Scan (φ_4) terminates: $\hat{\varphi} = \hat{\psi} = \overline{x}_1 \wedge \overline{x}_3 \wedge \overline{x}_2$ (L:9), and φ collapses to a unique assignment. 341

Let Scope (x_3, ϕ) execute before Scope (x_1, ϕ) due to Scan L:6 (see Theorem 36).

Scope (x_3, ϕ) : $\psi(x_3) \leftarrow \{x_3\}$ and $\phi_* \leftarrow \phi$ (L:1). Then, $\mathfrak{C}_*^{x_3} = \{2\}$ due to $\mathsf{OvrlEft}(x_3, \phi_*)$ 343 L:1, hence $\phi_*^{x_3} = (x_1 \odot \overline{x}_2 \odot x_3)$. As a result, $c_2 \leftarrow \{\overline{x}_1, x_2\}$ and $\tilde{\psi}_*(x_3) \leftarrow \tilde{\psi}_*(x_3) \cup c_2$ (L:3,5). 344 Moreover, $\mathfrak{C}_{*}^{\overline{x}_{3}} = \{1,3\}$ (L:7), hence $\phi_{*}^{\overline{x}_{3}} = (x_{1} \odot \overline{x}_{3}) \land (x_{2} \odot \overline{x}_{3})$. Then, $C_{1} \leftarrow \{x_{1}, \overline{x}_{3}\} - \{\overline{x}_{3}\}$, 345 $\tilde{\psi}_*(x_3) \leftarrow \tilde{\psi}_*(x_3) \cup C_1$, and $C_1 \leftarrow \emptyset$. Likewise, $C_3 \leftarrow \{x_2, \overline{x}_3\} - \{\overline{x}_3\}, \tilde{\psi}_*(x_3) \leftarrow \tilde{\psi}_*(x_3) \cup C_3$, 346 and $C_3 \leftarrow \emptyset$ (OvrlEft L:8-9). Consequently, $\tilde{\psi}_*(x_3) \leftarrow \{\overline{x}_1, x_2, x_1\}$ & $\tilde{\phi}_*(\neg \overline{x}_3) \leftarrow \phi_*^{\overline{x}_3}$ (L:11). 347 Note that $\phi_*^{\bar{x}_3} = \{\{\}, \{\}\}, \text{ since } C_1 = C_3 = \emptyset$. Then, $\psi(x_3) \leftarrow \psi(x_3) \cup \{x_3\} \cup \tilde{\psi}_*(x_3)$ due to 348 Scope L:4, hence $\psi(x_3) = \{x_3, \overline{x}_1, x_2, x_1\}$. Since $\psi(x_3) \supseteq \{\overline{x}_1, x_1\}$ (L:5), x_3 is incompatible 349 *nontrivially*, i.e., $x_3 \Rightarrow \overline{x}_1 \wedge x_1$ and $\neg x_3 \Rightarrow \overline{x}_3$. Then, **Remove** (x_3, ϕ) executes due to **Scan** L:6. 350 Remove (x_3, ϕ) : $\phi^{\overline{x}_3} = (x_1 \odot \overline{x}_3) \land (x_2 \odot \overline{x}_3)$ due to $\mathfrak{C}^{\overline{x}_3} = \{1, 3\}$, and $\phi^{x_3} = (x_1 \odot \overline{x}_2 \odot x_3)$ 351 due to $\mathfrak{C}^{x_3} = \{2\}$. Then, $\mathsf{OvrlEft}(\overline{x}_3, \phi)$ returns $\tilde{\psi}(\overline{x}_3) = \{\overline{x}_1, \overline{x}_2\} \& \tilde{\phi}(\neg x_3) = \{\{x_1, \overline{x}_2\}\}$ 352 (Remove L:1), $\psi_2 \leftarrow \psi \cup \{\overline{x}_3\} \cup \tilde{\psi}(\overline{x}_3)$ (L:2), and $\mathfrak{L}^{\phi} \leftarrow \mathfrak{L}^{\phi} - \{\mathbf{3}\}$ and $\mathfrak{L}^{\psi} \leftarrow \mathfrak{L}^{\psi} \cup \{\mathbf{3}\}$ (L:4). As 353 a result, $\psi_2 = \overline{x}_3 \wedge \overline{x}_1 \wedge \overline{x}_2$. Moreover, $\phi_2 \leftarrow \phi(\neg x_3) \wedge \phi'(L;5)$, in which $\phi(\neg x_3) = (x_1 \odot \overline{x}_2)$ 354 and ϕ' is empty. Therefore, $\varphi_2 = \psi_2 \wedge \phi_2$. Note that $C_1 = \{x_1, \overline{x}_2\}$, hence $\mathfrak{C}_2 = \{1\}$. Recall 355 that $\mathfrak{L}^{\phi} = \{1, 2\}$, and that $\mathfrak{L}^{\psi} = \{3\}$. Then, $\operatorname{Scan}(\varphi_2)$ executes due to Remove (x_3, ϕ) L:6. 356 Scan (φ_2) : $\mathfrak{L}^{\phi} = \{1, 2\}$ such that $\overline{x}_2 \in \psi_2$ and $\overline{x}_1 \in \psi_2$. Thus, \overline{x}_2 and \overline{x}_1 are necessary, 357 hence x_2 and x_1 are incompatible trivially. Then, Remove (x_1, ϕ_2) and Remove (x_2, ϕ_2) execute. 358

