
EasyChair Preprint
№ 3497

Large-Scale Microtask Programming

Emad Aghayi

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 29, 2020



Large-Scale Microtask Programming
Emad Aghayi

Department Of Computer Science, George Mason University, Fairfax, VA, eaghayi@gmu.edu

I. INTRODUCTION

Crowdsourced software engineering offers many opportu-
nities for reducing time-to-market, producing alternative solu-
tions, employing experts, learning through work, and democra-
tizing participation in software engineering. There are several
types of crowdsourced software engineering. One of the oldest
and most common is open source software development.
Another approach is competition-based crowdsourcing, where
platforms such as TopCoder have increasingly become very
popular with over 1,500,000 users.

A more recent form of crowdsourced software engineering
is microtask programming. Microtask programming decontex-
tualizes work into self-contained microtasks, reducing the con-
text necessary to onboard onto a software project and thereby
decreasing joining barriers. At the same time, it may reduce
the time to market for completing software work through
parallelism. Several prior systems have explored approaches
for microtasking programming work, using either manual or
automatic approaches for decomposing programming tasks
into microtasks. Manual approaches rely on a developer [1]
or client to author each microtask [2]. Microtask program-
ming environments can reduce onboarding barriers through
preconfigured web-based environments, such as Codepilot,
CrowdCode, and Collabode [3]–[5].

However, existing approaches for crowdsourced software
development have significant limitations. Open-source soft-
ware development and competition-based approaches suffer
from onboarding barriers, both technical and social. Al-
though there are countless examples of successful open-source
projects, onboarding challenges for newcomers can make it
difficult to quickly onboard new developers and dissuade
casual contributors. Microtask programming approaches can
reduce onboarding barriers, both by offering a preconfigured
environment as well as by enabling developers to do program-
ming work with less prior knowledge or awareness of the
complete project. But existing approaches are still limited in
their support for design and architecture activities necessary to
scale to larger software projects. Moreover, decontextualizing
programming work is hard, bringing with it many challenges
in doing it effectively. For example, conflicts may occur when
two crowd workers make conflicting assumptions, necessitat-
ing approaches to reduce or repair conflicts as they occur [5].

In my work, I have been exploring new ways to increase
the scale of microtask programming. I have developed a new
behavior-driven development approach to microtask program-

ming and conducted a series of studies to investigate the costs
and benefits of microtask programming. In future work, I
expect to continue to work to scale microtask programming to
larger and more complex projects.

II. CROWDSOURCED BEHAVIOR-DRIVEN DEVELOPMENT

To make microtask programming more efficient and reduce
the potential for conflicts between contributors, I developed a
new behavior-driven approach to microtasking programming.
In our approach, each microtask asks developers to identify a
behavior behavior from a high-level description of a function,
implement a unit test for it, implement the behavior, and debug
it. It enables developers to work on functions in isolation
through high-level function descriptions and stubs.

In addition, I developed the first approach for build-
ing microservices through microtasks. Building microservices
through microtasks is a good match because our approach
requires a client to first specify the functionality the crowd
will create through an API. This API can then take the
form of a microservice description. A traditional project may
ask a crowd to implement a new microservice by simply
describing the desired behavior in a API and recruiting a
crowd. We implemented our approach in a web-based IDE,
Crowd Microservices1 (Fig. 1). It includes an editor for
clients to describe the system requirements through endpoint
descriptions as well as a web-based programming environment
where crowd workers can identify, test, implement, and debug
behaviors (Figure 1). The system automatically creates, man-
ages, assigns microtasks. After the crowd finishes, the system
automatically deploys the microservice to a hosting site.

Study 1: Feasibility. To evaluate the feasibility of this
approach, we conducted a small study where 9 developers
together worked to build a microservice. The results were
promising. Participants submitted their first microtask less
than half an hour after beginning, successfully submitted 350
microtasks, implemented 13 functions and 36 tests, completed
microtasks in a median time under 5 minutes, correctly imple-
mented 27 of 34 behaviors, and together implemented most of
a functioning ToDo microservice [6].