The fact that the order of incompatible trivially. Then, Remove (x_1, φ_2) and Remove (x_2, φ_2) execute. The fact that the order of incompatibility check is arbitrary (Theorem 36) is illustrated as follows. Scope (x_3, ϕ) returns x_3 is incompatible *nontrivially*, since $x_3 \Rightarrow \overline{x}_1 \land x_1$. Therefore, $\neg \overline{x}_1 \lor \neg x_1 \Rightarrow \neg x_3$, hence $x_1 \lor \overline{x}_1 \Rightarrow \overline{x}_3$. Then, $\overline{x}_3 \Rightarrow \overline{x}_1$ due to $C_1 = (x_1 \odot \overline{x}_3)$, and $\overline{x}_1 \Rightarrow \neg x_1$. Thus, x_1 is *still* incompatible, but trivially (cf. Scope (x_1, ϕ)), even if $\neg x_3$ holds. That is, x_1 the *nontrivial* incompatible in ϕ due to $x_1 \Rightarrow \overline{x}_3 \land x_3$, i.e., $\neg \overline{x}_3 \lor \neg x_3 \Rightarrow \neg x_1$, is incompatible *trivially* in ψ_2 due to $\overline{x}_1 \Rightarrow \neg x_1$. See Scan (φ_2) above. Also, since $x_3 \notin C_k$ and $\overline{x}_3 \notin C_k$ in ϕ_s for any $s \ge 2$, $\not\models \varphi_s(x_3)$ for all $s \ge 2$, even if any r_i is removed from some C_k in ϕ_s , $s \ge 2$.

366 **4** Conclusion

X3SAT has proved to be effective to show $\mathbf{P} = \mathbf{NP}$. A polynomial time algorithm checks unsatisfiability of a truth assignment $\phi(r_i)$ such that $\not\models \phi(r_i)$ iff $\psi_s(r_i)$ involves $x_j \wedge \overline{x}_j$ for some *s*. Thus, $\phi(r_i)$ reduces to $\psi(r_i)$. $\psi(r_i)$ denotes a conjunction of literals that are *true*, since each r_j such that $\not\models \psi_s(r_j)$ is removed from ϕ . Therefore, ϕ is satisfiable iff any truth assignment $\psi(r_i)$ holds, thus it is *easy* to verify satisfiability of ϕ through the *truth* of $\psi(r_i)$.

372 — References

Javier Esparza. Decidability and complexity of Petri net problems – an introduction. In
Wolfgang Reisig and Grzegorz Rozenberg, editors, *Lectures on Petri Nets I: Basic Models*,
volume 1491 of *LNCS*, pages 374–428. Springer Berlin Heidelberg, 1998.

Thomas J. Schaefer. The complexity of satisfiability problems. In *Proceedings of the Tenth* Annual ACM Symposium on Theory of Computing, STOC '78, pages 216–226, New York, NY,
USA, 1978. ACM. URL: http://doi.acm.org/10.1145/800133.804350.

A Proof of Theorem 34/35

This section gives a rigorous proof of Theorem 34/35. Recall that the φ_s scan is *interrupted* iff ψ_s involves $x_i \wedge \overline{x}_i$ for some i and s, that is, φ is unsatisfiable, which is trivial to verify. Recall also that the $\varphi_{\hat{s}}$ scan *terminates* iff $\psi_{\hat{s}}(r_i) = \mathbf{T}$ for any $i \in \mathfrak{L}^{\phi}$, $r_i \in \{x_i, \overline{x}_i\}$. Moreover, $\hat{\varphi} = \hat{\psi} \wedge \hat{\phi}$ such that $\hat{\psi} = \mathbf{T}$ (see Scan L:9 and Note 22). Therefore, when the scan terminates, satisfiability of $\hat{\phi}$ is to be proved, which is addressed in this section. Let $\phi := \hat{\phi}$, i.e., $\mathfrak{L} := \mathfrak{L}^{\hat{\phi}}$.

23:12 On the Tractability of Un/Satisfiability

▶ Theorem 43 (cf. 34-35/Claim 1). These statements are equivalent: a) $\not\models \phi(r_i)$ iff $\not\models \psi_s(r_i)$ 385 for some s. b) $\psi(r_i) = \mathbf{T}$ for any $i \in \mathfrak{L}$. c) $\models_{\alpha} \phi$ by $\alpha = \{\psi(r_{i_0}), \psi(r_{i_1}|r_{i_0}), \dots, \psi(r_{i_n}|r_{i_m})\}$. 386 **Proof.** We will show $a \Rightarrow b, b \Rightarrow c$, and $c \Rightarrow a$ (see Kenneth H. Rosen, Discrete Mathematics 387 and its Applications, 7E, pg. 88). Firstly, $a \Rightarrow b$ holds, because a holds by assumption (see 388 Note 19 and Scope L:5), and b holds by definition (Scan L:9). Also, $\psi(r_i|r_i)$ is true due to 389 $\psi(r_i) \models \psi(r_i|r_i)$ (see Lemmas 32-33), where $\psi(.) = \bigwedge r_i$ by Lemma 20. Next, we will show 390 $b \Rightarrow c$. We do this by showing that satisfiability of ϕ is *preserved* throughout the assignment 391 $\alpha = \{\psi(r_{i_0}), \psi(r_{i_1}|r_{i_0}), \dots, \psi(r_{i_n}|r_{i_m})\}$ construction, because any *partial* truth assignment 392 $\psi(r_i|r_i)$ is constructed *arbitrarily* through consecutive steps having the Markov property. 393 Thus, construction of $\psi(r_i|r_i)$ in the next step is independent from the preceding steps, and 394 depends only upon $\psi(r_i|r_k)$ in the present step. The construction process is specified below. 395 Step 0: Pick any r_{i_0} in ϕ . The reductions due to r_{i_0} partition \mathfrak{L} into $\mathfrak{L}(r_{i_0})$ and $\mathfrak{L}'(r_{i_0})$. 396 Note that $i_0 \in \mathfrak{L}$, and that $i_0 \in \mathfrak{L}(r_{i_0})$. Hence, $i_0 \notin \mathfrak{L}'(r_{i_0})$ by Lemma 27. Thus, $r_{i_0} \Rightarrow \psi(r_{i_0})$ 397 such that $\phi(r_{i_0}) = \psi(r_{i_0}) \wedge \phi'(r_{i_0})$ in Step 0. Then, pick an *arbitrary* r_{i_1} in $\phi'(r_{i_0})$ for Step 1. 