Study 2: Comparing microtask programming to traditional
development. To directly compare traditional programming to
microtasked programming, we conducted a controlled exper-
iment. Twenty-eight developers worked either on traditional
programming tasks, described through issues, or programming
microtasks. We found that, compared to traditional software

1https://youtu.be/mIn2EOqsDYw



1

2

3
SaveObject(todo);

Identified behavior

Fig. 1. In our behavior-driven microtask programming approach, developers complete microtasks where they (1) identify a behavior, (2) write a test for the
behavior, and (3) implement the behavior [6].

development, microtasking had important advantages in re-
ducing onboarding time and time-to-market and, surprisingly,
in increasing the quality of code and individual developer
productivity.

Study 3: Using microtask programming in industry. Our
early studies were conducted entirely in artificial contexts,
using artificial tasks and developers recruited specifically to
work in the study. To examine the potential for using microtask
programming in industry, we partnered with NTT, a large
telecommunication company, to conduct a study of microtask
programming within a real software project. We found that
a microtask programming approach was successful in imple-
menting and testing a project with 8000 lines of code in 14
functions. We also found that developers took time to under-
stand the new concepts in microtask programming approach
and be productive. We also found the value of having dedicated
developers responsible for managing microtask projects.

III. FUTURE WORK

My studies have offered initial evidence that microtask
programming can be effective in small crowds with a few
developers. But much of the promise of microtasking comes
from large crowds, and there exists a direct relationship
between the number of independent tasks and the parallelism
in microtask programming which may reduce time to market.
However, there are a number of significant challenges in
scaling microtask programming to larger crowds.

To date, the largest crowd we have used is only 9 developers.
To begin to examine microtask programming at scale, we
are planning to conduct a virtual hackathon with around
100 developers. Based on our findings, we will develop new
techniques to scale microtask programming and more fully
encompass software development work.

One direction we expect to pursue is with team organization.
In our current approach, clients specify a microservice and
crowd developers work in a flat organization to complete mi-
crotasks. This organization may not work well for all projects.
For instance, some projects have security considerations, like
private APIs that they do not want to expose to the public. Or
projects may benefit from more experienced team leads who
tackle more complex tasks or help less experienced developers
when they get stuck. We will explore ways to make better use
of more experienced developers in crowds through defining
separate roles for crowd workers. TopCoder is one successful
example of this hybrid collaboration, and we will explore ways
to adapt these ideas within microtask programming [7].

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under grants CCF-1414197 and CCF-1845508.

REFERENCES

[1] Y. Chen, S. W. Lee, Y. Xie, Y. Yang, W. S. Lasecki, and S. Oney, “Codeon:
On-demand software development assistance,” in CHI, 2017, pp. 6220–
6231.

[2] W. S. Lasecki, J. Kim, N. Rafter, O. Sen, J. P. Bigham, and M. S.
Bernstein, “Apparition: Crowdsourced user interfaces that come to life
as you sketch them,” in CHI, 2015, pp. 1925–1934.

[3] J. Warner and P. J. Guo, “Codepilot: Scaffolding end-to-end collaborative
software development for novice programmers,” in CHI, 2017, pp. 1136–
1141.

[4] M. Goldman, G. Little, and R. C. Miller, “Real-time collaborative coding
in a web ide,” in UIST, 2011, pp. 155–164.

[5] T. D. LaToza, A. Di Lecce, F. Ricci, B. Towne, and A. Van der Hoek,
“Microtask programming,” TSE, pp. 1–20, 2018.

[6] E. Aghayi, T. D. LaToza, P. Surendra, and S. Abolghasemi, “Crowd-
sourced behavior-driven development,” SSRN 3467705, 2019.

[7] K.-J. Stol and B. Fitzgerald, “Two’s company, three’s a crowd: A case
study of crowdsourcing software development,” in ICSE, 2014, pp. 187–
198.