398 Step 1: $\mathfrak{L}(r_{i_0}) \cap \mathfrak{L}'(r_{i_0}) = \emptyset$ in Step 0, and the reductions due to r_{i_1} over $\phi'(r_{i_0})$ partition 300 $\mathfrak{L}'(r_{i_0})$ into $\mathfrak{L}(r_{i_1}|r_{i_0})$ and $\mathfrak{L}'(r_{i_1}|r_{i_0})$, thus $r_{i_1} \Rightarrow \psi(r_{i_1}|r_{i_0})$. See also Lemma 28. Therefore, 400 $\mathfrak{L}(r_{i_0}) \cap \mathfrak{L}(r_{i_1}|r_{i_0}) = \emptyset$, because $\mathfrak{L}'(r_{i_0}) \supseteq \mathfrak{L}(r_{i_1}|r_{i_0})$. As a result, \mathfrak{L} is partitioned into $\mathfrak{L}(r_{i_0})$, 401 $\mathfrak{L}(r_{i_1}|r_{i_0})$, and $\mathfrak{L}'(r_{i_1}|r_{i_0})$ due to r_{i_0} and r_{i_1} . Thus, $\psi(r_{i_0})$ and $\psi(r_{i_1}|r_{i_0})$ are disjoint, as well 402 as true. Hence, $\psi(r_{i_0}) \wedge \psi(r_{i_1}|r_{i_0}) = \mathbf{T}$, and $\phi(r_{i_0}, r_{i_1}) = \psi(r_{i_0}) \wedge \psi(r_{i_1}|r_{i_0}) \wedge \phi'(r_{i_1}|r_{i_0})$. 403 Step 2: The preceding steps have partitioned \mathfrak{L} into $\mathfrak{L}(r_{i_0}) \cup \mathfrak{L}(r_{i_1}|r_{i_0})$ and $\mathfrak{L}'(r_{i_1}|r_{i_0})$, and 404 $r_{i_2} \text{ in } \phi'(r_{i_1}|r_{i_0}) \text{ partitions } \mathfrak{L}'(r_{i_1}|r_{i_0}) \text{ into } \mathfrak{L}(r_{i_2}|r_{i_1}) \text{ and } \mathfrak{L}'(r_{i_2}|r_{i_1}), \text{ i.e., } \mathfrak{L}'(r_{i_1}|r_{i_0}) \supseteq \mathfrak{L}(r_{i_2}|r_{i_1}).$ 405 Hence, $(\mathfrak{L}(r_{i_0}) \cup \mathfrak{L}(r_{i_1}|r_{i_0})) \cap \mathfrak{L}(r_{i_2}|r_{i_1}) = \emptyset$. Therefore, $\psi(r_{i_0}) \wedge \psi(r_{i_1}|r_{i_0})$ and $\psi(r_{i_2}|r_{i_1})$ are 406 *disjoint*, as well as *true*. As a result, $\psi(r_{i_0}) \wedge \psi(r_{i_1}|r_{i_0}) \wedge \psi(r_{i_2}|r_{i_1}) = \mathbf{T}$, and $\phi(r_{i_0}, r_{i_1}, r_{i_2}) = \mathbf{T}$ 407 $\psi(r_{i_0}) \wedge \psi(r_{i_1}|r_{i_0}) \wedge \psi(r_{i_2}|r_{i_1}) \wedge \phi'(r_{i_2}|r_{i_1}).$ Note that $\alpha \supseteq \{\psi(r_{i_0}), \psi(r_{i_1}|r_{i_0}), \psi(r_{i_2}|r_{i_1})\}$, and 408 that \mathfrak{L} is partitioned into $\mathfrak{L}(r_{i_0})$, $\mathfrak{L}(r_{i_1}|r_{i_0})$, $\mathfrak{L}(r_{i_2}|r_{i_1})$, and $\mathfrak{L}'(r_{i_2}|r_{i_1})$ such that $\mathfrak{L}'(r_{i_2}|r_{i_1}) \neq \emptyset$. 409 Step n: r_{i_n} partitions $\mathcal{L}'(r_{i_m}|r_{i_l})$ into $\mathcal{L}(r_{i_n}|r_{i_m})$ and $\mathcal{L}'(r_{i_n}|r_{i_m})$ such that $\mathcal{L}'(r_{i_n}|r_{i_m}) = \emptyset$. 410 Then, $\mathfrak{L}(r_{i_0}) \cup \mathfrak{L}(r_{i_1}|r_{i_0}) \cup \cdots \cup \mathfrak{L}(r_{i_m}|r_{i_l})$ and $\mathfrak{L}'(r_{i_m}|r_{i_l})$, hence $\mathfrak{L}(r_{i_n}|r_{i_m})$, form a partition 411 of \mathfrak{L} . Therefore, $\psi(r_{i_0}) \wedge \psi(r_{i_1}|r_{i_0}) \wedge \cdots \wedge \psi(r_{i_m}|r_{i_l})$ and $\psi(r_{i_n}|r_{i_m})$ are both disjoint and 412 *true*, thus $\alpha = \phi(r_{i_0}, r_{i_1}, \dots, r_{i_m}, r_{i_n}) = \psi(r_{i_0}) \wedge \psi(r_{i_1}|r_{i_0}) \wedge \dots \wedge \psi(r_{i_m}|r_{i_l}) \wedge \psi(r_{i_n}|r_{i_m}) = \mathbf{T}.$ 413 Consequently, ϕ is composed of $\psi(.)$ disjoint and satisfied, thus $\models_{\alpha} \phi$, hence $b \Rightarrow c$ holds. 414 Finally, we show $c \Rightarrow a$. Scope (r_i, ϕ) transforms $r_i \land \phi$ into $\psi(r_i) \land \phi'(r_i)$, thus $(r_i \land \phi) \equiv$ 415 $(\psi(r_i) \wedge \phi'(r_i))$. Since ϕ and $\psi(r_i)$ are satisfied, $\phi'(r_i)$ is satisfied. Therefore, unsatisfiability 416 of $\psi_s(r_i)$ for some s is necessary and sufficient for the unsatisfiability of $\phi_s(r_i)$ for any s. -417 ▶ Note. $\psi(r_i) \equiv \phi(r_i)$ for all $i \in \mathcal{L}$. Also, $\bigwedge C_k$ such that $C_k = (r_i \odot r_j \odot r_v)$ transforms into 418 $\bigwedge C_i$ such that $C_i = (\psi(x_i) \oplus \psi(\overline{x}_i))$, thus $\bigwedge C_k \equiv \bigwedge C_i$. Recall that $\phi = \bigwedge C_k$, where $\phi := \hat{\phi}$. 419 ▶ Note. The assignment α construction is driven by partitioning the set $\mathcal{L}'(.)$ such that 420 $\mathfrak{L} \leftarrow \mathfrak{L} - \mathfrak{L}(r_{i_0})$ in Step 1, and $\mathfrak{L} \leftarrow \mathfrak{L} - \mathfrak{L}(r_{i_{n-1}}|r_{i_{n-2}})$ for $i_n \in \mathfrak{L}'(r_{i_{n-1}}|r_{i_{n-2}})$ in Step $n \ge 2$. 421 ▶ Note (Construction of α). In order to form a partition over the set ϕ , α is constructed such 422 that $\psi(r_{i_1}|r_{i_0}) = \psi(r_{i_1}) - \psi(r_{i_0})$, and $\psi(r_{i_n}|r_{i_{n-1}}) = \psi(r_n) - (\psi(r_{i_0}) \cup \cdots \cup \psi(r_{i_{n-1}}|r_{i_{n-2}}))$ 423 for $n \ge 2$. On the other hand, if the construction involves no set partition, then $\alpha = \bigcup \psi(r_i)$ 424 for $i = (i_0, i_1, \ldots, i_n)$, where $i_0 \in \mathfrak{L}$, $i_1 \in \mathfrak{L}'(r_{i_0}), \ldots, i_n \in \mathfrak{L}'(r_{i_m}|r_{i_l})$, thus $r_{i_0} \prec r_{i_1} \prec \cdots \prec r_{i_n}$. 425 Note that there is no need to construct $\phi'(r_i)$ in Scan/Scope L:9 (cf. Algorithm 5). 426 For instance, if Example 40 involves no set partition, then $\alpha = \{\psi(\overline{x}_1), \psi(x_2), \psi(x_1)\}, \text{ in }$ 427 which $\psi(\bar{x}_7) = \{\bar{x}_7, \bar{x}_6\}, \ \psi(x_2) = \{x_2\}, \ \text{and} \ \psi(x_1) = \{x_1, x_2, \bar{x}_7, \bar{x}_6\}.$ Also, $\bar{x}_7 \prec x_2 \prec x_1$ due 428 to $x_2 \in \phi'(\overline{x}_7)$ and $x_1 \in \phi'(x_2|\overline{x}_7)$. Moreover, $\psi(\overline{x}_7)$, $\psi(x_2|\overline{x}_7)$, and $\psi(x_1|x_2)$ form a partition 429 over the set ϕ , where $\psi(x_2|\overline{x_7}) = \psi(x_2) - \psi(\overline{x_7})$ and $\psi(x_1|x_2) = \psi(x_1) - (\psi(x_2|\overline{x_7}) \cup \psi(\overline{x_7}))$. 430

 $_{431} \text{ As a result, } \alpha = \phi(\overline{x}_7, x_2, x_1) = \{\overline{x}_7, \overline{x}_6\} \cup \{x_2\} \cup \{x_1\} \text{ such that } \{\overline{x}_7, \overline{x}_6\} \cap \{x_2\} \cap \{x_1\} = \emptyset.$